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Abstract 

Background: The non-structural protein 6 (NSP6) in SARS-CoV-2 is one of the most fascinating NSPs for drug targeting, 

because of its decisive role in the replication of the virus inside the host cells. This study aimed to predict a fine model of the 

tertiary structure of the NSP6 and to find a vaccine candidate to fight the NSP6.  

Methods: The AlphaFold 3 server was used in the prediction of the tertiary structure of the protein, then the model was 

refined using the DeepRefiner server, and finally, the quality of the refined model was estimated using the SAVES server. A 

full library of the available chemical ligands was downloaded from the ZINC20 database, and then these ligands were docked 

against the NSP6 protein. The physicochemical and drug likeness and the toxicity of the picked-up ligands were tested using 

SwissParam, Swiss-ADME, ProTox III, and ADMET-AI servers. The ligand complex with the NSP6 was subjected to 

Molecular dynamics simulation to assess its interactions with the protein through RMSD, RMSF, SASA, Rg, H-bonds, and 

free energy studies. The MD simulations were run a 100 ns time to study the changes of the trajectories and the parameters 

of the complexes compared to the NSP6-apo protein.   

Results: The AlphaFold server produced a high-quality model, and after refinement, the SAVES server indicated that the 

structure had a quality percent of 99.94%. The docking process selected two ligands, ZINC0117742510 and 
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ZINC1500127684, that are suitable as potential inhibitors. The RMSD results of the NSP6-ZINC0117742510 and the NSP6-

ZINC1500127684 complexes revealed that they reached stability in the 2 to 2.6 nm. The MD simulations analysis revealed 

that the NSP6-ZINC1500127684 and the NSP6-ZINC0117742510 proved minimal deviations and suitable stability compared 

to the NSP6-apo protein. The Molecular Mechanics Poisson–Boltzmann Surface Area (MMPBSA) analysis indicated that the 

NSP6-ZINC1500127684 complex had a lower binding energy than the NSP6-ZINC0117742510.  

Conclusion: Therefore, ZINC0117742510 and ZINC1500127684 ligands were proven as potential inhibitors against the 

SARS-CoV-2 NSP6 protein. 
 
 

1. Introduction 

A wide pandemic invasion caused by the novel Severe 

Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), 

which infected and caused deaths of millions all over the 

world, attracted the attention of researchers to discover the 

new virus [1,2]. The genome of SARS-CoV-2 embraces 26 

to 32 kb, sectioned into 11 open reading frames (ORFs), that 

encode 9680 amino acid polyproteins. ORF1 comprises more 

than 67% of the full genome of SARS-CoV-2 and encodes 

16 non-structural proteins (NSPs), which are important in the 

replication and transcription processes of the virus inside the 

host cells. The other ORFs encode the structural and 

accessory proteins. The encoded structural proteins are the 

envelope (E), spike (S), nucleocapsid (N), and membrane 

(M) proteins [3-5]. 

The NSP6 protein is found to have an important 

function in the process of viral replication, so it is considered 

one of the most attractive NSPs in SARS-CoV-2. Until now, 

there is no crystalized tertiary structure of the NSP6, 

therefore, researchers are using bioinformatic tools to predict 

the tertiary structure of the NSP6 in their studies [6,7]. The 

NSP6 protein consists of 290 amino acid residues. Studies 

have found that it takes part in the cycle of infection, 

protection, and replication of the SARS-CoV-2. In addition, 

it is found to have a vital role in the replication-transcription 

complexes (RTCs) assembly with NSP3 and NSP4 by 

increasing the double-membrane vesicles (DMVs) 

production [8-12].  Furthermore, it interacts with the sigma 

receptor of the endoplasmic reticulum (ER), which affects the 

performance of the ER [13-15]. 

Bioinformatics plays an essential role in biomedical 

research, including drug and vaccine development. 

Compared to traditional methods such as NMR spectroscopy 

and X-ray crystallography, bioinformatics tools such as 

tertiary structure predictions could offer an alternative with  

high-cost reduction and time savings in addition to the 

acceleration of drug discovery [16-19]. Many researchers 

used bioinformatics in their studies about SARS-CoV-2 and 

the NSP6 protein [6-10]. 

