Advances in Basic and Applied Sciences 6 (2025) 59-65

‘R Advances in Basic and Applied Sciences
.c&huw‘j journal homepage: https://abas.journals.ekb.eqg/ HELWAN umslfv

Representation and solution of two fifth-order nonlinear
difference equations

Raafat Abo-Zeid *

The high institute for Engineering & Technology, Al-Obour, Cairo, Egypt

ARTICLE INFO

Article history:

Received 5 July 2025

Received in revised form 8 August 2025
Accepted 10 Ocyober 2025

Available online 25 October 2025

10.21608/abas.2025.401035.1065

Keywords: difference equations, representation, forbidden set, well-defined solutions, convergence.

ABSTRACT

Difference equations appear as an approximation to differential equations (in numerical analysis). These equations
appear in nature, in modeling many situations in biology and economics as well as in ecology and engineering.
Solvable difference equations and systems of difference equations occur in many areas of science and mathematics. In
this paper, we represent and study the well-defined solutions of the difference equation:

Wy —3Wn_4

Wp1 = ————— n€N
LT o+ Wy 0

where the initial values w,, w_4, w_,, w_5 and w_, are real numbers.

We give a representation to the above-mentioned equation using a sequence {a,, }o, that satisfies the linear second-order
difference equation:

Ontz2 — Ont1 — 0p = 0,n EN,,
with o, = 0 ,0 = 1, and give the solution of the difference equation
Wp_3Wn_4g
Wpyy =————,NEN,,
—wy, + W,y
where the initial values wy, w_,, w_,, w_5 and w_, are real numbers.
The important result in this paper is that every well-defined solution {w,},=_, to the first above-mentioned equation
converges to zero and every well-defined solution {w, }n=_, to the second above-mentioned equation is periodic. A very
important tool in studying difference equations is the forbidden set. We introduce here the forbidden set for the above-

mentioned equations. We give some examples to show the theoretical results.
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1. Introduction

Difference equations became one of the fundamental
topics in mathematics. It is used to understand and deal
with the behavior of discrete models. Difference
equations are used as an approximation to the differential
equations. Although a difference equation may has a
simple form, it may has a complicated behavior [1]. Hilal
et al. [2], studied the two difference equations:

Xn—2Xn-3
xn+1 = —yn E NOI
axnp+bxn—_3

and

Xn—-2Xn-3
#,n € NO:
—axn+bxn—_3

In this paper, we study the well-defined solutions of the
two difference equations

Xn+1 =

Wn—3Wn—4g
w = neN 1
n+1 wn+wn—4—’ 0’ ( )
and
Wn—3Wn—4
Wppp1 =——,nEN 2
n+1 _wn+wn—4—’ 0’ ( )

with real initial values wy, w_1, w_5, W_3, W_y4.
For more on difference equations (see [3]-[20]) and
the references therein.

2. The difference equation (1)
In this section we introduce a representation for Eq.
(1) and prove the main result in this paper.

2.1 Representation and the behavior of Eq. (1)
Theorem 2.1.1.
Assume that {w, }a=_, is a well-defined solution for Eq.

(1). The solution {w,}a-_, can be represented as
W04ttt wW_40.
Cl)_3 l—[‘it‘L_O 0094t 494t+1

w =
an+l WoO4t+1TW—-404¢42
_ n  @Wo04t+1+W—_404¢42
Wansz2 = W_p [t
WoO4t+2TW—-404¢43
oo, , n€N,, 3)
_ l—[n 004t+21TW—-404¢+3
Win43 = W1 =07 —— — —

WoO4t+3tW-404t+4
WoO4t+3+W—404¢t+4
. =w n “0-atds T oaaldd
an+a 0 ) t=0 WoOat+atW—404t45 .
where {0} isasolution of the difference equation
On+2 — Opt1 — On = O,ne NO'

with o, =0ando = 1.

