10.21608/avmj.2025.353271.1553

Assiut University web-site: www.aun.edu.eg

ISOLATION AND CHARACTERIZATION OF CITROBACTER FREUNDII FROM FRESH WATER COMMON CARP (CYPRINUS CARPIO) IN MOSUL CITY

MOHAMMAD A. HAMAD; SUMAYA Y.A. ALDABBAGH AND ISRAA IBRAHIM KHALIL

Department of Microbiology, Collage of Veterinary Medicine, University of Mosul, Iraq

Received: 5 May 2025; **Accepted:** 20 July 2025

ABSTRACT

Citrobacter freundii is an opportunistic pathogen in animals and humans. The current study aimed to isolate C. freundii from the intestines of common carp (Cyprinus carpio) and test their antibiotic susceptibility. For this purpose, 70 specimens of intestine were gathered from fish farms in Mosul city from October 2022 to February 2023. Initially, the samples were inoculated in Tryptone soya broth (TSB) and then cultured on both TSA and MacConkey agar. The suspected single colonies were streaked on the eosin methylene blue (EMB) and Salmonella Shigella agar. All suspected isolates were confirmed by manually prepared biochemical tests and the VITEK®2 compact, and then their sensitivity was determined against eight antibiotics. According to the cultural characteristics, biochemical tests, and VITEK®2 compact, 18 (12.6%) isolates out of 70 samples were C. freundii. All isolates were highly susceptible to ciprofloxacin, amikacin, and gentamicin, moderately sensitive to tetracycline, ceftriaxone, highly resistant to amoxicillin and Cefixime, and low resistance to tobramycin. The presence of C. freundii in aquaculture represents many facets of challenges, with implications for public health, environmental stability, and the economic causes of fish farming.

Keywords: Citrobacter freundii, fish, VITEK², ciprofloxacin, amikacin

INTRODUCTION

Citrobacter freundii, belongs to the family Enterobacteriaceae, is a Gram-negative rod that inhabits the digestive tract of fish (Liu et al., 2020; Al-Asbahi, 2022). This bacterium acts as an opportunistic pathogen in animals and humans (Chen et al., 2018).

Corresponding author: Sumaya Y.A. Aldabbagh E-mail address: <u>sumayayase18@uomosul.edu.iq</u> Present address: Department of Microbiology, Collage of Veterinary Medicine, University of Mosul, Iraq

Fish are considered an essential food for many world populations, because they contain a high percentage of animal protein (Wamala *et al.*, 2018). Many bacterial diseases can infect fish, leading to economic losses (Austin and Austin, 2007, Cortés-Sánchez *et al.*, 2023).

Fish diseases are spreading due to the interaction between pathogens, hosts, and the aquatic environment. The prosperity of aquaculture relies on extensive research and active fish health management. (Türe and Kutlu, 2018; Jassim, 2024).

Aquatic products in many circumstances were correlated to epidemics of food borne illnesses everywhere in the world, wherever diverse causal agents, involving bacteria, have been ascertained (Al-Daraghi and Al-Behadili, 2021; Friesema et al., 2022; Mahmmoud and Al-Dabbagh, 2022). Deeming the animal healthiness theme, bacteria like C. freundii are common in freshwater, which can infect fish, also instigating diseases in other living organisms, mainly digestive diseases (Wang et al., 2018; Cortés-Sánchez et al., 2023). C. freundii is chiefly isolated in mingled infections and, occasionally, it is referred a subordinate and to as opportunistic invasive instigating injury and (Eissa, extreme mortality Citrobacter braakii and C. freundii are linked to illnesses in fish. The latter is linked to severe renal disease, severe enteritis, hemorrhagic septicemia, and catfish gill lesions. (Jia et al., 2020).

Antibiotics are currently utilized in fish farms to stop bacterial infections. However, researchers are quite concerned about the growth of antibiotic resistance, since it transfers bacterial drug resistance to consumers. (Ture and Alp, 2016; ALdabbagh, *et al.*, 2015).

Citrobacter spp. were allied to agents of a biological basis harmful to human and animal health (Aminharati et al., 2019). Therefore, this research aimed to isolate and identify C. freundii from common carp (C. carpio) intestines and test their antibiotic susceptibility.

MATERIAL AND METHODS

1. Ethical approval:

All samples were taken in accordance with permission granted by Institutional Animal Care, University of Mosul, College of Veterinary Medicine, under authority number UM.VET.2021. 061.