Molecular dynamics simulation (MD simulations) is a 

process that uses objects to analyze the dynamics of 

macromolecules in a simulated, well-controlled biophysical 

environment. Through this computational process, the 

physical relations in the system are determined via detection 

of the flexibility of the complexes along the simulation time. 

Additionally, the MD simulations process aims to study the 

interactions between the ligand and the active sites of the 

NSP6 protein and estimating the stability of these 

interactions [15]. 

In this study, we aimed to predict a suitable vaccine 

candidate against the NSP6 protein of SARS-CoV-2 using 

many bioinformatics tools like protein structure prediction, 

molecular docking, molecular dynamic simulations, 

Molecular Mechanics Poisson–Boltzmann Surface Area 

(MMPBSA), and ADMET prediction. 

 

2. Methods 
 

2.1. Structure modelling of the NSP6 protein 

The PSIPRED server was used in the prediction of the 

secondary structure of the protein [20]. The AlphaFold 3 

server was employed to predict the tertiary structure of the 

NSP6. AlphaFold uses a deep neural network in the 

prediction process through DeepMind algorithms [21-23]. 

Then the DeepRefiner server was used to refine the produced 

model of the NSP6 protein to provide a higher quality model 

[24]. Finally, we used the SAVES server to predict and 

estimate the quality of the refined tertiary structure model of 

the NSP6 [25]. 

 
 

2.2. Virtual screening and molecular Docking 
 

The molecular docking process was used to predict the 

possible ligand candidates through the binding affinity 

between the ligands and the NSP6 protein. The SwissDock 

server was used in molecular docking, which is based on the 

Attracting cavities (AC) and the Autodock Vina docking 

engines [26].  The ZINC20 database library was used as the 

ligand library in the docking studies. It is an ultra-large-scale 

database that includes more than a billion possible candidates 

that are suitable for docking [27]. The SwissDock server was 

used to estimate the binding affinities in the protein-ligand 

complexes, in addition to rich information about the 

interactions in the complex. The scoring function uses 

CHARMM force field, generating one random initial 

condition, and default number of dockings poses to reach the 

highest quality results [26,28]. 
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2.3. MD simulation 

 

MD simulation is an important process to study the 

stability and the flexibility of the protein-ligand complexes, 

in which the complex was centred in a cubic box with 10 Å 

length of the edges. The TIP3P water molecule model was 

used to surround the complex inside the box. To maintain the 

salt concentration inside the box, 0.15M of Na+ and Cl− ions 

were added to the box. Moreover, we used Particle-Ewald 

summation to estimate the electrostatic interactions, and 10 

Å cut-off to estimate the Van der Waals. The prepared system 

was energy minimized for 50000 steps using suitable 

algorithms, then it was subjected to NVT and NPT 

equilibrium processes for 100 ps per step. Finally, the MD 

simulation production started for 100 ns with a snapping rate 

every 10 ps to use in the analysis. We used the GROMACS-

2021.3 package for the run and the analysis of the MD 

simulation, root mean square fluctuation (RMSF), the protein 

root mean square deviation (RMSD), solvent accessible 

surface area (SASA), radius of gyration (RG), and hydrogen 

bonding (H-Bond) [29-39]. The MD simulation for the 

protein-ligand complexes and the analysis processes were 

applied on the Bibliotheca Alexandrina Supercomputing unit 

[29-31]. 
 

2.4. Binding free energy estimation 
 

The Molecular Mechanics Poisson–Boltzmann Surface 

Area (MM-PBSA) was accustomed to estimate the docking 

values, the bonds and their energies, and the binding affinities 

of the ligands. Also, it accurately estimates the binding free 

energies of the protein-ligand complex. In addition, it was 

used to estimate the potential interactions and binding sites. 

The binding free energies of the protein-ligand complexes 

were estimated through: 

∆Gbinding = Gcomplex  − Gprotein  − Gligand  , 

Gcomplex : the free energy of the protein–ligand complex  

Gprotein   : the free energy of protein  

Gligand    : the free energy of ligand.  

 

The MM-PBSA results were used in the estimation of 

the binding of protein-ligand complexes and to estimate the 

potential interactions and binding sites. We used the 

GROMACS-2021.3 package for the run and the analysis of 

the MM-PBSA with frame every 100 ps [40 -44]. 
 

