ORIGINAL ARTICLE

Assessment of Retinal Ganglion-cell Complex in Diabetic Patients without Retinopathy Using Spectral-Domain Optical Coherence Tomography

Al-Sayed M. Elewa, Ahmed G. Al Mahdy, Ammar Y. H. Rashed *

Department of Ophthalmology, Faculty of Medicine for Boys, Al-Azhar University, Cairo, Egypt

Abstract

Background: Microvascular alterations make up diabetic retinopathy (DR), but new research shows that neurodegeneration can start sooner. The original optical coherence tomography (OCT) system has undergone significant development since its introduction.

Aim and objectives: The purpose of this study is to evaluate diabetic patients free of retinopathy by spectral domain optical coherence tomography of the ganglion cell complex.

Subjects and methods: Between April and October of 2024, researchers at the Ophthalmology department of Al-Azhar University Hospitals performed a cross-sectional comparison study on 30 pairs of eyes: 30 healthy controls and 30 diabetes patients without retinopathy (group-B).

Results: Compared to healthy controls, diabetic individuals without retinopathy had thinner macular GCL-IPL and RNFL thickness. Researchers observed a statistically significant relationship between the length of time a diabetic patient has had the disease, hemoglobin A1c, average RNFL thickness, and average GCL-IPL thickness.

Conclusion: Patients with diabetes who do not have retinopathy had much thinner GCL-IPL and RNFL layers than the control group, suggesting that neurodegenerative alterations brought on by DM occur before vascular abnormalities associated with diabetic retinopathy manifest.

Keywords: SD-OCT; OCT; Diabetic patients

1. Introduction

Diabetic retinopathy (DR) is the principal cause of blindness in people of working age, and diabetes mellitus (DM) is a rapidly increasing global epidemic that causes a lot of harm.

The prevalence of DR has been on the rise. A third of those with DM also show signs of DR, according to recent estimates, which puts the global DM population at around 486 million. Hypertension, length of diabetes, diabetic neuropathy, diabetic nephropathy, fasting blood glucose, serum total cholesterol, serum triglycerides, and hemoglobin A1c are some of the risk factors for diabetic retinopathy (DR), a complex illness with multiple causes.²

The classic view of DR has focused on it as a microvascular disease with retinal microaneurysms, capillary changes, and hemorrhages as its primary symptoms. As the disease advances, these changes in blood vessel function may cause the inner retina's neuronal and glial components degenerate. Nevertheless, new research indicates microvascular alterations are not detectable after retinal neurodegeneration until progressed.3

It appears that neurodegeneration in DM is a macula-wide process that causes functional problems like impaired color discrimination, decreased contrast sensitivity, and impaired dark adaptation.¹

Accepted 15 April 2025. Available online 30 June 2025

^{*} Corresponding author at: Ophthalmology, Faculty of Medicine for Boys, Al-Azhar University, Cairo, Egypt. E-mail address: ammarrashed.6.206@azhar.edu.eg (A. Y. H. Rashed).

An important step in the development of DR starts and activates a number of metabolic processes that contribute to microangiopathy and the breaking of the blood-retinal barrier.⁴

The retinal ganglion cells (RGCs) undergo the most rapid cell death and are the first to be damaged. Each of the three layers of the retina is made up of different types of retinal ganglion cells: the inner plexiform layer (IPL), the ganglion-cell layer (GCL), and the retinal nervefiber layer (RNFL).⁵

This study set out to evaluate diabetic patients free of retinopathy by use of spectral domain optical coherence tomography (OCT) in order to determine the thickness of the ganglion cell complex.

2. Patients and methods

Between April and October of 2024, researchers at the Ophthalmology department of Al-Azhar University Hospitals performed a cross-sectional comparison study on 30 pairs of eyes: 30 healthy controls and 30 diabetes patients without retinopathy (group B).

Inclusion criteria:

Age:18 years or older, and type-1 DM and type-2 DM.

Exclusion criteria:

The following conditions can impair OCT signals: diabetic retinopathy (DR), glaucoma, uveitis, prior ocular surgery, trauma, intraocular injections, laser photocoagulation, high refractive errors (myopia >-6.00 D or hypermetropia >+4.00 D), and substantial media opacity.