2. Specimens Collection:

From October 2022 to February 2023, seventy fish samples were gathered from Mosul City's fish farms. Every sample was put in a sterile plastic bag and kept cold while being brought to the laboratory in the Microbiology Department, College of Veterinary Medicine.

3. Specimens Cultivation:

Intestine specimens were cultivated in Tryptone soya broth (TSB) with incubation at 25°C for 24 hr, and then the broth was cultivated on both TSA and MacConkey agar under the same previous conditions. A single colony was then cultured on the eosin methylene blue (EMB) and *Salmonella Shigella* agar. All plates were incubated at 28°C for 24-48 hr. (Chen *et al.*, 2018; Al-Haider *et al.*, 2019).

4. Phenotypic examination and biochemical reactions:

The putative isolates were examined microscopically to determine their morphology, motility, and Gram stain reactivity. The bacterial isolates underwent biochemical testing following (Al-Asbahi ,2022)

5. Identification of bacteria by Vitek ² compact system.

All suspected isolates were examined by VITEK®2 compact, and the results were recorded and analyzed (Hashim and AlKhafaji, 2018; Ossman *et al.*, 2024).

6. Antibiotic susceptibility test:

The test was done using the disc diffusion method on Mueller Hinton agar (40). Eight by (Bioanalyse) antibiotics supplied used, company were including ciprofloxacin (CIP 5µg), amikacin (Ak 30μg), amoxicillin (AX 10μg), ceftriaxone (CE 30µg), Cefixime (CFM 5), tobramycin (TOB 10 µg), tetracycline (TE 10µg), and gentamycin (CN 10µg). The results are classified following (CLSI, 2020).

RESULTS

1. Phenotypic characters and biochemical reaction results:

Microscopically and phenotypically, features revealed Gram-negative bacilli. C. freundii colonies appeared large and irregular. On MacConkey agar, the bacteria lactose-fermented grew and showed colonies. On EMB agar, they showed brown colonies; on Salmonella Shigella agar, the colonies were black and smooth (Figure 1). According to the cultural characteristics of the studied isolates from C. carpio intestines, 18 (12.6%) isolates out of 70 samples were C. freundii.

2. Identification of bacteria by Vitek² compact system:

The results of the Viteck® 2 compact system were similar to those of the bacterial culture and phenotypic characteristics, as the eighteen isolates were identified as *C. freundii* (Figure 2).

3. Antibiotic susceptibility test:

According to the resistance profile to antibiotics, the outcomes of this study revealed that all isolated bacteria were relatively highly sensitive to ciprofloxacin (100%), amikacin (88.8%), and gentamicin (83.3%), and moderately sensitive to tetracycline (77.7%) and ceftriaxone (66.6%). All of them were resistant to amoxicillin (100%) with high resistance to Cefixime (88.8%) and low resistance to tobramycin (11.1%) (Table 1).

Fig. 1: Black colonies of Citrobacter freundii on Salmonella Shigella agar

bioMérieux Customer:						Microbiology Chart Report											
Loca	ent Name (5 stion: ID: 747	5,5)	× 1												Patient II Phys solate Num	sician
Orga	mism Quan	tity:	<u> </u>	Start Cole													
Sele	cted Organ	usm :	Citrol	bacter freu	ındii											Colle	cted:
Sour	ce:			.,												-	
																	_
Con	nments:		-														
						1.				7.00 hour			Statu	s:		Final	
lder	tification	Infori	mation				nalysis Tim					undii					
Selected Organism					86% Probability			Citrobacter freundii 4417611551526210									
	M					В	ionumber:	_		4417017	,,,,,,,,						
ID A	Analysis M	essag	es														
Bio	chemical E	etails	5	,0				_				_	Lane		lo.	BGAL	1+
2	APPA		3	ADO	-	4	PyrA	+	5	IARL	-	7	dCEL	-	9	-	+
10	H2S	+	11	BNAG	-	12	AGLTp	- '	13	dGLU	+	14	GGT	+	15	OFF	+
17	BGLU	1.	18.	dMAL	+	19	dMAN	+	20	dMNE	+	21	BXYL	1-	22	BAlap	+-
23	ProA	+	26	LIP	-	27	PLE		29	ТугА	+	31	URE		32	dSOR	+
33	SAC	+	34	dTAG	-	35	dTRE	+	36	CIT	+"	37	MNT		39	5KG	+
40	ILATK	+	41	AGLU	-	42	SUCT	+	43	NAGA	-	44	AGAL	+	45	PHOS	+-
46	GlvA	1	47	ODC	+	48	LDC	+	53	IHISa	- 2	56	CMT	+	57	BGUR	上
170	any re	+-	59	GGAA	+	61	IMLTa		62	ELLM		64	ILATa	1.2	1	1	1

