10.21608/avmj.2025.367822.1622

Assiut University web-site: www.aun.edu.eg

INFLUENCE OF GLYCEROL MONOLAURATE AND LYSOFORTE ON SERUM BIOCHEMICAL PARAMETERS, NUTRIENT DIGESTIBILITY, AND LIVER HISTOLOGY IN BROILER CHICKENS

SARA E. DARRAG 1; AHMED SHEHAB 1 AND KAMELIA ZAHRAN 1

¹ Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Benha University, Toukh 13736, Egypt

Received: 4 April 2025; Accepted: 19 September 2025

ABSTRACT

This study investigated the results of using dietary supplements with glycerol monolaurate (GML) and lysoforte (LFT) on broiler chickens' serum biochemistry, nutrient digestibility, and liver morphology. A 35-day trial was conducted using 240 newly hatched avian Cobb broiler chicks, divided into four dietary treatments at random: 1) a basic control diet (CON), 2) basal diet with 0.025% Lysoforte, 3) basal diet with 0.05% Glycerol monolaurate, and 4) a combination of 0.05% Glycerol monolaurate + 0.025% Lysoforte. Each treatment included 4 replicates with 15 chicks per replicate. The results showed no significant changes in liver enzyme activity (AST, ALT, ALP), total protein, albumin levels, or indicators of kidney function (creatinine, urea, and uric acid) among treatment groups, compared to the control. Serum lipid profiles remained largely unaffected, except for increased HDL-cholesterol in birds fed diets containing GML and LFT. Serum glucose concentration significantly decreased with GML supplementation. While dry matter digestibility was not influenced, fat digestibility improved with LFT and GML supplementation. Histological examination revealed normal and healthy liver structures across all treatment groups. These findings suggest that dietary GML and LFT enhance fat utilization without adverse effects on liver or kidney functions, offering potential benefits for broiler production.

Keywords: Glycerol monolaurate, Lysoforte, serum analysis, nutrient digestibility, liver histomorphology

INTRODUCTION

Antibiotics were widely used in largescale poultry farming to support intestinal health, leading to healthier chickens and faster growth rates. However, since 2006, the European Union has banned antibiotics in animal feed, which has created major challenges for the farming industry. These

Corresponding author: Sara E. Darrag
E-mail address: sara.essam@fvtm.bu.edu.eg
Present address: Department of Nutrition and
Clinical Nutrition, Faculty of Veterinary Medicine,
Benha University, Toukh 13736, Egypt

challenges include a greater risk of disease, reduced production efficiency, increased reliance on therapeutic drugs, and rising costs (Shao *et al.*, 2021). This ban has driven the search for alternative solutions. Plant extracts have emerged as a promising option, as they can improve animal nutrition and nutrient absorption, inhibit harmful microorganisms, and promote gut health and balance (McGaw, 2013).

Glycerol monolaurate (GML), a glycerol monoester of the medium chain fatty acid (MCFA; lauric acid, C12), is a naturally occurring compound present in coconut oil

and some American spices, and it is approved by the US Food and Drug Administration (FDA) as a plant-based feed additive (Jiang et al., 2018; Schlievert et al., 2019; Welch et al., 2020). GML exhibits powerful antibacterial, antiviral, antioxidant, and emulsifying properties (Zhang et al., 2009; Seleem et al., 2016). Since it is a natural compound, it does not cause drug resistance or leave residues in animals. Recent research has highlighted its positive impact on broilers, as it significantly promotes growth, enhances antioxidant and reduces inflammation (Valentini et al., 2020; Kong et al., 2021).

Lauric acid monoglyceride has been demonstrated in several studies to enhance fat digestion and utilization while also considerably boosting feed returns (Decuypere and Dierick, 2003). According to (Lieberman, Enig and Preuss, 2006), monolaurin is a multipurpose substance that has the ability to operate as an emulsifier, enhance physicochemical and bioactive qualities, and have antibacterial capabilities. Emulsifiers are surfactant substances that on the interface between two immiscible media, such as oil and water (Tan et al., 2016). Lipids in the diet that creatures consume are unable to dissolve in gastrointestinal tract's water-based environment, requiring bile as well as lipase to facilitate effective breakdown of food (Siyal et al., 2017). In the initial seven days after hatching, chicks produce restricted amounts of bile in addition to lipase, which hampers their ability to degrade fats efficiently (Upadhaya et al., 2017). As a result, using emulsifiers facilitates the breakdown of dietary fats and boosts lipase activity while fat breakdown is occurring (Upadhaya et al., 2018). Additionally, emulsifiers provide a way to deliver fatsoluble vitamins to animals in a water-based form (Namur, Morel and Bickel, 1988). Various kinds of surfactants are utilized in livestock diets, including 1,3-diacylglycerol (1,3-DAG), polyethylene glycol ricinoleate, lysophospholipids (LPLs), Liprex, and Lysoforte booster (Melegy et al., 2010;

Aguilar *et al.*, 2013; Tan *et al.*, 2016; Zampiga, Meluzzi and Sirri, 2016; Upadhaya *et al.*, 2017).

