Advances in Basic and Applied Sciences 6 (2025) 49-58

g g Advances in Basic and Applied Sciences
e

Sty 2 journal homepage: https://abas.journals.ekb.eq/ HELWAN ums,;'

@
>

G
%

Molecular docking, Molecular dynamics simulation and
MMPBSA studies on potential lead compounds fighting NSP6 of
SARS-CoV-2

Mohammed Mostafa Salama'*, Medhat Wahba Shafaal, Mohamed EI-Sayed EI-Nagdy?,
Mohamed EI-Sayed Hasan??

! Helwan University, Faculty of Science, Physics Department, Medical Biophysics Division, Cairo, Egypt.

ZUniversity of Sadat City, Genetic Engineering and Biotechnology Research Institute, Bioinformatics Department, Sadat City
32897, Egypt.

3 Borg Al Arab Technological University (BATU), Faculty of Applied Health Science, Department of Health Information
Technology, Borg Al Arab, Egypt.

ARTICLE INFO

Article history:

Received 13 August 2025

Received in revised form 6 September 2025
Accepted 10 September 2025

Available online 25 October 2025

doi: 10.21608/ABAS.2025.410458.1072

Keywords: SARS-CoV-2; NSP6; in silico; Molecular dynamic simulation; Molecular docking; MMPBSA; vaccine testing.

Abstract

Background: The non-structural protein 6 (NSP6) in SARS-CoV-2 is one of the most fascinating NSPs for drug targeting,
because of its decisive role in the replication of the virus inside the host cells. This study aimed to predict a fine model of the
tertiary structure of the NSP6 and to find a vaccine candidate to fight the NSP6.

Methods: The AlphaFold 3 server was used in the prediction of the tertiary structure of the protein, then the model was
refined using the DeepRefiner server, and finally, the quality of the refined model was estimated using the SAVES server. A
full library of the available chemical ligands was downloaded from the ZINC20 database, and then these ligands were docked
against the NSP6 protein. The physicochemical and drug likeness and the toxicity of the picked-up ligands were tested using
SwissParam, Swiss-ADME, ProTox Ill, and ADMET-AI servers. The ligand complex with the NSP6 was subjected to
Molecular dynamics simulation to assess its interactions with the protein through RMSD, RMSF, SASA, Rg, H-bonds, and
free energy studies. The MD simulations were run a 100 ns time to study the changes of the trajectories and the parameters
of the complexes compared to the NSP6-apo protein.

Results: The AlphaFold server produced a high-quality model, and after refinement, the SAVES server indicated that the
structure had a quality percent of 99.94%. The docking process selected two ligands, ZINC0117742510 and

" Corresponding author E-mail: mmhslama@gmail.com © 2025



mailto:mmhslama@gmail.com
https://abas.journals.ekb.eg/

M. M. Salama.; et al. / Advances in Basic and Applied Sciences 6 (2025) 4% 58

ZINC1500127684, that are suitable as potential inhibitors. The RMSD results of the NSP6-ZINC0117742510 and the NSP6-
ZINC1500127684 complexes revealed that they reached stability in the 2 to 2.6 nm. The MD simulations analysis revealed
that the NSP6-ZINC1500127684 and the NSP6-ZINC0117742510 proved minimal deviations and suitable stability compared
to the NSP6-apo protein. The Molecular Mechanics Poisson—Boltzmann Surface Area (MMPBSA) analysis indicated that the
NSP6-ZINC1500127684 complex had a lower binding energy than the NSP6-ZINC0117742510.

Conclusion: Therefore, ZINC0117742510 and ZINC1500127684 ligands were proven as potential inhibitors against the

SARS-CoV-2 NSP6 protein.