2.5. Physicochemical and Drug-Likeness Properties 
 

To validate the ligand as a possible vaccine, we have to 

predict the absorption, metabolism, distribution, and 

excretion of the ligand inside the body (ADME). We used the 

Swiss-ADME server to predict the drug-likeness and 

physicochemical properties of the ligands. Swiss-ADME 

server could estimate the molecular weight, H-bond donors 

and acceptors, and Lipinski's rule of 5, in addition to the 

BOILEG-Egg, iLOGp, and the Bioavailability radar [45].  

Furthemore, we used ProTox III and ADMET-AI servers to 

predict the drug-like properties of the ligands [46 - 47]. 

3. Results 
 

3.1. Structure modelling of the NSP6 protein 
 

PSIPRED server was used in the prediction of the 

secondary structure of the NSP6 protein; the results showed 

that the structure may be 77.93% α-helices, 19.31% coils, and 

2.76% β-strands (Figure 1a). The AlphaFold 3 server was 

used in the prediction of the tertiary structure of the NSP6 

protein (Figure 1b). After that, the DeepRefiner server was 

used to refine the predicted model to increase its quality, and 

finally, the quality of the refined model was estimated using 

the SAVES server. 

The results indicated that the structure of the protein is 

composed of two antiparallel beta sheets, 16 turns, and 14 

alpha helices. Additionally, it includes 8 transmembrane 

helices. According to the SAVES server, the refined model 

has an overall quality of 99.64% with 94.4% in the core 

region, and 5.6% in the allowed regions, with no residues in 

the disallowed region in the Ramachandran plot (Figure 1). 

 

(a)   
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(b)  

 

(c) 

 

Figure 1: (a) The predicted secondary structure of the NSP6 

protein. (b) The ribbon view of the best-predicted model. (c) 

Ramachandran plot. 

3.2. Virtual Screening and Molecular Docking 
 

To predict the binding affinity between the NSP6 

protein with the candidate ligands, we have to perform the 

molecular docking. A library of 2.9 million ligands from the 

ZINC20 database was docked against the NSP6 using the 

SwissDock server, which applies the Attracting Cavities and 

Autodock Vina docking engines. Discovery studio 

2021client was used to visualize the protein-ligand 

complexes. Through comparing the AC and SwissParam 

Scores, two ligands have the lowest scores (Table 1), with 

docking sites shown in Figure 2. 

 
Table 1. A list of top-scored drug-like molecules resulted from 
molecular docking analyses using the SwissParam SwissDock. 

 

ZINC 

database ID 
0117742510 1500127684 

Chemical 

structure 

 

 

AC Score -97.85 -94.64 

SwissParam 

Score 

-7.48 -7.80 

 

 
Figure 2. Docking interactions of (a, b, and c) NSP6-

ZINC0117742510, and (d, e, and f) NSP6-ZINC1500127684.  

(a) (d) 

 

 

(b) (e) 

 

 

(c) (f) 

  

 1 
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3.3. Drug-Likeness and Physicochemical Analysis 
 

The Swiss-ADME server was applied in the prediction 

of the ADMET parameters of the candidate ligands, in which 

it assesses the drug-likeness, molecular weight, 

hydrophobicity (logP), and Lipinski’s rule of five of the 

ligands. The ligands showed that they have a molecular 

weight less than 350 g/mol, no violations of Lipinski’s rules, 

and log P values less than 5 (Table 2). 

Table 2. Drug-likeness characteristics of the chosen drug-like 

complexes obtained using the Swiss-ADME server. 

 

ZINC 
database ID 

0117742510 1500127684 

Molecular formula C18H27N3O2 C16H22N2O3S 

Molecular weight (g/mol) 317.43 322.42 

No. of H-bond acceptors 2 4 

No. of H-bond donors 3 2 

LogP (octanol/water 
partition coefficient) 

2.67 2.22 

Lipinski's no. of violations 0 0 

Ghose's no. of violations 0 0 

Veber's no. of violations 0 0 

Bioavailability Score 0.55 0.55 

PAINS no. of alerts 0 0 

 
 

3.4. Toxicity prediction 
 

To evaluate the toxicity of the ligands, we used the ProTox III 

and ADMET-AI servers. The results indicated that the ligands 
didn’t have any positive results towards cardiotoxicity, clinical 

toxicity, nephrotoxicity, blood–brain barrier (BBB) penetration, 

carcinogenicity, cytotoxicity, mutagenicity, or nutritional toxicity 

(Tables 3:7). 