Lysoforte is a commercial feed additive composed of lysophospholipids, which are derived from the enzymatic hydrolysis of soy lecithin. It functions primarily as an emulsifier, enhancing fat digestion and animals, absorption monogastric in especially poultry. Because young chicks produce limited bile and lipase, fat digestion is often inefficient during early growth stages. Lysoforte improves the emulsification of dietary fats, making them more accessible to digestive enzymes, thus improving nutrient absorption and energy utilization. Several studies have reported that dietary supplementation with Lysoforte improves growth performance, conversion ratio (FCR), and intestinal morphology in broilers (Zampiga, Meluzzi and Sirri, 2016). Emulsifiers have been demonstrated to boost protein absorption efficiency (Maertens et al., 2010; Boontiam, and Kim, 2017), enhance digestibility of fats, along with the efficient use of apparent metabolizable energy (AME) (Roy et al., 2010). However, there hasn't been any research done on using glycerol monolaurate and lysoforte together. Thus, the purpose of this experiment is to examine how feeding broiler chickens a certain quantity of glycerol monolaurate lysoforte complexes affects their serum biochemistry, nutrient digestibility, and liver histology.

MATERIALS AND METHODS

Diets preparation and experimental design

The study's experimental protocols were authorized by the Research Ethics Committee of the Institutional Animal Care and Use Committee at the Faculty of Veterinary Medicine, Benha University, Egypt, after thorough review (BUFVTM 09-10-23). In a 35-day trial, 240 one-day-old avian Cobb broilers (males and females) were used. The feeding trial was carried out

at the Poultry Research Farm, Faculty of Veterinary Medicine, Benha University, Egypt. Four experimental diets were assigned to the broilers at random, with 16 replicates of 15 broilers per replicate. The dietary treatments comprised 1) control (standard diet only), 2) a standard diet with 0.025% Lysoforte, 3) a standard diet with 0.05% GML, and 4) a standard diet with 0.025% Lysoforte + 0.05% GML. The diets were formulated following the guidelines

outlined by (Dale, 1994) (Table 1). The floor of the room was lined with a 10 cm layer of wood shavings, which was turned weekly. Each replicate had continuous access to one plastic feeder and one plastic waterer. The room temperature was controlled thermostatically at $33^{\circ}\text{C} \pm 1^{\circ}\text{C}$ during the primarily seven days. After that, it was gradually reduced to $24^{\circ}\text{C} \pm 1^{\circ}\text{C}$, with the humidity consistently maintained at 60%.

Table 1: The ingredients and nutrient composition of the basal diet

Ingredients%	Starter diet (0-10 days)	Grower diet (11-24 days)	Finishing diet (25-35 days)	
Yellow corn	56.10	60.9	65	
Soybean meal 46	35	27.8	23.8	
Corn gluten meal	3.7	4.5	4	
Soybean oil	0.35	2.3	3	
Lime stone	1.45	1.35	1.4	
Di calcium phosphate	1.75	1.7	1.35	
Vit&min premix*	0.3	0.3	0.3	
DL –Methionine	0.27	0.26	0.23	
L –Lysine	0.3	0.35	0.31	
Sodium chloride	0.25	0.25	0.25	
Sodium bicarbonate	0.17	0.18	0.18	
L –Threonine	0.065	0.07	0.06	
Choline chloride	0.05	0.05	0.05	
Anticoccidia	0.025	0.025	0.025	
Toxisorb	0.05	0.05	0.05	
Antimycotoxin	0.1	0.1	0.1	
Chemical analysis				
ME (Kcal/g)	2.89	3.09	3.17	
CP %	23.01	20.98	18.84	
CF %	3.08	2.80	2.64	
Calcium %	1.03	0.96	0.89	
Total phosphorus %	0.68	0.64	0.55	
Available phosphorus%	0.45	0.43	0.35	
Sodium %	0.19	0.17	0.17	
Chloride %	0.28	0.26	0.25	
Lysine %	1.43	1.28	1.13	
Methionine %	0.66	0.63	0.56	
Threonine %	0.93	0.84	0.76	
Methionine and cysteine %	1.03	0.97	0.88	

^{*}The vitamin and mineral premix provided each kilogram of feed with: Vitamin A 12000 IU; vitamin D32000 IU; vitamin E 10 mg; vitamin K32 mg; vitamin B11 mg; vitamin B25 mg; vitamin B61.5 mg; vitamin B120.01 mg; Biotin0.05 mg; pantothenic acid 10 mg; Nicotinic acid 30 mg; Folic acid 1 mg; Manganese 60 mg; Iron 30 mg; Copper10 mg; Iodine 1 mg; Selenium 0.01 mg; Cobalt 0.01 mg.

Serum biochemical analysis

On day 36, birds had been arbitrarily chosen out of each group after a 12-hour fast, and blood specimens were gathered from the brachial vein. These specimens permitted to rest for two hrs prior to undergoing centrifugation at a speed of 3000 revolutions per minute for 15 mins. Serum concentrations were analyzed using kits from Bio diagnostic Institute (Dokki, Giza, Egypt), adhering to the manufacturer's instructions for assessing total cholesterol, triglycerides, high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), ALP, ALT, AST, albumin, total protein, uric acid, urea, creatinine, and glucose.

Nutrient Digestibility

During the final 5 days of the study, three birds per replicate were retained for assessing the digestibility of nutrients using chromic oxide (Cr2O3) (0.5%) (Scott and Boldaji, 1997). Excreta was collected daily from each replicate during the study and kept at -20°C till analyses. Before analytical examination, the excreta specimens were thawed and dehydrated using a forced-air oven (model FC-610, Advantec, Toyo Seisakusho Co. Ltd., Tokyo, Japan) at 50°C just for seventy-two hours. Once dried, the samples were finely ground to filter through a 1-millimeter sieve. Every sample of feces was subsequently examined for dry matter (DM) and lipid content. Chromic oxide level was quantified by means of UV absorption spectrophotometry (UV-1201, Shimadzu, Kyoto, Japan). Digestibility was determined applying the subsequent equation:

Digestibility =
$$100 - \left(\frac{Nf \times Cd}{Nd \times Cf}\right) \times 100$$

Nf represents the concentration of nutrient in the excreta (% DM), Nd is the concentration of nutrient in the feed, Cd is the chromic oxide concentration in the feed, and Cf is the chromic oxide concentration in the excreta.