Study procedure:

The individuals who were part of the study and had recorded glucose levels (fasting plasma glucose level <100 mg/dL or hemoglobin A1c level <5.7% of total hemoglobin) were placed in the control group. These individuals came to our clinic for a variety of reasons, including health screenings and routine checks for eye diseases like cataracts and peripheral vitreous floaters. The individuals placed in the control group did not have any eye diseases or previous intraocular surgeries. They also had normal anterior segment and fundus vision, a best corrected visual acuity (BCVA) of 1.00 or above, intraocular pressure (IOP) within the usual range, and a spherical equivalent within ±6.0 D.

The recruited participants were briefed on the study's nature and goal after the institute's ethical committee gave its approval and the subjects gave their informed consent.

Here is what all patients went through:

Checking intraocular pressure, visual acuity, slit-lamp examination, fundus examination, complete medical history, and standard laboratory tests.

OCT imaging:

Spectralis, made by Heidelberg Engineering of Heidelberg, Germany, is a spectral domain OCT device that was used to acquire all of the OCT images. The eyes were scanned utilizing the Spectralis platform's eye-tracking-based follow-up feature during the follow-up period. By utilizing enhanced-depth imaging OCT (EDI-OCT), the SFCT was assessed. The GCC thickness was determined automatically by the OCT instrument and is defined as the distance between the inner limiting membrane and the outer boundary of the inner plexiform layer. By calculating the distance between the inner limiting membrane and the interface of the retinal pigment epitheliumchoriocapillaris using the radial lines through the foveal area, the central retinal thickness (CRT) was automatically determined. To control fluctuations during the day, all measurements were taken between 9 am and 12 pm.

A total of 61 individual lines of 15 frames, with a 30°×25° volume scan centered at the fovea, were used to create perifoveal volumetric retinal scans utilizing Heidelberg Engineering's automated eye alignment eye-tracking software. The instrument's RNFL protocol (circular 3.5-mm diameter, 768 Ascans) was used to measure the peripapillary RNFL thickness (from the internal limiting membrane to the inner aspect of the retinal pigment epithelium [RPE]) in a standard fashion. The Spectralis software was used for automatic segmentation. The software that came with the Fovea-Disc Alignment system automatically corrected the orientation of the fovea disc. Foveal fixing and segmentation were verified to be accurate in every instance.

An experienced operator at Al-Hussein University Hospital used these techniques to acquire images; after masking themselves to protect their privacy, they evaluated the images for artifacts, alignment, and quality; and last, they conducted macular segmentation. Using the new Spectralis OCT software, this equipment executed laver-by-laver automatically segmentation, which was validated in the B-scans of each imaged eye according to the criteria of Ishikawa et al.,6.

Statistical Analysis:

For the purpose of data analysis, we utilized the IBM SPSS software package version 20.0. Armonk, New York, is the home of IBM Corp. The qualitative data were described using percentages and numbers. The Kolmogorov-Smirnov test was used to guarantee that the distribution was normal. Quantitative data were represented using the following methods: range (including minimum and maximum), mean, standard deviation, median, and interquartile range (IQR). A 5% level of significance was used to determine the acquired results.

A chi-square test is employed to compare categorical data in different groups. When the quantitative variables are normally distributed, a Student's t-test (t) can be utilized to compare two groups.

3. Results

Table 1. Comparison of demographic data between studied groups (N=60).

VARIA	BLES	GROUP-A	GROUP-	B TEST	P-VALUE
AG	E			1.32	0.21
MEAN	I±SD	49.88±9.36	48.23±8.4	19	
RAN	GE	20-75	29-66		
GENI	DER			1.47	0.44
MA	LE	13(43.3%)	12(40%))	
FEMA	ALE	17(56.7%)	18(60%))	

In group-A: The age of participants ranged between 20-75 years with the mean age was 49.88±9.36 years, (table 1; figure 1).

In group-B: The age of participants ranged from 29 to 66 years, with the mean age was 48.23±8.49 years.In group-A: out of 30-patients, 13(56.7%) were males, 17(43.3%) were females. In group-B: out of 30-controls, 12(40%) were males, 18(60%) were females.In this Study we found that age and gender were statistically insignificant.

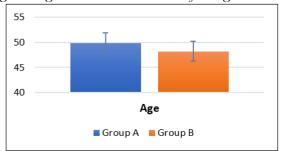


Figure 1. Comparison of age between studied groups.