Fig. 2: Identification of Citrobacter freundii by Vitek 2 compact system

Table 1: Antibiotic sensitivity test of *Citrobacter freundii* isolated from the intestines of common carp (*Cyprinus carpio*) collected from fish farms

- , ,		- /				
Antibiotics (µg)	Sensi	tive	Interme	ediate	Res	istant
	NO	%	NO	%	NO	%
Ciprofloxacin (CIP10)	18	100	0	0	0	0
Amikacin (AK 30)	16	88.8	2	11.1	0	0
Gentamicin (CN 10)	15	83.3	3	16.6	0	0
Tetracycline (TE 30)	14	77.7	4	22.2	0	0
Ceftriaxone (CE 30)	12	66.6	6	33.3	0	0
Tobramycin (TOB10)	6	33.3	10	55.5	2	11.1
Cefixime (CFM 5)	0	0	2	11.1	16	88.8
Amoxicillin (AX10)	0	0	0	0	18	100

DISCUSSION

Fish and fish products encourage the spread of pathogens, including C. freundii. Rigorous stock and heavy feeding systems impart a praising environment for the bacteria to multiply (Jia et al., 2020). Controlling such conditions by enhancing biosecurity, improving water quality, and reducing stocking densities can help reduce the spread of pathogens (Mohammed et al., 2023). Studies have shown that fish in less stressful environments suffer fewer bacterial infections, making these practices essential for sustainable fish farming (Kousara et al.,

2020). Therefore, fish-origin foodstuffs have been interconnected to eruptions of diseases worldwide because of many causes, involving bacteria (Imran *et al.*, 2020).

In this study, the use of advanced identification techniques, like the Vitek² compact system, was crucial for rapid and accurate pathogen identification (Al-Daraghi and Al-Behadili, 2021; Ossman *et al.*, 2024). The accessibility and cost of these methods can be easy and inexpensive, therefore recommended especially in resource-limited regions. The evolution and execution of feereasonable diagnostic tools could

significantly benefit fish farmers and magnify local biosecurity efforts (Jassim *et al.*, 2019; Mala and Abdullah, 2022).

The outcome of the current study revealed the fundamental appearance of C. freundii in fish samples with a reasonable ratio (12.6%). Much research has recorded the isolation of these bacteria as one of the pathogens of fish in different percentages (de Pádua et al., 2014; Abid and Al-Hamdani, 2016; Garabawi et al., 2022). The seasonal variation in water characteristics and dense stock status results in stress that permits repeated infection with opportunistic pathogens in fish cultivated (Al-Haider et al., 2019). Outbreaks of diseases caused by pathogens like C. freundii can lead to considerable economic losses for fish farmers and disrupt food supply chains, impacting food security. Therefore, it requires extra attention to management to control pathogens in fish farms that protect local wealth and ensure a stable food supply, contributing firmly to economic public health and benefits (Aminharati et al., 2019; Jassim, 2024).

Although C. freundii isolates had previously been identified as multidrug-resistant (MDR) strains (de Pádua et al., 2014), the current isolates exhibited sensitivity to several antibiotics. including ciprofloxacin, amikacin, gentamycin, tetracycline, and ceftriaxone, with no signs of resistance. These findings align with previous studies by (Mohammed et al., 2023) and (El-Barbary and Hal, 2017). Conversely, the resistance was obvious with amoxicillin, cefixime, and a moderate rate resistance for tobramycin. This susceptibility to multiple antibiotics seen in our study may be attributed to the fish sources examined, potentially originating from farms that do not heavily rely on extensive antibiotics for treatment.

Recording this wide range of sensitivity to antibiotics paves the way for using these antibiotics in treating diseases that may be caused by these bacteria in fish farms (Smith, 2019).

CONCLUSION

The presence of *Citrobacter freundii* in aquaculture poses numerous challenges, including implications for public health, environmental stability, and the economic viability of fish farming. Effectively controlling this pathogen necessitates a combination of scientific approaches and practical procedures tailored to specific aquaculture settings.