Liver Morphology

Upon finishing the experiment, five birds from each group were chosen by random selection for slaughtering by the halal method after fasting for 12 hrs to collect liver samples. Liver samples were obtained from the left lobe of slaughtered birds, as outlined by Abdul Basit et al., (2020). Liver samples were fixed and preserved in 10% neutral buffered formalin solution. Once fixed, Paraffin was used to embed the tissue samples for preservation and processed according to the conventional alcohol-xylene methodology. An automated microtome was used to cut sections of the paraffinembedded tissues to a thickness of 5 µm, and the standard hematoxylin and eosin technique was used for staining (Culling, 1974).

Statistical analysis

The recorded data was assessed through the ANOVA technique in SPSS software, version 16.0 (SPSS Inc., Chicago, IL). Oneway ANOVA was used to evaluate changes caused by supplementing the diet with Lysoforte and Glycerol monolaurate, and the Tukey test was used to identify significant means. Significant statistical differences were acknowledged when P < 0.05.

RESULTS

Serum biochemical analysis

The enzymatic activity in the liver (AST, ALT, and ALP), along with the levels of total proteins and albumin, showed no significant changes in the serum of broilers consuming dietary treatments containing LFT plus GML as opposed to the control group (P>0.05). Renal activity markers (Creatinine, Urea, and Uric acid) were also unaffected by the inclusion of LFT or GML in the diet (P>0.05). Serum lipid profiles (Total cholesterol, Triglycerides, and LDLdid not show cholesterol) significant changes, except for HDL-cholesterol, which elevated in birds receiving a diet enriched with LFT and GML. Additionally, the serum glucose concentration significantly decreased in broilers a GMLfed supplemented diet (P<0.05) (Table 2).

Table 2: Effect of LFT, GML and mixture of them on serum biochemistry

Parameters	G1	G2	G3	G4	P value
AST	184.23±6.14	191.50±18.28	207.07±10.90	189.27±21.67	0.755
ALT	5.16±0.40	5.00±0.15	3.40±0.41	4.66±0.69	0.093
ALP	359.48±1.21	351.73±1.87	355.63±1.60	352.81±8.24	0.615
Total protein	2.69±0.14	2.77±0.10	2.94±0.04	2.64±0.08	0.254
Albumin	1.14±0.07	1.30±0.01	1.43±0.02	1.35±0.01	0.162
Creatinine	0.36 ± 0.03	0.37 ± 0.02	0.36±0.01	0.43 ± 0.01	0.133
Urea	2.54±0.32	2.67±0.12	1.98±0.28	2.90±0.12	0.104
Uric acid	10.40±2.00	6.50±2.60	8.40±1.83	8.10±2.40	0.684
Cholesterol	107.43±6.92	102.30±5.99	122.23±2.62	110.97±6.49	0.172
Triglycerides	108.33±1.76	108.00±1.73	119.67±8.96	117.00±4.35	0.325
LDL-cholesterol	30.60±4.61	16.90±5.65	32.36±1.18	24.18±1.91	0.075
HDL- cholesterol	55.76 ^b ±2.20	66.50 ^{ab} ±3.82	65.93 ^{ab} ±3.23	77.10 ^a ±1.19	0.005
Glucose	262.30 ^a ±4.54	250.44°±6.16	189.01 ^b ±17.02	241.07°±0.89	0.003

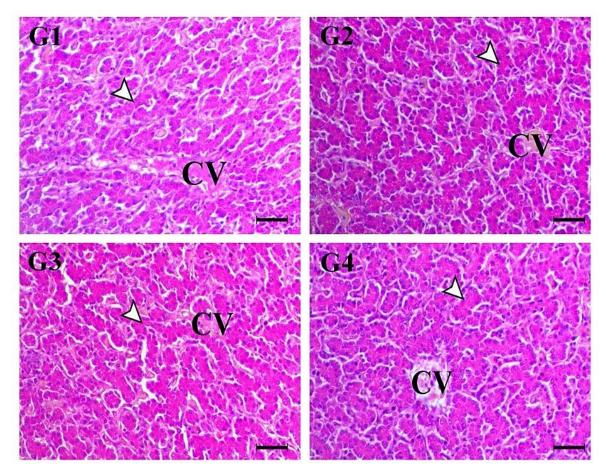
Means signified by a and b are statistically distinct (p < 0.05) among the groups within the same row. G1: control; G2: 0.025% LFT; G3: 0.05% GML; G4: 0.025% LFT+0.05%.

Nutrient Digestibility

Our results observed no significant effect of LFT or GML on the DM digestibility,

while lipid digestibility was boosted by LFT and GML enrichment (Table 3).