Proof.
Let {w,}n-_, be a well-defined solution for Eq. (1). We
prove by inductionon n € N,.
For n = 0, using formula (3), we get
Wo0y + W_,0q W_3W_4

w1, = W_3 = )
Wy = W_ =w_
z 2 o0y + W_y03 2 wo+ 20_4
W0, + W_,03 Wy + 2w_y
(1)3 =w =

_ =w_
L woos + w_y0, 12w0 + 3w_y
and

Wo03 + W_40, 20 +3w_4

Wy =w =w .

*  Wo0s + W_405 %3wg + 5w_y

Now, assume that formula (3) is true for a certain n € N.

Then

Wan+1Wan

Wan+a ++w4n .
WoO4t+W—404t+41 n—1%004t+3+W—_404t+4

W_3wo [[leg—————— X [[[eg ——————*=
370 1 M=0 wg o1t w-_s0ats2 Ht_o WoT4t+4+TW—404t+5

n  @W004t+3+W—_404¢44 n—1Wo04t+3+W_404t4+4
Wo lli=o ——+ w [1I}5,

Wan+1)+1 =

WoO4t+41TW—-404¢t+5 WoO4t+4tTW-404¢t+5

) Hn WoO4t+W—404t41 % -1 WO4t4+3+W—404t+4

-3%Wo t=0 t=0

WoO4t+1+TW—-404¢t+2 WO4t+4+W—404t45
n—1@004t+3+W—404t44 (Wo04n+3+W-404n+4

ary | e +1)

WO4t+4FW—-404t45 W00an+4tW-404n+5
(1) l—[n WO4t+W—_404¢41
-3 t=0
WoO4t4+1+tW—-404¢t+2
WoO4n+3+W-404n+4 + 1)

Wo0an+4tW-404n+5
n W04t +W—_404¢+1
W_g [T X (WOunga + W_404
311t=0 WoOats1+0—_a04p42 ( o0Y4n+ n+5)
(WoO4n+3 + W_404n14 + WOsn4s + W_404n45)

n W04t +W—_404¢+41
w_z[[{eg—————"—X (WOant4 + W_404n4s)
WoO4t+1+tW-404¢t+2

Wo(Oan+3 + Oanta) + W_4(Osnsa + Oanys)

W04t +W—_404¢+41
w_3 [ X (WoOunta + W_404ny5)
WoO4t+1+tW-404t+2

WoO4n+s T W_404n46
WoOat + W_g04141 o L0Tan+4 t W_404n45

=w_3
t_o WoTat+1 T W_404t12 WoOsnss T W_404n46
n+1
WoOat + W_404141

= (1)_3 .
t_o WoTat+1 T W_404¢42

Also,

w _ Wan42Wan+1
4(n+1)+2 =
Wan+s T Wan1
n  @o04t+1+tW—404¢42 n WoO4t+W—404¢+1
w_pw_3][f=0 X e=o
WoO4t+2+W—404t43 WoO4t+1+W—404¢42
W Hn+1 WO4t+W—_404¢41 +w Hn W04t +W—_404¢41
=3 11t=0 -3 11t=0
WoO4t+11tW-404¢t+2 WoO4t+1tW-404¢t+2
n  @Wo04t+1+W—404¢42 n WO4t+W—_404¢41
ANIANEY | [ g |t

WoO4t+2+tW—404¢43 T WoO4t+1+W—404t42
WO 4t+W_40. W04 (n+1)TW-204(n+1
n 094t 404t+1 (n+1) (n+1)+1
w_3[I{= +1)

WoO4t+1+TW-404¢+2 Wo04(n+1)+11W-404(n+1)+2
w ZHn WoOst+1+tW—404¢+2
- t=0
WoOst4+2+tW-404¢+3
Wo04(n+1)TW-404(n+1)+1 +1)