1. Introduction

A wide pandemic invasion caused by the novel Severe
Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2),
which infected and caused deaths of millions all over the
world, attracted the attention of researchers to discover the
new virus [1,2]. The genome of SARS-CoV-2 embraces 26
to 32 kb, sectioned into 11 open reading frames (ORFs), that
encode 9680 amino acid polyproteins. ORF1 comprises more
than 67% of the full genome of SARS-CoV-2 and encodes
16 non-structural proteins (NSPs), which are important in the
replication and transcription processes of the virus inside the
host cells. The other ORFs encode the structural and
accessory proteins. The encoded structural proteins are the
envelope (E), spike (S), nucleocapsid (N), and membrane
(M) proteins [3-5].

The NSP6 protein is found to have an important
function in the process of viral replication, so it is considered
one of the most attractive NSPs in SARS-CoV-2. Until now,
there is no crystalized tertiary structure of the NSPG6,
therefore, researchers are using bioinformatic tools to predict
the tertiary structure of the NSP6 in their studies [6,7]. The
NSP6 protein consists of 290 amino acid residues. Studies
have found that it takes part in the cycle of infection,
protection, and replication of the SARS-CoV-2. In addition,
it is found to have a vital role in the replication-transcription
complexes (RTCs) assembly with NSP3 and NSP4 by
increasing the double-membrane vesicles (DMVs)
production [8-12]. Furthermore, it interacts with the sigma
receptor of the endoplasmic reticulum (ER), which affects the
performance of the ER [13-15].

Bioinformatics plays an essential role in biomedical
research, including drug and vaccine development.
Compared to traditional methods such as NMR spectroscopy
and X-ray crystallography, bioinformatics tools such as
tertiary structure predictions could offer an alternative with
high-cost reduction and time savings in addition to the
acceleration of drug discovery [16-19]. Many researchers
used bioinformatics in their studies about SARS-CoV-2 and
the NSP6 protein [6-10].

Molecular dynamics simulation (MD simulations) is a
process that uses objects to analyze the dynamics of
macromolecules in a simulated, well-controlled biophysical
environment. Through this computational process, the

physical relations in the system are determined via detection
of the flexibility of the complexes along the simulation time.
Additionally, the MD simulations process aims to study the
interactions between the ligand and the active sites of the
NSP6 protein and estimating the stability of these
interactions [15].

In this study, we aimed to predict a suitable vaccine
candidate against the NSP6 protein of SARS-CoV-2 using
many bioinformatics tools like protein structure prediction,
molecular docking, molecular dynamic simulations,
Molecular Mechanics Poisson-Boltzmann Surface Area
(MMPBSA), and ADMET prediction.

2. Methods

2.1. Structure modelling of the NSP6 protein

The PSIPRED server was used in the prediction of the
secondary structure of the protein [20]. The AlphaFold 3
server was employed to predict the tertiary structure of the
NSP6. AlphaFold uses a deep neural network in the
prediction process through DeepMind algorithms [21-23].
Then the DeepRefiner server was used to refine the produced
model of the NSP6 protein to provide a higher quality model
[24]. Finally, we used the SAVES server to predict and
estimate the quality of the refined tertiary structure model of
the NSP6 [25].

2.2. Virtual screening and molecular Docking

The molecular docking process was used to predict the
possible ligand candidates through the binding affinity
between the ligands and the NSP6 protein. The SwissDock
server was used in molecular docking, which is based on the
Attracting cavities (AC) and the Autodock Vina docking
engines [26]. The ZINC20 database library was used as the
ligand library in the docking studies. It is an ultra-large-scale
database that includes more than a billion possible candidates
that are suitable for docking [27]. The SwissDock server was
used to estimate the binding affinities in the protein-ligand
complexes, in addition to rich information about the
interactions in the complex. The scoring function uses
CHARMM force field, generating one random initial
condition, and default number of dockings poses to reach the
highest quality results [26,28].
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2.3. MD simulation