Table 3: Effect of LFT, GML and mixture of them on dry matter and fat digestibility


Parameters	G1	G2	G3	G4	P value
Dry matter digestibility	83.17±3.12	84.04±0.76	81.85±0.37	86.66±0.25	0.272
Fat digestibility	53.96 ^b ±2.89	64.24 ^a ±2.40	60.21 ^{ab} ±1.82	67.63°±0.79	0.001

Means signified by a and b are statistically distinct (p < 0.05) among the groups within the same row

Liver Morphology

The liver tissue from all treatment groups displayed normal and healthy structures, including well-organized hepatic cords,

intact central veins, and clearly defined sinusoids with no signs of degeneration, inflammation, or cellular infiltration (Figure 1).

Figure 1: Representative photomicrographs of liver sections from broiler chickens in different treatment groups stained with hematoxylin and eosin (H&E).

- G1: Liver of control bird supplemented with basal diet showing normal hepatocytes with decrease the diameter of the hepatic plate with dilated sinusoids in between (arrowhead) around the central vein (CV), H&E, X200, bar= 50 µm.
- G2: Liver of lysoforte (LFT) supplemented group showing normal hepatocytes (arrowhead) around the central vein (CV), H&E, X200, bar= $50 \mu m$.
- G3: Liver of glycerol monolaurate (GML) supplemented group showing normal hepatocytes (arrowhead) around the central vein (CV), H&E, X200, bar= 50 µm.
- G4: Liver of with LFT and GML blend supplemented group showing normal hepatocytes with increased the diameter of the hepatic plate (arrowhead) around the central vein (CV), H&E, X200, bar= 50 μm.

DISCUSSION

The liver function tests showed no differences between the treatment groups. In consistent with Ali *et al.*, (2023), no variations (P>0.05) were found in the treatments' levels comparing GML and CON of aspartate aminotransferase (AST) and alanine aminotransferase (ALT). Similarly, Ullah *et al.*, (2024) demonstrated that serum biochemical markers like TP, ALB, ALT, AST, and T-CHO showed no significant changes, suggesting that GML exposure did not heavily impact kidney or liver function.

Moreover, these outcomes could be related to the normal liver tissue morphology. Hepatocellular damage is typically signaled by changes in serum concentrations of AST and ALT enzymes (Suckow, Stevens and Wilson, 2011). Comparable findings have been previously observed among rats receiving virgin coconut oil treatment (Kabara, 2000). Contradictory findings were observed in a study on rainbow trout, where emulsifiers reduced liver enzyme activity levels (Taghavizadeh *et al.*, 2020). In our study, GML and LFT had no significant effect on lipid profiles except for HDL-C, which showed an increase. The current

findings align with previous studies, which reported that administering GML at a dosage of 150 mg/kg for up to 8 weeks led to significant changes in HDL-C (Jiang et al., 2018; Li et al., 2019). Our findings show a discrepancy with previous studies where a long-term coconut oil-rich diet associated with lower fasting LDL-C levels (Cox et al., 1995, 1998). Additionally, it has been reported that monolaurin increased triacylglycerol, VLDL, and HDL levels while decreasing LDL (Resende et al., GML, naturally 2016). a occurring monoglyceride in coconut oil (Zhang, 2018), may have shown differing effects due to variations in dosage and duration of administration compared to those earlier studies. Serpunja and Kim, (2019) and Guerreiro Neto et al., (2011) found that the application of emulsifiers had no discernible effect on serum TG, cholesterol, HDL-c, and LDL-c values in broilers. However, earlier findings have shown a significant drop in cholesterol and LDL-c levels when LPLs were added to broiler diets (Roy et al., 2010). The variance in findings could be caused by the specific emulsifier type employed, its amount of incorporation, and differences in investigative settings between research trials. Concerning glucose level, our results revealed a lower level of glucose in the serum of birds that consume AML in the diet only. In line with Zhang et al., (2022), who showed that supplementation with GMD resulted in a marked decrease in blood glucose levels, insulin resistance index, and inflammation. In contrast, Mo et al., (2019) discussed that there were no notable changes in glycemic markers, including fasting blood glucose levels. Bontempo et al., (2018) observed no effect of synthetic emulsifier on glucose level. Dietary treatments with emulsifier had no impact on plasma levels of LDL-c, TGs, glucose, GOT, albumin, creatinine, or uric acid (Saleh et al., 2020).

Dry matter digestibility showed insignificant differences among the different groups. In contrast, fat digestibility increased with the inclusion of LFT and GML in the broiler diet. In agreement with our results,, the presence of emulsifiers in the diet has recently gained interest as an effective strategy to improve overall efficiency of fat digestion and nutrient benefit in broiler feeding programs (Guerreiro Neto et al., 2011; Siyal et al., 2017; Bontempo et al., 2018; Upadhaya et al., 2018; Ahmadi-Sefat et al., 2022). These findings have shown that birds given an emulsifier experience better growth performance, largely improved dietary fat absorption. The emulsifiers presence of dietary strengthen emulsification, which involves bile salts stabilizing and clarifying the fat droplet surface, enabling lipase to adhere to the surface junction (Siyal et al., 2017). The adsorption-desorption equilibrium, which is impacted amphiphilic by substances including lipids, proteins, and phospholipids, may also be improved by fortifying the diet with an emulsifier (Majdolhosseini et al., 2019). As a result, the modifications brought about by the exogenous emulsifier may enhance the absorption of nutrients via the intestinal cell membrane, increasing the feed's nutrient bioavailability. In contrast, et al. Gholami (2024) observed improvement in DM digestibility, while the digestibility of other nutrients showed no significant changes with the addition of an emulsifier to the diet. Animal studies have shown that supplementing diets MCFAs and the corresponding glycerides digestibility and enhanced nutrition utilization in rats, pigs, and Atlantic salmon (Takase and Hosoya, 1986; TAKADA et al., 1994; Nordrum et al., 2000). A potential justification for this is that MCFAs stimulate the release of cholecystokinin, a peptide hormone in the digestive tract, which triggers a release of lipase and protease (TAKADA et al., 1994).