Table 2. Comparison of HbA1c between studied groups (N=60).

	VARIABLES	GROUP-A	GROUP-B	TEST	P-VALUE	
HBA1C (%)						
	$MEAN\pm SD$	7.1±0.5	5.5±0.3	8.35	0.001*	
	RANGE	6.6-7.8	4.8-5.9			

In group-A: the mean HbA1c value was 7.1±0.5 (range: 6.6–7.8), In group-B: the mean HbA1c value was 5.5±0.3 (range: 4.8–5.9). HbA1c level was significantly higher in the diabetic group compared with the control group. in the diabetic group (P<0.001), (table 2; figure 2).

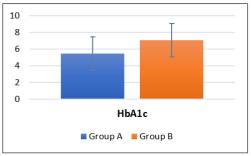


Figure 2. Comparison of HbA1c between

studied groups.

Table 3. Comparison of BCVA and IOP between studied groups (N=60).

	VARIABLES	GROUP-A	GROUP-B	TEST	P-VALUE
BCVA (LOGMAR)				1.25	0.87
	$MEAN\pm SD$	0.26±0.29,	0.21±0.15		
	RANGE	0-1	0-0.5		
IOP (MMHG)			1.65	0.98	
	MEAN±SD	15.44±3.1	14.22±2.91		
	RANGE	11-21	10-20		

In group-A: the BCVA in LogMAR ranged between 0-1.0 with a mean of 0.26±0.29, In group-B: the BCVA in LogMAR it ranged between 0-0.5 with a mean of 0.21±0.15 which was statistically insignificant (P=0.87), (table 3).

In group-A: the IOP ranged between 11-21 mmHg with a mean of 15.44±3.1 mmHg, in group-B: the IOP ranged between 10-20 mmHg with a mean of 14.22±2.91 mmHg which was statistically insignificant (P=0.98).

Table 4. Comparison of ganglion-cell complex thickness between studied groups (N=60).

	GCL-IPL	GROUP-A μM	GROUP-B μM	TEST	P-VALUE
Ī	SUPERIOR			8.47	0.002*
	$MEAN\pm SD$	74.2±15.2	85.11±4.6		
	SUPERIOR NASAL			6.18	0.002*
	$MEAN\pm SD$	79.23±16.33	85.63±3.77		
	SUPERIOR	RTEMPORAL		7.36	0.001*
	$MEAN\pm SD$	76.21±14.98	82.33±3.11		
	INFERIOR		5.14	5.14	0.001*
	$MEAN\pm SD$	68.12±18.99	84.23±16.2		
INFERIOR NASAL			6.49	0.001*	
	$MEAN\pm SD$	72.43±16.98	84.32±10.36		
	INFERIOR	TEMPORAL		7.63	0.001*
	$MEAN\pm SD$	75.62±14.39	84.39±2.89		

As regarding GCL-IPL difference, there is a statically significant difference between group-A and group-B in all quadrants as bellow:

Superior: group-A was 74.2 \pm 15.2 μ m and group-B was 85.11 \pm 4.6 μ m, Superior nasal: group-A was 79.23 \pm 16.33 μ m and group-B was 85.63 \pm 3.77 μ m, Superior temporal: group A was 76.21 \pm 14.98 μ m and group-B was 82.33 \pm 3.11 μ m, Inferior: group-A was 68.12 \pm 18.99 μ m and group-B was 84.23 \pm 16.2 μ m, Inferior nasal: group-A was 72.43 \pm 16.98 μ m and group-B was 84.32 \pm 10.36 μ m, Inferior temporal: group-A was 75.62 \pm 14.39 μ m and group-B was 84.39 \pm 2.89 μ m, (table 4; figure 3).

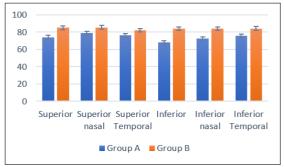


Figure 3. Comparison of GCL-IPL between studied groups.

Table 5. Comparison of Retinal nerve fiber layer between studied groups (N=60).