MD simulation is an important process to study the
stability and the flexibility of the protein-ligand complexes,
in which the complex was centred in a cubic box with 10 A
length of the edges. The TIP3P water molecule model was
used to surround the complex inside the box. To maintain the
salt concentration inside the box, 0.15M of Na* and CI~ ions
were added to the box. Moreover, we used Particle-Ewald
summation to estimate the electrostatic interactions, and 10
A cut-off to estimate the VVan der Waals. The prepared system
was energy minimized for 50000 steps using suitable
algorithms, then it was subjected to NVT and NPT
equilibrium processes for 100 ps per step. Finally, the MD
simulation production started for 100 ns with a snapping rate
every 10 ps to use in the analysis. We used the GROMACS-
2021.3 package for the run and the analysis of the MD
simulation, root mean square fluctuation (RMSF), the protein
root mean square deviation (RMSD), solvent accessible
surface area (SASA), radius of gyration (RG), and hydrogen
bonding (H-Bond) [29-39]. The MD simulation for the
protein-ligand complexes and the analysis processes were
applied on the Bibliotheca Alexandrina Supercomputing unit
[29-31].

2.4. Binding free energy estimation

The Molecular Mechanics Poisson—Boltzmann Surface
Area (MM-PBSA) was accustomed to estimate the docking
values, the bonds and their energies, and the binding affinities
of the ligands. Also, it accurately estimates the binding free
energies of the protein-ligand complex. In addition, it was
used to estimate the potential interactions and binding sites.
The binding free energies of the protein-ligand complexes
were estimated through:

AGbinding = Gcomplex - Gprotein - Gligand )

Geomplex : the free energy of the protein-ligand complex

Gprotein : the free energy of protein

Giigand  : the free energy of ligand.

The MM-PBSA results were used in the estimation of
the binding of protein-ligand complexes and to estimate the
potential interactions and binding sites. We used the
GROMACS-2021.3 package for the run and the analysis of
the MM-PBSA with frame every 100 ps [40 -44].

2.5. Physicochemical and Drug-Likeness Properties

To validate the ligand as a possible vaccine, we have to
predict the absorption, metabolism, distribution, and
excretion of the ligand inside the body (ADME). We used the
Swiss-ADME server to predict the drug-likeness and
physicochemical properties of the ligands. Swiss-ADME
server could estimate the molecular weight, H-bond donors
and acceptors, and Lipinski's rule of 5, in addition to the
BOILEG-Egg, iLOGp, and the Bioavailability radar [45].
Furthemore, we used ProTox Il and ADMET-AI servers to
predict the drug-like properties of the ligands [46 - 47].

3. Results
3.1. Structure modelling of the NSP6 protein

PSIPRED server was used in the prediction of the
secondary structure of the NSP6 protein; the results showed
that the structure may be 77.93% a-helices, 19.31% coils, and
2.76% p-strands (Figure 1a). The AlphaFold 3 server was
used in the prediction of the tertiary structure of the NSP6
protein (Figure 1b). After that, the DeepRefiner server was
used to refine the predicted model to increase its quality, and
finally, the quality of the refined model was estimated using
the SAVES server.

The results indicated that the structure of the protein is
composed of two antiparallel beta sheets, 16 turns, and 14
alpha helices. Additionally, it includes 8 transmembrane
helices. According to the SAVES server, the refined model
has an overall quality of 99.64% with 94.4% in the core
region, and 5.6% in the allowed regions, with no residues in
the disallowed region in the Ramachandran plot (Figure 1).
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Figure 1: (a) The predicted secondary structure of the NSP6
protein. (b) The ribbon view of the best-predicted model. (c)
Ramachandran plot.

3.2. Virtual Screening and Molecular Docking

To predict the binding affinity between the NSP6
protein with the candidate ligands, we have to perform the
molecular docking. A library of 2.9 million ligands from the
ZINC20 database was docked against the NSP6 using the
SwissDock server, which applies the Attracting Cavities and
Autodock Vina docking engines. Discovery studio

2021client was used to visualize the protein-ligand
complexes. Through comparing the AC and SwissParam
Scores, two ligands have the lowest scores (Table 1), with
docking sites shown in Figure 2.