medium-chain GML, fatty acid monoglyceride being a natural constituent of coconut oil, can advance into deeper gastrointestinal areas due to its ester linkage protection. These properties make GML and capable significantly special of influencing fish digestion and nutrient assimilation (Dierick, Decuypere

Degeyter, 2003). An additional plausible interpretation is that dietary GML may promote a greater plenty of beneficial gut microbiota-associated bacteria that produce enzymes, as evidenced by animal studies on gilt-head sea bream, hens, and mice (Rimoldi *et al.*, 2018; Mo *et al.*, 2019; Liu *et al.*, 2020).

The liver is essential for various metabolic functions and serves as a key indicator of offering chemical toxicity, important information about its toxic effects and mechanisms(Sauer et al., 2017). No changes in liver histology were found between different treatment groups, except for the increase in the diameter of the hepatic plate around the central vein in the liver of broilers that consumed GML and LFT blend. Similarly, Lonkar et al., (2017) found that the histopathological analysis of the liver in emulsifier groups showed normal structure of the hepatic parenchyma, with intact hepatocytes and vascular tissue. hepatocytes were arranged in cords and exhibited normal cellular characteristics, including cell size, nucleus, and cytoplasm. There were no signs of metabolic changes, such as fatty infiltration of the hepatocytes or inflammation of the hepatic parenchyma, in any of the sections from the groups. The current findings align with those of Kalmar et al., (2012), who observed no pathological changes in the liver tissues supplementing N,N dimethylglycine (DMG), an emulsifier, in broiler diets. In alpha monolaurin treatment groups, the liver displayed normal and healthy structures, with the exception of intrahepatic pancreases encircling a branch of the portal vein (Ali et al., 2023). There were no histopathological alterations found in the liver treated with GML (Fortuoso et al., 2020). In contrast, Chris et al., (2024) observed that a 2.5 ml/L dosage of surfactants to Guinean Tilapia caused lesions, inflammation, and necrosis.

CONCLUSION

Dietary supplementation with glycerol monolaurate and lysoforte enhances fat

digestibility and improves specific serum biochemical parameters, such as HDLcholesterol and glucose levels, without negatively affecting liver or kidnev functions. Additionally, the normal liver histology observed in all groups confirms safety these supplements. the of Incorporating GML and LFT into broiler diets may be an effective strategy to optimize nutrient utilization and support healthy growth.

Funding:

Not applicable.

Conflict of Interest Statement:

The authors declare no conflict of interest.

Acknowledgment:

The authors acknowledge the assistance provided by the Faculty of Veterinary Medicine, Benha University.

REFERENCES

Abdul Basit, M. (2020): 'Effects of Inclusion of Different Doses of Persicaria odorata Leaf Meal (POLM) in Broiler Chicken Feed on Biochemical and Haematological Blood Indicators and Liver Histomorphological Changes', Animals, 10(7), p. 1209. Available at: https://doi.org/10.3390/ani10071209.

Aguilar, Y.M. (2013): 'Growth performance, carcass traits and lipid profile of broiler chicks fed with an exogenous emulsifier and increasing levels of energy provided by palm oil', Journal of Food, Agriculture and Environment, 11(1), pp. 629–633.

Ahmadi-Sefat, A.A. (2022): 'Effects of an emulsifier blend supplementation on growth performance, nutrient digestibility, intestinal morphology, and muscle fatty acid profile of broiler chickens fed with different levels of energy and protein', *Poultry Science*, 101(11), p. 102145. Available at: https://doi.org/10.1016/j.psj.2022.10214 5.

Ali, M.M. (2023): 'Dietary Alpha-Monolaurin for Nile Tilapia (Oreochromis niloticus): Stimulatory Effects on Growth,

- Immunohematological Indices, and Immune-Related Gene Expressions', *Aquaculture Research*. Edited by U. Khan, 2023, pp. 1–13. Available at: https://doi.org/10.1155/2023/3155447.
- Bontempo, V. (2018): 'Evaluation of a synthetic emulsifier product supplementation on broiler chicks', Animal Feed Science and Technology, 240(2010), pp. 157–164. Available at: https://doi.org/10.1016/j.anifeedsci.2018. 04.010.
- Boontiam, W.; Jung, B. and Kim, Y.Y. (2017): 'Effects of lysophospholipid supplementation to lower nutrient diets on growth performance, intestinal morphology, and blood metabolites in broiler chickens', *Poultry Science*, 96(3), pp. 593–601. Available at: https://doi.org/10.3382/ps/pew269.
- Chris, D.I. (2024): 'Ecotoxicity of commonly used oilfield-based emulsifiers on Guinean Tilapia (Tilapia guineensis) using histopathology and behavioral alterations as protocol', *Science Progress*, 107(1), pp. 1–23. Available at:https://doi.org/10.1177/003685042412 31663.
- Cox, C. (1995): 'Effects of coconut oil, butter, and safflower oil on lipids and lipoproteins in persons with moderately elevated cholesterol levels', Journal of Lipid Research, 36(8), pp. 1787–1795. Available at: https://doi.org/10.1016/s0022-2275(20)41497-x.
- Cox, C. (1998): 'Effects of dietary coconut oil, butter and safflower oil on plasma lipids, lipoproteins and lathosterol levels', European Journal of Clinical Nutrition, 52(9), pp. 650–654. Available at: https://doi.org/10.1038/sj.ejcn.1600621.
- Culling, C.F.A. (1974): Handbook of Histopathology and Histochemical Techniques. 3rd edn. Butterworth and Co. Ltd.
- Dale, N. (1994): 'National Research Council Nutrient Requirements of Poultry Ninth Revised Edition (1994)', Journal of Applied Poultry Research, 3(1), p. 101. Available at: https://doi.org/10.1093/japr/3.1.101.
- Decuypere, J.A. and Dierick, N.A. (2003): 'The combined use of triacylglycerols containing medium-chain fatty acids and