Wo04(n+1)+11W-404(n+1)+2
n  @o04t+1+W—404t42
w_ 2 A2 % (WO + w_,0.
B 2 17 0 0 Tarsat@—a0arss (wo 4(n+1)+1 4 4—(n+1)+2)
(WoO4n+1) T W-404(ni1y+1 T ©o0ant1)+1 + W-404(n+1)+2)
n  @Wo04t+1+W—_404¢42
I | s ——

= X (wqo. + w_,0
0004t1a+®—20a01a (wo 4(n+1)+1 4 4(n+1)+2)

Wo (04(n+1) + 04(n+1)+1) + w—4(04(n+1)+1 + 0'4(n+1)+2)

n  Wo04t+1+1W—_404¢42
w_ —g—————————— X (wqO0. + w_,0.
2 [1t=o ©00arsatO10ates (WoT4(n+1)+1 404(n+1)+2)

Wo04(n+1)+2 T W-204(n+1)+3
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n
WoO4t+1 T W_g04¢42

=w_,
to WoTat+2 + W_404¢43

y Wo04m+1)+1 T W—-404(n+1)+2

WoO4(n+1)+2 T W-404(n+1)+3
n+1
WoO4t+1 T W_g 0442

= w_2

13 W00tz T+ W_404¢43

Similarly, we can prove formula (3) for w,,4+; and

Want4-
This completes the proof.

The main result in this section is the following:

Theorem 2.1.2.
Every well-defined solution {w,}m=—s Of Eq. (1)
converges to zero.
Proof.
Let {w,}n=_4 be a well-defined solution of Eq. (1). We
show that w,,,+1 — 0, asn — co. We have first that
O4t
Wo04t T W_404¢41 Tat+1 ((uo + a)_4)

— — O4t+1

L®) = WoO4ps1 + W_404p4n Jat41
004t +1 —404t+2  Ogp42 (a)oo +w_y)

4t+2

1
1 (Wotw-4)

a =
@ (wotw-4) @

|~

, ast — oo,

1+/5.
2 )

Then for 1 —% > € > 0, then there exists t, € N such
that:

where «a is the Golden number (a =

WoOst + W_4 04141

| Wans1l = w_3]

L_3 WoTar+1 T W_404¢42

to-1
WoO4t + W_404¢41

= |w_s|
L3 Wo0ar+1 T W_404¢42

n
WoO4t + W_404¢41

X
L @004t41 F W_g04¢42
0

t=
t—-1
1
G+

44
asn — 00, wyu4q — 0.
Similarly, we can show that, as n - o, w442 — 0,
Wan43 = 0aNd Wy 44 — 0.
Therefore, the solution {w, }n=_, of Eq. (1) converges to
zero.
This completes the proof.

n—to+1
WoO4t + W_404141

<|w_3]

L3 WoO4t+1 + W_40srsr

A very important tool in studying difference equations is
the forbidden set. It is useful to state that for Eq. (1). The
forbidden set for Eq. (1) is:

Q=ul, {(wo,w_l, Wy W_3,W_4) ER>w_,4
- —w Gn—l}
05
UU1_=1_4 {(wo, w_1, W_3, W_3,w_4)
€ RS: w; = 0}

2.2 llustrative examples:

Example 2.2.1.

If {w,}n=_4 is awell-define solution of Eq. (1) such that
W_y =—25 w_3=-12, w_, =28, w_; =15 and
wy = 3.7, then the solution {w, }n-_, converges to zero
(see Figure 1).

Figure 1
20
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o = On-3Pn-a
it Wy + Wy
Example 2.2.2.

If {w,}n=_4 is a well-define solution of Eqg. (1) such that
w_y =—15, w_3=-05 w_,=-38, w_;=-25
and w, = —3.2, then the solution {w, };-_, converges to
zero (see Figure 2).

Figure 2
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3. The difference equation (2)

In this section we introduce a representation for Eq.

(2) and prove the main result in this paper.