Table 3. Physicochemical properties of the selected drug-like 

complexes obtained using the ADMET-AI server. 

 

ZINC 

database ID 
0117742510 1500127684 Units 

Molecular Weight 317.43 322.43 Dalton 

LogP 2.34 2.09 log-

ratio 

Hydrogen Bond 

Acceptors 

2.00 3.00 # 

Hydrogen Bond 

Donors 

3.00 2.00 # 

Lipinski Rule of 5 4.00 4.00 # of 4 

Quantitative Estimate 
of Druglikeness (QED) 

0.64 0.81 - 

Stereo Centers 1.00 0.00 # 

Topological Polar 

Surface Area (TPSA) 

73.99 89.26 Å2 

Table 4. Absorption properties of the chosen drug-like complexes 

obtained using the ADMET-AI server. 

 

ZINC 

database ID 
0117742510 1500127684 Units 

Human Intestinal 

Absorption  

1.00 1.00 - 

Oral 

Bioavailability  

0.83 0.86 - 

Aqueous 

Solubility  

-3.26 -3.07 log(mol/L) 

Lipophilicity  2.71 1.73 log-ratio 

Hydration Free 

Energy  

-10.53 -8.14 kcal/mol 

Cell Effective 

Permeability  

-5.06 -4.80 log(10-

6 cm/s) 

PAMPA 

Permeability  

0.88 0.79 - 

P-glycoprotein 

Inhibition  

0.16 0.19 - 

 

Table 5. Distribution properties of the chosen drug-like complexes 

obtained using the ADMET-AI server. 

 

ZINC 
database ID 

0117742510 1500127684 Units 

Blood-Brain Barrier 

Penetration  

0.88 0.86 - 

Plasma Protein Binding 

Rate   

79.91 88.35 % 

Volume of Distribution 
at Steady State   

2.88 0.00 L/kg 

 

Table 6. Metabolism properties of the chosen drug-like complexes 
obtained using the ADMET-AI server 

 

ZINC 

database ID 
0117742510 1500127684 Units 

CYP1A2 

Inhibition  

0.47 0.06 - 

CYP2C19 

Inhibition  

0.44 0.33 - 

CYP2C9 

Inhibition  

0.08 0.05 - 

CYP2D6 

Inhibition  

0.21 0.05 - 

CYP3A4 

Inhibition  

0.54 0.34 - 

CYP2C9 

Substrate  

0.20 0.50 - 

CYP2D6 

Substrate  

0.44 0.11 - 

CYP3A4 

Substrate  

0.71 0.48 - 

 