- exogenous lipolytic enzymes as an alternative to in-feed antibiotics in piglets: concept, possibilities and limitations. An overview', *Nutrition Research Reviews*, 16(2), pp. 193–210. Available at: https://doi.org/10.1079/nrr200369.
- Dierick, N.A.; Decuypere, J.A. and Degeyter, I. (2003): 'The combined use of whole Cuphea seeds containing medium chain fatty acids and an exogenous lipase in piglet nutrition', Archives of Animal Nutrition, 57(1), pp. 49–63. Available at: https://doi.org/10.1080/00039420310000 86626.
- Fortuoso, B.F. (2020): 'Effects of glycerol monolaurate on growth and physiology of chicks consuming diet containing fumonisin', *Microbial Pathogenesis*, 147(February), p. 104261. Available at:https://doi.org/10.1016/j.micpath.2020.104261.
- Gholami, M. (2024): 'Effect of emulsifier on growth performance, nutrient digestibility, intestinal morphology, faecal microbiology and blood biochemistry of broiler chickens fed low-energy diets', Veterinary Medicine and Science, 10(3), pp. 1–9. Available at: https://doi.org/10.1002/vms3.1437.
- Guerreiro Neto, A.C. (2011): 'Emulsifier in broiler diets containing different fat sources', Revista Brasileira de Ciencia Avicola / Brazilian Journal of Poultry Science, 13(2), pp. 119–125. Available at: https://doi.org/10.1590/S1516-635X2011000200006.
- Jiang, Z. (2018): 'Antimicrobial Emulsifier—Glycerol Monolaurate Induces Metabolic Syndrome, Gut Microbiota Dysbiosis, and Systemic Low-Grade Inflammation in Low-Fat Diet Fed Mice', Molecular Nutrition and Food Research, 62(3), pp. 1–11. Available at:https://doi.org/10.1002/mnfr.201700547.
- Kabara, J.J. (2000): 'Health oils from the tree of life', Nutritional and Health Aspects of Coconut Oil Indian Coconut J, 31(8), pp. 2–8.
- Kalmar, I.D. (2012): 'Tolerance and safety evaluation of N, N-dimethylglycine, a naturally occurring organic compound, as a feed additive in broiler diets', British Journal of Nutrition, 107(11), pp.

- 1635–1644. Available at: https://doi.org/10.1017/S0007114511004 752.
- Kong, L. (2021): 'Glycerol Monolaurate Ameliorated Intestinal Barrier and Immunity in Broilers by Regulating Intestinal Inflammation, Antioxidant Balance, and Intestinal Microbiota', Frontiers in Immunology, 12(September), pp. 1–14. Available at: https://doi.org/10.3389/fimmu.2021.713 485.
- Li, Y. (2019): 'Lactobacillus plantarum helps to suppress body weight gain, improve serum lipid profile and ameliorate low-grade inflammation in mice administered with glycerol monolaurate', Journal of Functional Foods, 53, pp. 54–61. Available at: https://api.semanticscholar.org/CorpusID:91935042
- Lieberman, S.; Enig, M.G. and Preuss, H.G. (2006): 'A Review of monolaurin and lauric acid', Alternative & Complementary Therapies, 12(6), pp. 310–314.
- Liu, T. (2020): 'Glycerol Monolaurate Enhances Reproductive Performance, Egg Quality and Albumen Amino Acids Composition in Aged Hens with Gut Microbiota Alternation', Agriculture, 10(7), p. 250. Available at:https://doi.org/10.3390/agriculture100 70250.
- Lonkar, V.D. (2017): 'Effect of emulsifier on carcass traits, serum biochemical and histopathological changes in liver and kidney of broiler chicken fed with low enegry diet', *The Journal of Bombay Veterinary College*, 24(1), pp. 32–37.
- Maertens, L. (2010): 'The effect of different emulsifiers on fat and energy digestibility in broilers', Asian Journal of Animal and Veterinary Advances, 11, pp. 158–167.
- Majdolhosseini, L. (2019): 'Nutritional and physiological responses of broiler chickens to dietary supplementation with de-oiled soyabean lecithin at different metabolisable energy levels and various fat sources', British Journal of Nutrition, 122(8), pp. 863–872. Available at: https://doi.org/10.1017/S000711451900182X.
- McGaw, L. (2013): Use of Plant-Derived