RNFL	GROUP-A	GROUP-B	TEST	P-VALUE
AVERAGE			6.58	0.001*
$MEAN\pm SD$	86.72±13.98	102.9±7.96		
SUPERIOR			5.62	0.001*
$MEAN\pm SD$	105.21±19.67	129.65±10.34		
INFERIOR			7.95	0.001*
$MEAN\pm SD$	112.67±19.42	128.41±15.54		
NASAL			8.12	0.001*
$MEAN\pm SD$	67.32±14.22	79.42±9.12		
TEMPORAL			7.99	0.001*
$MEAN\pm SD$	60.87±10.22	68.32±7.14		

A statistically significant (p=0.001) difference between group-A and group-B as regarding RNFL thickness as bellow:

The average: group-A was $86.72\pm13.98~\mu m$ and group-B was $102.9\pm7.96~\mu m$, Superior RNFL: group-A was $105.21\pm19.67\mu m$ and group-B was $129.65\pm10.34\mu m$, Inferior RNFL: group-A was $112.67\pm19.42\mu m$ and group-B was $128.41\pm15.54\mu m$, Nasal RNFL: group-A was $67.32\pm14.22~\mu m$ and group-B was $79.42\pm9.12\mu m$, Temporal RNFL: group-A was $60.87\pm10.22\mu m$ and group-B was $68.32\pm7.14\mu m$, (table 5; figure 4).

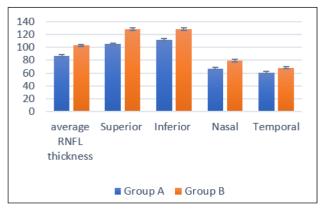


Figure 4. Comparison of average RNFL thickness between studied groups.

Case presentation:

Female patient 46 years old from group-A with type 2 DM for 5 years her HbA1c was 6.9, her right eye BCVA was 0.3 LogMar and IOP was 17 mmHg. Her: CMT=251 μ m, GCL+IPL (average)=86 μ m, and RNFL (average)=95 μ m

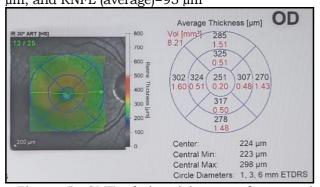


Figure 5. CMT of the right eye of a sample diabetic patient.

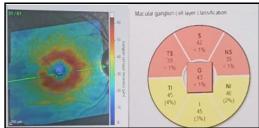


Figure 6.GCL thickness of the right eye of a sample diabetic patient.

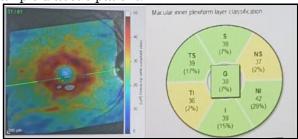


Figure. 7. IPL thickness of the right eye of a sample diabetic patient.

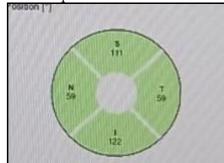


Figure 8. RNFL thickness of the right eye of a sample diabetic patient.

4. Discussion

Among working-age adults, diabetic retinopathy is the most common cause of blindness. About 190 million individuals across the globe are living with DR. A total of 34.6% of persons diagnosed with diabetes mellitus also have DR. DR is a complex disease with multiple risk factors, some of which include serum cholesterol levels, blood pressure, and hemoglobin A1c.⁷

The classic view of DR has focused on it as a microvascular disease with retinal microaneurysms, capillary changes, hemorrhages as its primary symptoms. As the disease advances, these changes in blood vessel function may cause the inner retina's neuronal and glial components to degenerate. Newer research, however, points retinal neurodegeneration as occurring before outwardly apparent microvascular alterations.8

Whether diabetic retinal neuropathy is mostly caused by direct neuronal damage from chronic hyperglycemia or by vascular disorders is an ongoing dispute. Functional problems like loss of color discrimination, contrast sensitivity, and dark adaptation are produced by neurodegeneration in DM, which appears to be a

systemic process that happens across the macula.9

Initiating and activating many metabolic pathways contributes to microangiopathy and the development of DR by breaking the blood-retinal barrier.¹⁰

Spectral domain optical coherence tomography shows the greatest rate of cell death in retinal ganglion cells, which are also the first cells to be damaged. Axons, nuclei, and dendrites of retinal ganglion cells make up the inner plexiform layer, the layer that contains the nerve fibers of the retina, and the layer that contains the ganglion cells. It is crucial to maintain the integrity of these cells in order to maintain visual function.¹¹

Therefore, SD OCT with high resolution can assess the thickness of each individual retinal layer, including RNFL and GCL+IPL, suggesting that ganglion cell loss is the primary cause of their thinning.¹²