CONFLICT OF INTEREST

According to the authors. There are no conflicts of interest.

REFERENCES

Abid, O.I and Al-Hamdani, A.H. (2016): Study of the causative agents of ulcerated skin lesions of carp fish ponds at Sulaimani province. Basrah Journal of Veterinary Research, Vol.15, No.3, 2016. https://www.semanticscholar.org/paper/

Al-Asbahi, A.A. (2022): Prevalence and Bacteriological Study of Gramnegative bacteria, especially Citrobacter spp. in Poultry meat from Maeen Area- Sana'a, Yemen. Journal of Applied Veterinary Sciences, 7 (4): 62-66.ISSN: Online: 2090-3308, Print: 1687-4072.

DOI:https://dx.doi.org/10.21608/javs.2 022.151883.1165

AL-dabbagh, S.Y.A.; Ali, H.H.; Khalil, I.I. and Hamad M.A. (2015): A study of some antibiotics; disinfectants and antiseptics efficacy against some species of pathogenic bacteria. Assiut Vet. Med. J. Vol. 61 No. 147 .210-217.

Al-Daraghi, W.A.H. and AL-Behadili, M.K.K(2021): Detection of Quorum Sensing Signal Molecules and Identification of espB and Crt4 genes among Biofilm Forming of Citrobacter freundii. Indian Journal of Forensic Medicine and Toxicology.263.

- https://www.researchgate.net/publicati on/ 351037672
- Al-Haider, S.M.; Al-Niaeem, K.S. and Resen, A.K. (2019): Isolation of Citrobacter species from common carp, Cyprinus carpio cultivated in floating cages at Al-Hilla river, Babylon province. Earth and Environmental Science 388.doi:10.1088/1755-1315/388/1/012036
- Aminharati, F.; Ehrampoush. M.H.; Mehdi, M.; Dallal, S.; Yaseri, M.; Dehghanitafti, A.A. and Rajabi, Z. (2019): Citrobacter freundii Foodborne Disease Outbreaks Related to Environmental Conditions in Yazd Province, Iran. Iran J Public Health, Vol. 48, No.6, Jun 2019, pp.1099-1105. http://ijph.tums.ac.ir.
- Austin, B. and Austin, D.A. (2007): Bacterial Fish Pathogens: Diseases of farmed and wild Fishes. Edn 3, Springer-Praxis, Chichester, UK. pp:552. DOI 10.1007/978-1-4020-6069-4.
- Chen, H.; Wang, Y.; Zhang. J.; Chen, Y. and Wu, M. (2018): Isolation and identification of Citrobacter spp. from the intestine of *Procambarus clarkia*. J Fish Res Volume 2 Issue 1. http://www.alliedacademies.org/journa 1-fisheries-research.
- CLSI. (2020): Performance Standards for Antimicrobial Susceptibility Testing. 30thed. CLSI supplement M100. Wayne, PA: Clinical and Laboratory Standards Institute.
- Cortés-Sánchez, J.A.; Salgado-Cruz, M.I.; Diaz-Ramírez, M.; Torres-Ochoa, E. and Chaurand, L.E. (2023): A Review on Food Safety: The Case of Citrobacter sp., Fish and Fish Products. Appl. Sci. 2023, 13, 6907. https://doi.org/10.3390/app13126907
- De Pádua, S.B.; Marques, D.P.; Sebastião, F.A.; Pilarski, F.; Martins, M.L. and Ishikawa, M.M. (2014): Isolation, Characterization and Pathology of Citrobacter freundii Infection in Native Brazilian Catfish Pseudoplatystoma.

- Braz J Vet Pathol, 7(3), 151 157. www.bjvp.org.br.
- Eissa, A.A. (2016): Clinical and laboratory manual fish diseases. LAP LAMBERT ACADEMIC puplishing: 70-75.
- El-Barbary, M.I. and Hal, A. (2017):