- Extracts and Essential Oils against Multidrug-Resistant Bacteria Affecting Animal Health and Production, Fighting Multidrug Resistance with Herbal Extracts, Essential Oils and their Components. Elsevier. Available at: https://doi.org/10.1016/B978-0-12-398539-2.00013-6.
- Melegy, T. (2010): 'Dietary fortification of a natural biosurfactant, lysolecithin in broiler', African Journal of Agricultural Research, 5(21), pp. 2886–2892.
- Mo, (2019): 'High-dose glycerol monolaurate up-regulated beneficial indigenous microbiota without inducing metabolic dysfunction and systemic inflammation: New insights into its antimicrobial potential', Nutrients, 11(9), 1981. Available p. https://doi.org/10.3390/nu11091981.
- Namur, A.P.; Morel, J. and Bickel, H. (1988): 'II. 7. Compound animal feed and feed additives', Livestock Production Science, 19(1), pp. 197–209. Available at: https://doi.org/https://doi.org/10.1016/03 01-6226(88)90090-5.
- Nordrum, S. (2000): 'Effects of methionine, cysteine and medium chain triglycerides on nutrient digestibility, absorption of amino acids along the intestinal tract and nutrient retention in Atlantic salmon (Salmo salar L.) under pair-feeding regime', Aquaculture, 186(3–4), pp. 341–360. Available at: https://doi.org/10.1016/S0044-8486(99)00385-3.
- Resende, N.M. (2016): 'The effects of coconut oil supplementation on the body composition and lipid profile of rats submitted to physical exercise', Anais da Academia Brasileira de Ciencias, 88(2), pp. 933–940. Available at: https://doi.org/10.1590/0001-3765201620150302.
- Rimoldi, S. (2018): 'Effect of a specific composition of short- and medium-chain fatty acid 1-Monoglycerides on growth performances and gut microbiota of gilthead sea bream (Sparus aurata)', PeerJ, 6(7), p. 20. Available at: https://doi.org/10.7717/peerj.5355.
- Roy, A. (2010): 'Effects of Supplemental Exogenous Emulsifier on Performance, Nutrient Metabolism, and Serum Lipid

- Profile in Broiler Chickens', *Veterinary Medicine International*, 2010, pp. 781–789. Available at: https://doi.org/10.4061/2010/262604.
- Saleh, A.A. (2020): 'A Mixture of Exogenous Emulsifiers Increased the Acceptance of Broilers to Low Energy Diets: Growth Performance, Blood Chemistry, and Fatty Acids Traits', Animals, 10(3), p. 437. Available at: https://doi.org/10.3390/ani10030437.
- Sauer, U.G. (2017): 'The challenge of the application of 'omics technologies in chemicals risk assessment: Background and outlook', Regulatory Toxicology and Pharmacology, 91, pp. S14–S26. Available at: https://doi.org/10.1016/j.yrtph.2017.09.020.
- Schlievert, P.M. et al. (2019) 'Glycerol Monolaurate Contributes to the Antimicrobial and Anti-inflammatory Activity of Human Milk', Scientific Reports, 9(1), pp. 1–9. Available at: https://doi.org/10.1038/s41598-019-51130-y.
- Scott, T.A. and Boldaji, F. (1997): 'Comparison of Inert Markers [Chromic Oxide or Insoluble Ash (CeliteTM)] for Determining Apparent Metabolizable Energy of Wheat- or Barley-Based Broiler Diets with or without Enzymes', Poultry Science, 76(4), pp. 594–598. Available at: https://doi.org/10.1093/ps/76.4.594.
- Seleem, D. (2016): 'In vitro evaluation of antifungal activity of monolaurin against Candida albicans biofilms', PeerJ, 2016(6), pp. 1–17. Available at: https://doi.org/10.7717/peerj.2148.
- Serpunja, S. and Kim, I.H. (2019): 'The effect of sodium stearoyl-2-lactylate (80%) and tween 20 (20%) supplementation in low-energy density diets on growth performance, nutrient digestibility, meat quality, relative organ weight, serum lipid profiles, and excreta microbiota in broilers', Poultry Science, 98(1), pp. 269–275. Available at: https://doi.org/10.3382/ps/pey342.
- Shao, Y. (2021): 'A systematic review on antibiotics misuse in livestock and aquaculture and regulation implications in China', Science of the Total Environment, 798(18), p. 149205.

- Available at: https://doi.org/10.1016/j.scitotenv.2021.149205.
- Siyal, F.A. (2017): 'Emulsifiers in the poultry industry', World's Poultry Science Journal, 73(3), pp. 611–620. Available at: https://doi.org/10.1017/S0043933917000502.
- Suckow, M.A.; Stevens, K.A. and Wilson, R.P. (2011): The laboratory rabbit, guinea pig, hamster, and other rodents. Academic Press.
- Taghavizadeh, M. (2020): 'Efficacy of dietary lysophospholipids (LipidolTM) on growth performance. serum immunobiochemical parameters, and expression of immune and antioxidantrelated genes in rainbow (Oncorhynchus mykiss)', Aquaculture, 525(March), p. 735315. Available at: https://doi.org/10.1016/j.aquaculture.202 0.735315.
- Takada, R. (1994): 'Effects of Dietary Medium- and Long-chain Triglycerides on the lleal Digestibilities of Amino Acids in Pigs', Nihon Chikusan Gakkaiho, 65(5), pp. 432–436. Available at:
 - https://doi.org/10.2508/chikusan.65.432.
- Takase, S. and Hosoya, N. (1986): 'Effect of dietary medium chain triglyceride on lipogenic enzyme activity in rat liver.', Journal of nutritional science and vitaminology, 32(2), pp. 219–227. Available at: https://doi.org/10.3177/jnsv.32.219.
- Tan, H. (2016): 'Effect of exogenous emulsifier on growth performance, fat digestibility, apparent metabolisable energy in broiler chickens', Journal of Biochemistry, Microbiology and Biotechnology, 4, pp. 7–10. Available at:https://doi.org/10.54987/jobimb.v4i1. 281.
- Ullah, S. (2024): 'Effect of Dietary Supplementation of Glycerol Monolaurate on Growth Performance, Digestive Enzymes, Serum Immune and Antioxidant Parameters, and Intestinal Morphology in Black Sea Bream', Animals, 14(20), p. 2963. Available at: https://doi.org/10.3390/ani14202963.
- Upadhaya, S.D. (2017): 'Efficacy of 1,3-diacylglycerol as a fat emulsifier in low-density diet for broilers', *Poultry*

Science, 96(6), pp. 1672–1678. Available at: https://doi.org/10.3382/ps/pew425.