3.1 Representation and the behavior of Eq. (2)
Theorem 3.1.

Assume that {w, };=_4 is a well-defined solution for
Eq. (2). The solution {w, }n=_, can be represented
as

@_y SINZ(4j+1)— w sinZ(4))

n
w =w_s[[L
an+1 3 [1E=o ®_4 SING(4j+2)— wo Sing(4j+1)

@_4 SINZ(4j+2)— wo SINT(4j+1)

. = w-_ —
4n+2 2 Ht_o w_y sin;—r(4j+3)— wo sin;—r(4j+2)

@_y SINZ(4j+3)— wo Sinz(4j+2)’

— n
. = w-_ —
4n+3 1 Ht—O wW_y sing(4j+4)— wo sing(4j+3)

n @—4 SINZ(4]+4)— wo SINT(4j+3)

[0) =w
an+4 0 0w_ 4sm—(4] +5)— wo sm—(4}+4)

No. (4)

Proof.
Let {w, }ne_4 be a well-defined solution for Eq. (2). We
prove by inductionon n € N,.
For n = 0, using formula (4), we get the result.
Now, assume that formula (4) is true for a certain n € N.
Then

_ @41 @an

—Wyntq T Wyn

H wogsing (4 + 1) — wsin (4))
@3 l;lw_4 sinZ (4j +2) — wosinZ (4 + 1) 8

Wan+1)+1 =

Xﬁw_4sin§(4j+4)— wo sin~ (4] +3)
L 1w, sin§(4j +5)— w, sin§(4j +4)
LW, sin§(4j +4) — w, sin§(4j +3)
/( wol;[w_4sin§(4j+5)— wosin (4] +4)
T w_ysin (45 +4) — wosing (4 +3)
+w°1;[w_4sin§(4j+5) — wpsin’ (4] + 4)

L ow_y, sin§(4j +1)— w, sin§(4j)
=w
31—[w 4sinz(4j +2)— wosinz(4j +1)
w_4 sin= (4n+4) — wysin= (4n+ 3)

W_gsinz Z(4n+5) — wysin= (4n + 4)
m w_,sin= 3 (4] +1)— a)o sin= 3 (4])
=w_
3 ltjolw_4 sin%(4j +2)— wg sin§(4j +1)

W_y sing (4n+6) — wq sin§(4n +5)

W_y sin% (4n+5) — w, sin§(4n +4)

n+1

w_ysin~ (4 + 1) — wosin (4))
= w_ .
: 1;[(0_4 sin§(4j +2) — w, sin§(4j +1)
Also,

w _ Wani2Wany1
dm+)+2 —
(n+1) —Wants T Want1

ﬁw_4 sing(4j +2)— wg sin§(4j +1)
= wW_3wW
T Lo ysinZ (4 +3) - wosinZ (4 +2)

n

1—[ wW_y sin§(4j +1) — w, sin§(4j)
X
L Lw_ysin (45 +2) — wpsinZ (4 + 1)

n+1

W_4sin% (4 + 1) — wpsin s (4))
/(_w 31_[ . T X . T E
W_y smg(4] +2) — wy 51n§(4] +1)
L Wy sin%(4j +1) — wg sin§(4j)
+w 31_[ . T . . T .
o @ 51n§(4] +2)— wg Sll‘l;(‘l—] +1)

ﬁw_4 sin§(4j +2) — w, sin§(4j +1)

=w

1 Lo_,sinZ (4)+3) — wosinZ (4 +2)
w_ 4sm Z(4n+5) - wosm Z(4n+4)

+1
w_4gsin7 Z4n+6)— wo sinZ Z(4n+5) 1)

W_g SinZ Z(4j +2) — wysinz 3 Z4j+1)
=w
2 1:0[(0_4 sin§(4j +3) — w, sin§(4j +2)
W_y sin§(4n +7)— w, sin§(4n +6)

W_y sin§(4n +6) — w, sin% (4n+5)
n+1

W_ysin~ (4] +2) — wosin (4 + 1)

=W .
2 1;[(»_4 sinZ (4j +3) — wosin’ (4) + 2)
Similarly, we can prove formula (4) for w,,,3 and

Wan 4.
This completes the proof.