Table 1. A list of top-scored drug-like molecules resulted from
molecular docking analyses using the SwissParam SwissDock.
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Figure 2. Docking interactions of (a, b, and c) NSP6-
ZINCO0117742510, and (d, e, and f) NSP6-ZINC1500127684.
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3.3. Drug-Likeness and Physicochemical Analysis

The Swiss-ADME server was applied in the prediction

Table 4. Absorption properties of the chosen drug-like complexes
obtained using the ADMET-AI server.

pf the ADMET parameters of the candidate ligands, in w'hich ZINC 0117742510 | 1500127684 Units
it assesses the drug-likeness, molecular weight, database ID
hydrophobicity (logP), and Lipinski’s rule of five of the Human Intestinal 1.00 1.00 -
ligands. The ligands showed that they have a molecular Absorption.
weight less than 350 g/mol, no violations of Lipinski’s rules, Oral 0.83 0.86 -
and log P values less than 5 (Table 2). Bioavailability
Aqueous -3.26 -3.07 log(mol/L)
Table 2. Drug-likeness characteristics of the chosen drug-like Solubility
complexes obtained using the Swiss-ADME server. Cinonhilicit 571 173 log-ratio
ZING Hydration Free -10.53 -8.14 kcal/mol
database ID 0117742510 1500127684 - ??ef;gi - - i
e ective -5. -4, 0g(10
Molecular formula C18H27N302 | C16H22N203S Permeability 6 cmis)
Molecular weight (g/mol) 317.43 322.42 PAMPA 0.88 0.79 -
P ili
No. of H-bond acceptors 2 4 M
P-glycoprotein 0.16 0.19 -
No. of H-bond donors 3 2 Inhibition
LogP (octanol/water 267 299
partition coefficient) ) ) Table 5. Distribution properties of the chosen drug-like complexes
Lipinski's no. of violations 0 0 obtained using the ADMET-AI server.
Ghose's no. of violations 0 0 ZINC
datab D 0117742510 | 1500127684 | Units
Veber's no. of violations 0 0 atabase
: . Blood-Brain Barrier 0.88 0.86 -
Bioavailability Score 0.55 0.55 Penetration
PAINS no. of alerts 0 0 Plasma Protein Binding 79.91 88.35 %
Rate
3.4. Toxicity prediction Volume of Distribution 2.88 0.00 L/kg
To evaluate the toxicity of the ligands, we used the ProTox |1l at Steady State

and ADMET-AI servers. The results indicated that the ligands
didn’t have any positive results towards cardiotoxicity, clinical
toxicity, nephrotoxicity, blood-brain barrier (BBB) penetration,
carcinogenicity, cytotoxicity, mutagenicity, or nutritional toxicity
(Tables 3:7).

Table 6. Metabolism properties of the chosen drug-like complexes
obtained using the ADMET-AI server

ZINC 0117742510 1500127684 Units
Table 3. Physicochemical properties of the selected drug-like database 1D
. Physi i ies S rug-li -
complexes obtained using the ADMET-AI server. M 0.47 0.06
Inhibition
ZINC CYP2C19 0.44 0.33 -
0117742510 | 1500127684 | Units Inhibition
database ID
Molecular Weight 317.43 322.43 Dalton m 0.08 0.05 -
LogP 2.34 2.09 log- Inhibition
ratio CYP2D6 0.21 0.05 -
Hydrogen Bond 2.00 3.00 # Inhibition
Acceptors CYP3A4 0.54 0.34 -
Hydrogen Bond 3.00 2.00 # Inhibition
__Donors CYP2C9 0.20 0.50 i
Lipinski Rule of 5 4.00 4.00 #of 4 Substrate
Quantitative Estimate 0.64 0.81 -
of Druglikeness (QED) gu\gl:% 0.44 011 B
Stereo Centers 1.00 0.00 # —
Topological Polar 73.99 89.26 A2 CYP3A4 071 048 -
Surface Area (TPSA) Substrate
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Table 7. Excretion properties of the chosen drug-like complexes
obtained using the ADMET-AI server.