https://www.rdkit.org/docs/source/rdkit.Chem.Descriptors.html#rdkit.Chem.Descriptors.MolWt
https://www.rdkit.org/docs/source/rdkit.Chem.Crippen.html#rdkit.Chem.Crippen.MolLogP
https://www.rdkit.org/docs/source/rdkit.Chem.rdMolDescriptors.html#rdkit.Chem.rdMolDescriptors.CalcNumHBA
https://www.rdkit.org/docs/source/rdkit.Chem.rdMolDescriptors.html#rdkit.Chem.rdMolDescriptors.CalcNumHBA
https://www.rdkit.org/docs/source/rdkit.Chem.rdMolDescriptors.html#rdkit.Chem.rdMolDescriptors.CalcNumHBD
https://www.rdkit.org/docs/source/rdkit.Chem.rdMolDescriptors.html#rdkit.Chem.rdMolDescriptors.CalcNumHBD
https://en.wikipedia.org/wiki/Lipinski%27s_rule_of_five#Components_of_the_rule
https://www.rdkit.org/docs/source/rdkit.Chem.QED.html#rdkit.Chem.QED.qed
https://www.rdkit.org/docs/source/rdkit.Chem.QED.html#rdkit.Chem.QED.qed
https://www.rdkit.org/docs/source/rdkit.Chem.rdMolDescriptors.html#rdkit.Chem.rdMolDescriptors.CalcNumAtomStereoCenters
https://www.rdkit.org/docs/source/rdkit.Chem.rdMolDescriptors.html#rdkit.Chem.rdMolDescriptors.CalcTPSA
https://www.rdkit.org/docs/source/rdkit.Chem.rdMolDescriptors.html#rdkit.Chem.rdMolDescriptors.CalcTPSA
https://tdcommons.ai/single_pred_tasks/adme/#hia-human-intestinal-absorption-hou-et-al
https://tdcommons.ai/single_pred_tasks/adme/#hia-human-intestinal-absorption-hou-et-al
https://tdcommons.ai/single_pred_tasks/adme/#bioavailability-ma-et-al
https://tdcommons.ai/single_pred_tasks/adme/#bioavailability-ma-et-al
https://tdcommons.ai/single_pred_tasks/adme/#solubility-aqsoldb
https://tdcommons.ai/single_pred_tasks/adme/#solubility-aqsoldb
https://tdcommons.ai/single_pred_tasks/adme/#lipophilicity-astrazeneca
https://tdcommons.ai/single_pred_tasks/adme/#hydration-free-energy-freesolv
https://tdcommons.ai/single_pred_tasks/adme/#hydration-free-energy-freesolv
https://tdcommons.ai/single_pred_tasks/adme/#caco-2-cell-effective-permeability-wang-et-al
https://tdcommons.ai/single_pred_tasks/adme/#caco-2-cell-effective-permeability-wang-et-al
https://tdcommons.ai/single_pred_tasks/adme/#pampa-permeability-ncats
https://tdcommons.ai/single_pred_tasks/adme/#pampa-permeability-ncats
https://tdcommons.ai/single_pred_tasks/adme/#pgp-p-glycoprotein-inhibition-broccatelli-et-al
https://tdcommons.ai/single_pred_tasks/adme/#pgp-p-glycoprotein-inhibition-broccatelli-et-al
https://tdcommons.ai/single_pred_tasks/adme/#bbb-blood-brain-barrier-martins-et-al
https://tdcommons.ai/single_pred_tasks/adme/#bbb-blood-brain-barrier-martins-et-al
https://tdcommons.ai/single_pred_tasks/adme/#ppbr-plasma-protein-binding-rate-astrazeneca
https://tdcommons.ai/single_pred_tasks/adme/#ppbr-plasma-protein-binding-rate-astrazeneca
https://tdcommons.ai/single_pred_tasks/adme/#vdss-volumn-of-distribution-at-steady-state-lombardo-et-al
https://tdcommons.ai/single_pred_tasks/adme/#vdss-volumn-of-distribution-at-steady-state-lombardo-et-al
https://tdcommons.ai/single_pred_tasks/adme/#cyp-p450-1a2-inhibition-veith-et-al
https://tdcommons.ai/single_pred_tasks/adme/#cyp-p450-1a2-inhibition-veith-et-al
https://tdcommons.ai/single_pred_tasks/adme/#cyp-p450-2c19-inhibition-veith-et-al
https://tdcommons.ai/single_pred_tasks/adme/#cyp-p450-2c19-inhibition-veith-et-al
https://tdcommons.ai/single_pred_tasks/adme/#cyp-p450-2c9-inhibition-veith-et-al
https://tdcommons.ai/single_pred_tasks/adme/#cyp-p450-2c9-inhibition-veith-et-al
https://tdcommons.ai/single_pred_tasks/adme/#cyp-p450-2d6-inhibition-veith-et-al
https://tdcommons.ai/single_pred_tasks/adme/#cyp-p450-2d6-inhibition-veith-et-al
https://tdcommons.ai/single_pred_tasks/adme/#cyp-p450-3a4-inhibition-veith-et-al
https://tdcommons.ai/single_pred_tasks/adme/#cyp-p450-3a4-inhibition-veith-et-al
https://tdcommons.ai/single_pred_tasks/adme/#cyp2c9-substrate-carbon-mangels-et-al
https://tdcommons.ai/single_pred_tasks/adme/#cyp2c9-substrate-carbon-mangels-et-al
https://tdcommons.ai/single_pred_tasks/adme/#cyp2d6-substrate-carbon-mangels-et-al
https://tdcommons.ai/single_pred_tasks/adme/#cyp2d6-substrate-carbon-mangels-et-al
https://tdcommons.ai/single_pred_tasks/adme/#cyp3a4-substrate-carbon-mangels-et-al
https://tdcommons.ai/single_pred_tasks/adme/#cyp3a4-substrate-carbon-mangels-et-al
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Table 7. Excretion properties of the chosen drug-like complexes 

obtained using the ADMET-AI server. 