 Molecular identification and pathogenicity of Citrobacter and Serratia species isolated from cultured Oreochromis niloticus. Egyptian Journal of Aquatic Research 43 .255–263.
 - https://doi.org/10.1016/j.ejar.2017.09.0 04
- Friesema, I.H.M.; Slegers-Fitz-James, I.A.; Wit, B. and Franz, E. (2022): Surveillance and characteristics of food-borne outbreaks in the Netherlands, 2006 to 2019. Euro Surveill. 27, 2100071. DOI:
- Garabawi, A. J.; Al-Faragi, J. K.; Zakair, K. Y. (2022): Detection of the most important pathogenic bacteria affect external organs of Cyprinus carpio in Wasit Province Iraq. Journal of Agricultural Sciences 53(5): 1115-1122.
 - DOI: https://doi.org/10.36103/ijas.v53i 5.1624
- Hashim, M.H. and AlKhafaji, M.H. (2018): Isolation and identification of Citrobacter freundii from chicken meat samples using cultural and molecular techniques. Iraqi Journal of Science.Vol. 59, No.3A, pp: 1216-1224 DOI:10.24996/ijs.2018.59.3A.
- Imran, A.Z.; Ali, A.J. and Shareef, H.K. (2020): Isolation and molecular identification of Citrobacter freundii. from diarrheal patient in Babylon province, Iraq. Plant Archives Vol. 20, Supplement 1, 2020 pp. 2861-2865. ISSN:0972-5210.
- Jassim, A.A.R.; Abdulhameed, D.B. and Al Shammari, N.R. (2019): Bacterial fish diseases in some semi-close aquaculture systems in Basrah Province, Iraq. Basrah Journal of Agricultural Sciences 32: 75-84.

- https://doi.org/10.37077/25200860.201 9.258
- Jassim, A.R. (2024): Survey of Fish Diseases in Basrah Province Farms During 2018-2020. Egyptian Journal of Aquatic Biology & Fisheries. Vol. 28(5): 1793

 1806 (2024). www.ejabf.journals.ekb.eg
- Jia, K.; Yang, N.; Zhang, X.; Zhang, Y.; Qian, A.; Sun, W.; Shen, J.; Yao, J. and Wang, G. (2020): Genomic, Morphological and Functional Characterization of Virulent Bacteriophage IME-JL8Targeting Citrobacter freundii. Frontiers in Microbiology. Volume 11. www.frontiersin.org. doi: 10.3389/fmicb.2020.585261
- Kousara, R.; Shafia, N.; Andleeb, S.; Mazhar, A.N.; Akhtara, T. and Khalid, S.(2020): Assessment and incidence of fish associated bacterial pathogens at hatcheries of Azad Kashmir, Pakistan. Braz. J. Biol. 80 (3). https://doi.org/10.1590/1519-6984.217435
- Liu, Z.; He, X.; An, Z.; Sun, W.; Chen, N. and Zhang, Z. (2020): Citrobacter freundii infection in red swamp crayfish (Procambarus clarkii) and host immune-related gene expression profiles. Aquaculture. Vol 515(15) 2020, 734499. https://doi.org/10.1016/j.aquaculture.2 019.734499
- Liu, L.H.; Wang, N.U.; Wu, A.L. and Liu, C.P. (2018): Citrobacter freundii bacteremia: Risk factors of mortality and prevalence of resistance genes. Journal of Microbiology, Immunology and Infection. 51, 565e572. http://dx.doi.org/10.1016/j.jmii.2016.0 8.016
- Lü, A.; Hu, X.; Zheng, L.; Zhu, A.; Cao, C. and Jiang, J. (2011): Isolation and characterization of Citrobacter spp. from the intestine of grass carp Ctenopharyngodon idellus. Aquaculture. 313, 156–160. https://doi.org/10.1016/j.aquaculture.2 011.01.018

- Mahmmoud, E.N. and Al-dabbagh, S.Y.A. (2022): Detection of extended spectrum beta lactam producing Escherichia coli isolated from Cyprinus carpio in Mosul city. Iraqi Journal of Veterinary Sciences, Vol. 36, Supplement I, 2022 (85-89). DOI: 10.33899/ijvs.2022.135604.2497.
- Mala, H.H. and Abdullah, S.M.A. (2022):
 Isolation and identification of some bacterial species from common carp (Cyprinus carpio Linnaeus, 1758) in Taqtaq District in Erbil Province, Kurdistan Region, Iraq. Zanco Journal of Pure and Applied Sciences 34(5): 131-140. DOI: http://dx.doi.org/10.21271/ZJPAS.34.5.12
- Mohammed, R.M.; Muhammed, A.S. and Abdullah, S.M.A. (2023): record of aerobic bacterial species from the cyprinid fish Cyprinus carpio from fish farms in Sulaimani province, Kurdistan region, Iraq. Applied Ecology and Environmental Research 21(6):5607-5624. DOI: http://dx.doi.org/10.15666/aeer/2106 56075624.
- Ossman, A.R.; Hamad, M.A.; Ahmed and S.S. (2024): Molecular identification of virulence antibiotic some and resistance in Pseudomonas genes aeruginosa isolated from UTI infection. Egypt. J. Vet. Sci. Vol. 55, No. 4, pp. 1143-1150.
- Smith, S.A. (2019): Fish Diseases and Medicine. Taylor & Francis Group, LLC.CRC press. pp:7-9. http://www.copyright.comSorum, H., 2006. in Antimicrobial resistance in bacteria of animal origin. (American Society of Microbiology): 213–238.
- Ture, M. and Alp, H. (2016): Identification of bacterial pathogens and determination of their antibacterial resistance profiles in some cultured fish in Turkey. J Vet Res 60: 141-146, DOI:10.1515/jvetres-2016-0020.Vol. 28(5): 1793 1806. ISSN 1110 6131. www.ejabf.journals.ekb.eg