Upadhaya, S.D. (2018): 'Influence of emulsifier blends having different hydrophilic-lipophilic balance value on growth performance, nutrient digestibility, serum lipid profiles, and meat quality of broilers', Poultry Science, 97(1), pp. 255–261. Available at: https://doi.org/10.3382/ps/pex303.

Valentini, J. (2020): 'Chemical composition, lipid peroxidation, and fatty acid profile in meat of broilers fed with glycerol monolaurate additive', Food Chemistry, 330(May), p. 127187. Available at: https://doi.org/10.1016/j.foodchem.2020.127187.

Welch, J.L. (2020): 'Glycerol Monolaurate, an Analogue to a Factor Secreted by Lactobacillus, Is Virucidal against Enveloped Viruses, Including HIV-1 Jennifer', American society for microbiology, 11(3), pp. 1–17.

Zampiga, M.; Meluzzi, A. and Sirri, F. (2016): 'Effect of dietary supplementation of lysophospholipids on productive performance, nutrient digestibility and carcass quality traits of broiler chickens', *Italian Journal of Animal Science*, 15(3), pp. 521–528. Available at: https://doi.org/10.1080/1828051X.2016. 1192965.

Zhang, H. (2009): 'Antibacterial Interactions of Monolaurin with Commonly Used Antimicrobials and Food Components', Journal of Food Science, 74(7). Available at: https://doi.org/10.1111/j.1750-3841.2009.01300.x.

Zhang, J. (2022): 'Dietary emulsifier glycerol monodecanoate affects the gut microbiota contributing to regulating lipid metabolism, insulin sensitivity and inflammation', Food and Function, 13(17), pp. 8804–8817. Available at: https://doi.org/10.1039/d2fo01689c.

Zhang, M.S. (2018): Characterizing how glycerol monolaurate (GML) affects human T cell signaling and function. Available at: https://api.semanticscholar.org/CorpusID:92548367.

تأثير الجليسيرول مونولورات واللايزوفورت على المعايير البيوكيميائية في الدم، وهضم العناصر الغذائية، وهيكل الكبد في دجاج التسمين

سارة عصام دراج ، أحمد شهاب ، كاميليا زهران

قسم التعذية والتغذية الإكلينيكية، كلية الطب البيطري، جامعة بنها

Email: sara.essam@fvtm.bu.edu.eg Assiut University web-site: www.aun.edu.eg

تهدف هذه الدراسة إلى تقييم تأثير إضافة الجليسيرول مونولورات واللايزوفورت إلى العلف على المعايير البيوكيميائية في الدم، وهضم العناصر الغذائية، وهيكل الكبد في دجاج التسمين. تم إجراء تجربة لمدة ٣٥ يومًا علي ٢٤٠ كتكوتًا من سلالة كوب بعمر يوم واحد، وُزعت عشوائيًا على أربعة معاملات غذائية: المجموعة الاولي تلقت العلف الأساسي فقط، المجموعة الثانية تلقت علف أساسي مضاف إليه ١٠٠٠٥٪ لايزوفورت ، المجموعة الثالثة تلقت علف أساسي مضاف إليه ٥٠٠٠٠٪ بالمجموعة الرابعة تلقت علف أساسي مضاف إليه ٥٠٠٠٠٪ لايزوفورت مونولورات ، المجموعة الرابعة تلقت علف أساسي مضاف إليه ٥٠٠٠٠٪ لايزوفورت على ٤ مكررات، وضم كل مكرر ١٥ كتكوتًا.

أظهرت النتائج عدم وجود تغيرات معنوية في نشاط إنزيمات الكبد أو مستويات البروتين الكلي، الألبومين، ومعايير وظائف الكلي (الكرياتينين، اليوريا، حمض اليوريك) بين المجموعات مقارنةً بالمجموعة الضابطة. كما لم تتأثر مستويات الدهون في الدم بشكل كبير، باستثناء ارتفاع ملحوظ في الكوليسترول عالي الكثافة في الطيور التي تلقت ٢٥،٠٠ % لايزوفورت + ٥٠٠٠٪ جليسيرول مونولورات إلى انخفاض معنوي في تركيز الجلوكوز في الدم. أما من حيث هضم العناصر الغذائية، فلم يؤثر المكملان الغذائيان على هضم المادة الجافة، لكنهما حسنا هضم الدهون. وأظهرت الفحوصات النسيجية للكبد البنية النسيجية الطبيعية في جميع المجموعات.

تشير هذه النتائج إلى أن إضافة الجليسيرول مونولورات واللايزوفورت إلى العلف قد تحسن من استغلال الدهون دون أي تأثيرات سلبية على وظائف الكبد أو الكلي، مما يوفر فوائد محتملة في إنتاج دجاج التسمين.