 

ZINC 
database ID 

011774251
0 

150012768
4 

Units 

Half Life   3.23 0.00 hr 

Drug 

Clearance 
(Hepatocyte)  

58.19 42.44 uL/min/106 cell

s 

Drug 

Clearance 

(Microsome) 
  

38.19 35.10 uL/min/mg 

   
 

3.5. Molecular Dynamics Simulations 

 

Molecular dynamics simulation was performed using 

GROMACS version 2021.3. The simulation at 100 ns time 

was applied on the apo protein and the NSP6-ligand 

complexes, then the changes in the trajectories were studied 

and matched to the apo protein. 
 
 

3.5.1. RMSD 
 

Evaluation of the conformational and structural 

constancy of the NSP6-apo and the NSP6-ligand complexes 

can be reviewed using the RMSD of the backbone of the 

protein against the duration of simulation (Figure 3). The 

NSP6-apo protein established a sharp rise in the RMSD 

values up to 5 ns, then it became stable within 0.2 and 0.35 

nm over the period. The NSP6-ZINC0117742510 and the 

NSP6-ZINC1500127684 showed a continual increase in the 

RMSD up to 50 ns, then reached stability within 2 to 2.6 nm 

over the period.   

 

 

Figure 3. RMSD chart of NSP6-ZINC complexes generated 

through MD simulations at 100 ns.  

 

3.5.2. RMSF 
 

RMSF is used to compare the average estimation of the 

displacement of a group of atoms or a specific structure with 

a reference structure. We used RMSF to compare the 

flexibility of the residues and backbone of the complexes 

along the timescale of simulation 100 ns (Figure 4) and the 

average of the RMSF values is calculated (Table 8) focusing 

on the residue regions 30 - 50, 80-100, and 170-200. 

Compared to the NSP6-apo, the NSP6-ZINC1500127684 

had lower and a leftward shift fluctuation in the 30-50 and 

80-100 regions. While the NSP6-ZINC0117742510 

exhibited higher fluctuations in the 80-100 and 80-100 

regions, but lower in the 170-200 region. 

 
Table 8. The average RMSF values for the NSP6 complexes with 

ZINC compounds.  

 

Complex Average RMSF (nm) 

NSP6-ZINC0117742510  0.12 ± 0.08 

NSP6-ZINC1500127684 0.11 ± 0.06 

 

 

 
 

Figure 4. RMSF chart of the NSP6-ZINC complexes resulted 

through MD simulations at 100 ns.  

 

3.5.3. Radius of Gyration 

 

Radius of gyration (Rg) was used in the approximation 

of the compactness and integrity of the NSP6-apo, NSP6-

ZINC0117742510, and NSP6-ZINC1500127684 complexes’ 

structure to have a precise evaluation of their stability.  The 

average Rg values for the NSP6-apo, NSP6-

ZINC0117742510, and NSP6-ZINC1500127684 from 0 to 

100 ns are 2.04±0.01, 2.04±0.01 and 2.03±0.01 nm2, 

respectively (Figure 5). 

https://tdcommons.ai/single_pred_tasks/adme/#half-life-obach-et-al
https://tdcommons.ai/single_pred_tasks/adme/#clearance-astrazeneca
https://tdcommons.ai/single_pred_tasks/adme/#clearance-astrazeneca
https://tdcommons.ai/single_pred_tasks/adme/#clearance-astrazeneca
https://tdcommons.ai/single_pred_tasks/adme/#clearance-astrazeneca
https://tdcommons.ai/single_pred_tasks/adme/#clearance-astrazeneca
https://tdcommons.ai/single_pred_tasks/adme/#clearance-astrazeneca
https://tdcommons.ai/single_pred_tasks/adme/#clearance-astrazeneca
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Figure 5. Rg chart of the NSP6-ZINC complexes resulted through 

MD simulations at 100 ns.  
 