ZINC 011774251 | 150012768
database ID 0 4

Half Life 3.23 0.00 hr

Drug 58.19 42.44 uL/min/108 cell
Clearance S

(Hepatocyte)

Units

38.19 35.10 uL/min/mg

Drug
Clearance

(Microsome)

3.5. Molecular Dynamics Simulations

Molecular dynamics simulation was performed using
GROMACS version 2021.3. The simulation at 100 ns time
was applied on the apo protein and the NSP6-ligand
complexes, then the changes in the trajectories were studied
and matched to the apo protein.

3.5.1. RMSD

Evaluation of the conformational and structural
constancy of the NSP6-apo and the NSP6-ligand complexes
can be reviewed using the RMSD of the backbone of the
protein against the duration of simulation (Figure 3). The
NSP6-apo protein established a sharp rise in the RMSD
values up to 5 ns, then it became stable within 0.2 and 0.35
nm over the period. The NSP6-ZINC0117742510 and the
NSP6-ZINC1500127684 showed a continual increase in the
RMSD up to 50 ns, then reached stability within 2 to 2.6 nm
over the period.

35

—pa

—NSPE+ZINCO117742510

——NSPG+ZINC1500127684

Figure 3. RMSD chart of NSP6-ZINC complexes generated
through MD simulations at 100 ns.

3.5.2. RMSF

RMSF is used to compare the average estimation of the
displacement of a group of atoms or a specific structure with
a reference structure. We used RMSF to compare the
flexibility of the residues and backbone of the complexes
along the timescale of simulation 100 ns (Figure 4) and the
average of the RMSF values is calculated (Table 8) focusing
on the residue regions 30 - 50, 80-100, and 170-200.
Compared to the NSP6-apo, the NSP6-ZINC1500127684
had lower and a leftward shift fluctuation in the 30-50 and
80-100 regions. While the NSP6-ZINC0117742510
exhibited higher fluctuations in the 80-100 and 80-100
regions, but lower in the 170-200 region.

Table 8. The average RMSF values for the NSP6 complexes with
ZINC compounds.

Complex Average RMSF (nm)
NSP6-ZINC0117742510 0.12 £0.08
NSP6-ZINC1500127684 0.11 +£0.06

—3ap0  =———NSPG+ZINCO117742510 ———NSPG+ZINC1500127684

RMSF (nm)
°
&

Figure 4. RMSF chart of the NSP6-ZINC complexes resulted
through MD simulations at 100 ns.

3.5.3. Radius of Gyration

Radius of gyration (Rg) was used in the approximation
of the compactness and integrity of the NSP6-apo, NSP6-
ZINCO0117742510, and NSP6-ZINC1500127684 complexes’
structure to have a precise evaluation of their stability. The
average Rg values for the NSP6-apo, NSP6-
ZINCO0117742510, and NSP6-ZINC1500127684 from 0 to
100 ns are 2.04+0.01, 2.04+0.01 and 2.03+0.01 nm?
respectively (Figure 5).
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Figure 5. Rg chart of the NSP6-ZINC complexes resulted through
MD simulations at 100 ns.

3.5.4. SASA Analysis

The solvent-accessible surface area (SASA) was used
to predict the exposed area of the NSP6-ligand complexes
and the NSP6-apo that can interact with the surrounding
solvents. The changes of the SASA of the three structures
alongside the simulation from 0 to 100 ns were detected and
analysed (Figure 6). The average SASA values for the NSP6-
apo, NSP6-ZINC0117742510, and NSP6-ZINC1500127684
from 0 to 100 ns are 163.7+2.65, 162.8+2.36 and 162.3+2.68
nm?, respectively.
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Figure 6. SASA chart of the NSP6-ZINC complexes resulted
through MD simulations at 100 ns.