Türe, M. and Kutlu, I. (2018): Isolation of Citrobacter freundii from Rainbow Trout (Oncorhynchus mykiss) in Freshwater Cag. Journal of Limnology and Freshwater Fisheries Research 4(2): 85-89 (2018). DOI: 10.17216/limnofish.396496

Wamala, S.P.; Mugimba, K.K.; Mutoloki, S.; Evensen O. and Sørum, H. (2018): Occurrence and antibiotic susceptibility of fish bacteria isolated from Oreochromis niloticus (Nile tilapia) and Clarias gariepinus (African catfish) in Uganda. Fisheries and Aquatic Sciences. 21:6. DOI 10.1186/s41240-017-0080-x.

Wang, A.R.; Ran, C.; Ringø, E.; Zhou, Z.G. (2018): Progress in fish gastrointestinal microbiota research. Rev Aquac. 10, 626–640.

https://doi.org/10.1111/raq.12191.

عزل وتوصيف الستروباكتر فروينديي من اسماك المبروك العادي في مدينة الموصل

محمد على حمد ، سمية ياسين الدباغ ، اسراء ابراهيم خليل

Email: sumayayase18@uomosul.edu.iq Assiut University web-site: www.aun.edu.eg

تمثل السيتروباكتر فرونديي مُمْرِضات انتهازية في الحيوانات والبشر. هدفت هذه الدراسة إلى عزل بكتيريا سيتروباكتر فرونديي من أمعاء سمك المبروك العادي واختبار حساسيتها للمضادات الحيوية. لهذا الغرض، جُمعت سبعون عينة من امعاء سمك الكارب من مزارع الأسماك في مدينة الموصل بين تشرين الأول ٢٠٢٦ وشباط سبعون عينة من العينات أولًا في بيئة التربتون صويا، ثم زُرعت في كلٍّ من وسط التربتون صويا أجار و الماكونكي اجار المستعمرات المنفردة المشتبه بها خططت على كل من وسط اجار ازرق المثيلين والايوسين وأجار السالمونيلا شايغيلا. تم تأكيد جميع العزلات المشتبه بها من خلال الاختبارات البيوكيميائية المُحضرة يدويًا وباستخدام جهاز الفايتك ٢، وتم تحديد حساسيتها لثمانية مضادات حيوية. بناءً على الخصائص الزرعية والاختبارات البايوكيميائية واختبار التاليوكيميائية الغيرت الفايتك ٢، كانت ١٨ (٢٠,٦ ٪) عزلة من أصل ٧٠ عينة تعود لجراثيم سيتروباكتر فريونديي. أظهرت جميع العزلات حساسية عالية نسبيًا للسيبروفلوكساسين والأميكاسين والجنتاميسين، ومتوسطة الحساسية منخفضة للتوبر اميسين. يُشكل وجود جراثيم سيتروباكتر فريوندي في تربية الأحياء المائية تحديات متعددة الجوانب، منخفضة للتوبر اميسين. يُشكل وجود جراثيم سيتروباكتر فريوندي في تربية الأحياء المائية تحديات متعددة الجوانب، منخفضة لتوبر اميسين. يُشكل وجود جراثيم سيتروباكتر فريوندي في تربية الأحياء المائية تحديات متعددة الجوانب، منخفضة لتوبر اميسين. يُشكل وجود جراثيم سيتروباكتر فريوندي في تربية الأحياء المائية تحديات متعددة الجوانب،