3.5.4. SASA Analysis 
 

The solvent-accessible surface area (SASA) was used 

to predict the exposed area of the NSP6-ligand complexes 

and the NSP6-apo that can interact with the surrounding 

solvents. The changes of the SASA of the three structures 

alongside the simulation from 0 to 100 ns were detected and 

analysed (Figure 6). The average SASA values for the NSP6-

apo, NSP6-ZINC0117742510, and NSP6-ZINC1500127684 

from 0 to 100 ns are 163.7±2.65, 162.8±2.36 and 162.3±2.68 

nm2, respectively. 

 

 
 

Figure 6. SASA chart of the NSP6-ZINC complexes resulted 

through MD simulations at 100 ns.  
 

3.5.5. Molecular Interactions Analysis 
 

The hydrogen bonds maintain the strength of the 

protein-ligand complex. We used the CHAARM force field 

to estimate the hydrogen bonds in the complexes alongside 

the simulation time (Figure 7). The NSP6-ZINC1500127684 

has the highest number of hydrogen bonds with 8483 bonds, 

while the NSP6-ZINC0117742510 has 3338 Bonds, with 

0.85, and 0.33 average hydrogen bonds per frame 

respectively.  
 

 
 

Figure 7. H-bond chart of the NSP6-ZINC complexes resulted 

through MD simulations at 100 ns.  
 

3.5.6. MM-PBSA Analysis 
           

To increase confidence in the NSO6-ligand complexes, 

the physical energies between the ligands and the NSP6 must 

be analysed. Following the MD simulation, MMPBSA 

analysis is needed to detect the best pose of docking of the 

protein-ligand complex. MMPBSA is used to analyse the 

energies controlling the stability of the NSP6-ligand 

complexes (Table 9). The NSP6-ZINC1500127684 complex 

was realized to have the lowest VdW, Electrostatic, and 

Binding energy. The free energy situation of the residues in 

the complexes was analysed per residue (Figure 8). 

 
Table 9. The estimation of various energies observed in the 
NSP6+ligand systems. 

Complex 

Van der 
Waals 

Energy 

(kcal/Mol) 

Electrostat
ic 

Energy 

(kcal/Mol) 

Polar 
Solvation 

Energy 

(kcal/Mol) 

Binding 
Energy 

(kcal/M

ol) 

NSP6-

ZINC0117

742510 

-24.72 -8 14.78 -17.93 

NSP6-

ZINC1500
127684 

-26.36 -13.89 19.14 -21.11 

 

   

 Figure 8. Binding free energy decomposition of the NSP6-ZINC-

0117742510 and NSP6-ZINC-1500127684. 
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4. Discussions 
 

The NSP6 protein is an important objective in fighting 

SARS-CoV-2; however, the absence of a verified tertiary 

structure motivates researchers to predict its tertiary structure 

and a vaccine to eliminate its role. AlphaFold server was used 

to predict the tertiary structure, then the model was refined 

using DeepRefiner, and finally the excellence of the refined 

model was assessed using the SAVES server and the quality 

percent were 99.94% the structure was in the core region with 

5.6% in the allowed region of the Ramachandran plot, which 

reveals the quality of the predicted model. 

A full library of suitable ligands was downloaded from 

the ZINC20 database; the library included more than a billion 

possible ligands. First, the ligands in the library were docked 

to the NSP6, SwissDock server, which is based on the 

Attracting cavities (AC) and Autodock Vina docking engines 

were used for docking studies. Based on the AC and 

SwissParam Scores, 2 ligands have the lowest scores. The 

physicochemical and drug likeness of these ligands were 

analyzed using the Swiss-ADME server, and the toxicity of 

ligands was analyzed using ProTox III and ADMET-AI 

servers. The ADMET and toxicity studies revealed that both 

ligands have MW less than 380 g/mol, with no Lipinski, 

Ghose and Veber violations; furthermore, they have suitable 

toxicity parameters that support the ligands. 

The ligand complex with the NSP6 was subjected to 

MD simulations study to evaluate their interactions with the 

protein through RMSD, RMSF, SASA, Rg, H-bonds, and 

free energy studies. The MD simulations were run at 100 ns 

time function to study the changes of the trajectories and the 

parameters of the complexes compared to the NSP6-apo.  

The RMSD of the NSP6-APO complex increased sharply up 

to 5 ns before stabilizing between 0.2 and 0.35 nm. The 

NSP6-ZINC0117742510 and the NSP6-ZINC1500127684 

showed a continual increase in the RMSD up to 50 ns, then 

reached stability within 2 to 2.6 nm over the period. 