3.5.5. Molecular Interactions Analysis

The hydrogen bonds maintain the strength of the
protein-ligand complex. We used the CHAARM force field
to estimate the hydrogen bonds in the complexes alongside
the simulation time (Figure 7). The NSP6-ZINC1500127684
has the highest number of hydrogen bonds with 8483 bonds,
while the NSP6-ZINC0117742510 has 3338 Bonds, with
0.85, and 0.33 average hydrogen bonds per frame
respectively.

Figure 7. H-bond chart of the NSP6-ZINC complexes resulted
through MD simulations at 100 ns.

3.5.6. MM-PBSA Analysis

To increase confidence in the NSO6-ligand complexes,
the physical energies between the ligands and the NSP6 must
be analysed. Following the MD simulation, MMPBSA
analysis is needed to detect the best pose of docking of the
protein-ligand complex. MMPBSA is used to analyse the
energies controlling the stability of the NSP6-ligand
complexes (Table 9). The NSP6-ZINC1500127684 complex
was realized to have the lowest VdW, Electrostatic, and
Binding energy. The free energy situation of the residues in
the complexes was analysed per residue (Figure 8).

Table 9. The estimation of various energies observed in the
NSP6+ligand systems.

Van der Electrostat Polar Binding
Complex Waals ic Solvation | Energy
Energy Energy Energy (kcal/M
(kcal/Mol) | (kcal/Mol) | (kcal/Mol) ol)
NSP6- -24.72 -8 14.78 -17.93
ZINCO0117
742510
NSP6- -26.36 -13.89 19.14 -21.11
ZINC1500
127684
0 |- nll l.-l. I-I.-I-,._._.

8

=]
s

o
8
s

Free binding energy [KcaliMol)
& ;
2

m NSPE+ZINCD117742510
w NSPE+ZINC1500127684

ta
&
S

g

&

1

A:MET:100

a
7]
<
=
&

Residue

Figure 8. Binding free energy decomposition of the NSP6-ZINC-
0117742510 and NSP6-ZINC-1500127684.
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4. Discussions

The NSP6 protein is an important objective in fighting
SARS-CoV-2; however, the absence of a verified tertiary
structure motivates researchers to predict its tertiary structure
and a vaccine to eliminate its role. AlphaFold server was used
to predict the tertiary structure, then the model was refined
using DeepRefiner, and finally the excellence of the refined
model was assessed using the SAVES server and the quality
percent were 99.94% the structure was in the core region with
5.6% in the allowed region of the Ramachandran plot, which
reveals the quality of the predicted model.

A full library of suitable ligands was downloaded from
the ZINC20 database; the library included more than a billion
possible ligands. First, the ligands in the library were docked
to the NSP6, SwissDock server, which is based on the
Attracting cavities (AC) and Autodock Vina docking engines
were used for docking studies. Based on the AC and
SwissParam Scores, 2 ligands have the lowest scores. The
physicochemical and drug likeness of these ligands were
analyzed using the Swiss-ADME server, and the toxicity of
ligands was analyzed using ProTox Il and ADMET-AI
servers. The ADMET and toxicity studies revealed that both
ligands have MW less than 380 g/mol, with no Lipinski,
Ghose and Veber violations; furthermore, they have suitable
toxicity parameters that support the ligands.

The ligand complex with the NSP6 was subjected to
MD simulations study to evaluate their interactions with the
protein through RMSD, RMSF, SASA, Rg, H-bonds, and
free energy studies. The MD simulations were run at 100 ns
time function to study the changes of the trajectories and the
parameters of the complexes compared to the NSP6-apo.
The RMSD of the NSP6-APO complex increased sharply up
to 5 ns before stabilizing between 0.2 and 0.35 nm. The
NSP6-ZINC0117742510 and the NSP6-ZINC1500127684
showed a continual increase in the RMSD up to 50 ns, then
reached stability within 2 to 2.6 nm over the period.