We give the following lemma without proof, as it is a
direct calculations.

Lemma 3.2.
The following statement is true for all j € Nj:

2 w_4sin§(4j+t)— wosin§(4j+t—1)
gw_4sin§(4j+t+1)— wosin§(4j+t) -
=1,23,4.

’

Theorem 3.3.

Assume that {w, }a-_, is a well-defined solution for Eq.
(2). The solution {w,}n-_, is periodic with period 24.
roof.

Let {w, }n=_4 be a well-defined solution for Eq. (2).
Then
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Wa(n+6)+1
n+6

W_y sin§(4j +1) — w, sin§(4j)
=w_
3 l_la) 4sing(4j +2) — w, Sing(‘lj +1)

t=0 -
2 w_ysin=(4j + 1) — wy sin= (4j)

w_ysin~ (4] +2) — wosin (4 + 1)

t=0
w_4sin% (4 + 1) — wosin (4))

5
% l_Lu_4 sin§(4j +2) — w, sin§(4j +1)
W_y sin§(4j +1) — w, sin§(4j)
_Swy sin§(4j +2)— w, sin§(4j +1)

X

2wy sin§(4j +13) — w, sin§(4j +12)
o]
3(—1) L Lo, Sil’l%(‘l‘j +14) — Wy sin§(4j +13)
n

W_y sin§(4j +25) — w, sin§(4j +24)
X
1_[0)_4 sin§(4j +26) — w, sin§(4j +25)

t=0

2 w_y sinz (4j+1)— w, sinE(4j)
= -3(-1) 1:)[(»_4 sin§(34j +2) — w, sin%(34j +1)
y 11[ W_y s_in§(4j +1)— w, sin§(4j)

Yo sin§(4j +2)— w, sin§(4j +1)
n

W_y sin§(4j +1) — w, sin§(4j)
= w_
: nw_4 sinZ (4j +2) — wosinZ (4 + 1)

t=0
= Wan+1-
The proof of wyn42, Wans3, Wans4isS Similar and will be
omitted.
This completes the proof.

The forbidden set for Eq. (2) is
Q=U2 { (g, w_q1, w_p, w_3,w_4) ER%:w_,

sing(n -1)
SWo——®m_
sm;n

UUl_=1—4 {(0)0, W_1,W_2,W_3, 0J_4)

€ RS: w; = 0}
3.2 lllustrative examples:
Example 3.2.1.
If {w,}n=_4 is awell-define solution of Eqg. (2) such that
w_y=4 w_3=1 w_,=-2, w_; =3 and w, = 2,
then the solution {w,}5=_, is periodic with period 24
(see Figure 3).

Figure 3
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n+l —w, + Wy
Example 3.2.2.

If {w,}n=_4 IS awell-define solution of Eq. (2) such that
w_y =03, w_3=13, w_, =-3.1, w_; =-1.1 and
wy = 4.2, then the solution {w,}n=_, is periodic with
period 24 (see Figure 4).

Figure 4
T

T T T

40}

olaA ;AA a A\ ./\A A\ ;I\A oA .AA n
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-40}

Wn-3Wn-4
L ——
—Wy + W,y
Conclusion

In this paper, we studied the well-defined solutions of the

two difference equations
Wn_3Wp_4

w =—————n=0,1,..
n+1 wn+a)n_4) Ay ey
and
Wy_3Wn_4g
Wpy =——,n=0,1,..,
Wy + Wy

where the initial values wg, w_;, w_5, w_3,w_, are
nonzero real numbers. The main result in this paper is
that, every well-defined solution of the first above-
mentioned equation converges to zero and the second
one is periodic with period 24. We provided some
examples to show the theoretical results.
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