The average of the RMSF values for the NSP6-

ZINC1500127684 and the NSP6-ZINC0117742510 

complexes presented that the NSP6-ZINC1500127684 

complex has the lowest RMSF average with 0.11 ± 0.06 nm, 

while the NSP6-ZINC0117742510 was 0.12 ± 0.08 nm, 

which indicates the greater stability of the NSP6-

ZINC1500127684 complex. The average Rg values for the 

NSP6-apo, NSP6-ZINC0117742510, and NSP6-

ZINC1500127684 from 0 to 100 ns are 2.04±0.01, 2.04±0.01 

and 2.03±0.01 nm2, respectively, which reveals that the 

complexes exhibited the same performance as the NSP6-apo, 

indicating that the ligands don’t alter the stability or the 

dynamics of the protein. 

The changes of the SASA of the three structures 

alongside the simulation from 0 to 100 ns were detected and 

analysed. The average SASA values for the NSP6-apo, 

NSP6-ZINC0117742510, and NSP6-ZINC1500127684 from 

0 to 100 ns are 163.7±2.65, 162.8±2.36 and 162.3±2.68 nm2, 

respectively, which indicates that the NSP6-

ZINC1500127684 provided the lowest SASA.   The 

estimation of H-bonds of the NSP6-ZINC1500127684, and 

the NSP6-ZINC0117742510 complexes was 8483 and 3338 

bonds, respectively, which indicated that the NSP6-

ZINC1500127684 is the strongest in binding and has more 

binding affinity. 

To analyze the binding energies of the NSP6-

ZINC1500127684 and the NSP6-ZINC0117742510 

complexes, we used the MMPBSA analyses. The results 

displayed that the NSP6-ZINC1500127684 complex has the 

lowest binding energy score with -21.11 kcal/Mol, while the 

Van der Waals interactions play a higher significant effect 

than the electrostatic contacts, indicating the best stability 

among the complexes. According to the results and the 

analysis of RMSD, RMSF, Rg, SASA, H-bonds, and 

MMPBSA, ZINC0117742510 and ZINC1500127684 

ligands proved a promising potential as a candidate vaccine 

against the SARS-CoV-2 NSP6 protein, with a slight 

advantage for ZINC1500127684 over ZINC0117742510.  

Comparing these results with the work of Ahmed 

Abdelkader and colleagues [8], who investigated the 

suitability of ligands from Northern African Natural Products 

Database (NANPDB), FDA-approved drugs (DrugBank), 

and South African Natural Compounds Database (SANCDB) 

products, the methods used in the study were the same as in 

this paper; moreover, we applied the MMPBSA analysis, 

which is much slower and more expensive than the 

MMGBSA, which was used in their paper, but the MMPBSA 

reveals more accurate results [28]. In comparison, the 

ZINC0117742510 and ZINC1500127684 ligands revealed 

lower binding energies than their ligands with higher H-

bonds than theirs. 

 

Conclusion 
 

      Bioinformatics opened a new era of scientific research. 

Using bioinformatics, the tertiary structure model of the 

NSP6 protein was predicted using AlphaFold, refined, and 

assessed. Using the library of ZIN20 database, the ZINC20 

ligands were docked and virtually screened against the NSP6 

protein using the SwissDock server. ZINC0117742510 and 

ZINC1500127684 ligands were picked up due to their results 

in docking.   Molecular dynamics simulations were applied to 

the apo protein and the NSP6-ligand complexes for 100 ns. 

The complexes' stability, trajectories, and flexibility were 

evaluated compared to the apo protein based on the analyses 

of RMSD, radius of gyration (Rg), SASA, and RMSF. The 

NSP6-ZINC1500127684 and the NSP6-ZINC0117742510 

revealed minimal deviations and suitable stability compared 

to the NSP6-apo. The MMPBSA analysis indicated that the 

NSP6-ZINC1500127684 complex had a lower binding 

energy than the NSP6-ZINC0117742510. Consequently, 

ZINC0117742510 and ZINC1500127684 were identified as 

promising small-molecule inhibitors against the SARS-CoV-

2 NSP6 that warrant further in vitro and in vivo validation. 
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