The average of the RMSF values for the NSP6-
ZINC1500127684 and the NSP6-ZINCO0117742510
complexes presented that the NSP6-ZINC1500127684
complex has the lowest RMSF average with 0.11 + 0.06 nm,
while the NSP6-ZINC0117742510 was 0.12 + 0.08 nm,
which indicates the greater stability of the NSP6-
ZINC1500127684 complex. The average Rg values for the
NSP6-apo, NSP6-ZINC0117742510, and NSP6-
ZINC1500127684 from 0 to 100 ns are 2.04+0.01, 2.04+0.01
and 2.03+0.01 nm?, respectively, which reveals that the
complexes exhibited the same performance as the NSP6-apo,
indicating that the ligands don’t alter the stability or the
dynamics of the protein.

The changes of the SASA of the three structures
alongside the simulation from 0 to 100 ns were detected and
analysed. The average SASA values for the NSP6-apo,
NSP6-ZINC0117742510, and NSP6-ZINC1500127684 from
0 to 100 ns are 163.7+2.65, 162.8+2.36 and 162.3+2.68 nm?,
respectively,  which indicates that the NSP6-

ZINC1500127684 provided the lowest SASA. The
estimation of H-bonds of the NSP6-ZINC1500127684, and
the NSP6-ZINC0117742510 complexes was 8483 and 3338
bonds, respectively, which indicated that the NSP6-
ZINC1500127684 is the strongest in binding and has more
binding affinity.

To analyze the binding energies of the NSP6-
ZINC1500127684 and the NSP6-ZINCO0117742510
complexes, we used the MMPBSA analyses. The results
displayed that the NSP6-ZINC1500127684 complex has the
lowest binding energy score with -21.11 kcal/Mol, while the
Van der Waals interactions play a higher significant effect
than the electrostatic contacts, indicating the best stability
among the complexes. According to the results and the
analysis of RMSD, RMSF, Rg, SASA, H-bonds, and
MMPBSA, ZINCO0117742510 and ZINC1500127684
ligands proved a promising potential as a candidate vaccine
against the SARS-CoV-2 NSP6 protein, with a slight
advantage for ZINC1500127684 over ZINC0117742510.

Comparing these results with the work of Ahmed
Abdelkader and colleagues [8], who investigated the
suitability of ligands from Northern African Natural Products
Database (NANPDB), FDA-approved drugs (DrugBank),
and South African Natural Compounds Database (SANCDB)
products, the methods used in the study were the same as in
this paper; moreover, we applied the MMPBSA analysis,
which is much slower and more expensive than the
MMGBSA, which was used in their paper, but the MMPBSA
reveals more accurate results [28]. In comparison, the
ZINCO0117742510 and ZINC1500127684 ligands revealed
lower binding energies than their ligands with higher H-
bonds than theirs.

Conclusion

Bioinformatics opened a new era of scientific research.
Using bioinformatics, the tertiary structure model of the
NSP6 protein was predicted using AlphaFold, refined, and
assessed. Using the library of ZIN20 database, the ZINC20
ligands were docked and virtually screened against the NSP6
protein using the SwissDock server. ZINC0117742510 and
ZINC1500127684 ligands were picked up due to their results
in docking. Molecular dynamics simulations were applied to
the apo protein and the NSP6-ligand complexes for 100 ns.
The complexes' stability, trajectories, and flexibility were
evaluated compared to the apo protein based on the analyses
of RMSD, radius of gyration (Rg), SASA, and RMSF. The
NSP6-ZINC1500127684 and the NSP6-ZINC0117742510
revealed minimal deviations and suitable stability compared
to the NSP6-apo. The MMPBSA analysis indicated that the
NSP6-ZINC1500127684 complex had a lower binding
energy than the NSP6-ZINC0117742510. Consequently,
ZINCO0117742510 and ZINC1500127684 were identified as
promising small-molecule inhibitors against the SARS-CoV-
2 NSP6 that warrant further in vitro and in vivo validation.
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