As a tool for quantitative investigation of the retina's architecture, optical coherence tomography (OCT) scans the retina's structure in great detail, including its thickness, choroid, and optic disc morphometry. In vivo, optical coherence tomography (OCT) pictures can be utilized for both qualitative and quantitative assessment of retinal disease changes. The diameter of retinal veins and arteries has recently been measured using Spectral Domain OCT. OCT has emerged as a crucial technique for diabetic retinopathy screening, diagnosis, and treatment evaluation Lee et al. 13

The results showed that in group A, the central foveal thickness varied from 165 to 280 μm , with an average of 233.96±18.63 μm , and in group B, it varied from 240 to 280 μm , with an average of 261.28±11.1 μm (P<0.001).

Ibrahim et al., ¹⁴ also discovered that, when comparing diabetic patients to healthy controls, central foveal thickness was significantly lower in the former group.

We demonstrated in this study that there is a statistically significant relationship between the length of diabetes, hemoglobin A1c, average RNFL thickness, and average GCL-IPL thickness in individuals with diabetes.

Ibrahim et al.,¹⁴ demonstrated a statistically significant relationship between the thickness of RNFL and GCL-IPL and the duration of diabetes and the HbA1c value.

Sugimoto et al., ¹⁵ discovered that RNFL is impacted by glycemic control, namely HbA1c levels, within a four-month timeframe.

Sahin et al.,¹⁶ determined that average RNFL thickness is somewhat inversely correlated with HbA1c, and that RNFL thinning may be associated with higher incidences of atherosclerosis in type 2 diabetic individuals.

Hegazy et al., 17 discovered a strong inverse

relationship between GCL thickness and the duration of DM.

In the results of Toprak et al.,¹⁸ Patients with an HbA1c level of 7% or higher had a noticeably reduced mean RNFL thickness.

Verma et al.,¹⁹ In 2012, researchers observed that individuals with type 2 diabetes who did not have retinopathy and whose hemoglobin A1c levels were less than 7% had significantly reduced mean retinal sensitivity compared to those whose hemoglobin A1c levels were greater than or equal to 7%.

Oshitari et al.,²⁰ discovered a correlation between HbAc1 and duration, as well as an escalation in the severity of disease, and a correlation between GCs loss and axonal damage.

However, Srinivasan et al.,²¹ found no correlation between retinal tissue thickness and HbA1c or diabetes duration.

Improving visual outcome requires early disease detection and prompt treatment. It would be possible to personalize clinical follow-up and therapeutic action if we could identify indicators that reliably predict the likelihood of disease severity and visual outcome.

The lack of inclusion of patients with DR is one of the study's weaknesses.

4. Conclusion

Patients with diabetes who do not have retinopathy had much thinner GCL-IPL and RNFL layers than the control group, suggesting that neurodegenerative alterations brought on by DM occur before vascular abnormalities associated with diabetic retinopathy manifest.

Disclosure

The authors have no financial interest to declare in relation to the content of this article.

Authorship

All authors have a substantial contribution to the article

Funding

No Funds : Yes

Conflicts of interest

There are no conflicts of interest.

References

- 1. AlSawahli H, Mpyet CD, Ezzelarab G, et al. Population-based cross-sectional prevalence survey of diabetes and diabetic retinopathy in Sohag-Egypt, 2019. BMJ Open. 2021; 11(6): e047757.
- Wei L, Sun X, Fan C, et al. The pathophysiological mechanisms underlying diabetic retinopathy. Frontiers in Cell and Developmental Biology. 2022; 10: 963615.

- Cao D, Yang D, Yu H, et al. Optic nerve head perfusion changes preceding peripapillary retinal nerve fibre layer thinning in preclinical diabetic retinopathy. Clin Exp Ophthalmol. 2019; 47(2): 219-225.
- Duh EJ, Sun JK, Stitt AW. Diabetic retinopathy: current understanding, mechanisms, and treatment strategies. JCI Insight. 2017; 2(14): e93751.
- Bandello F, Lattanzio R, Zucchiatti I, et al. Diabetic macular edema. Clinical Strategies in the Management of Diabetic Retinopathy: A step-by-step Guide for Ophthalmologists. 2019; 97-183.
- Ishikawa H, Stein DM, Wollstein G, et al. Macular segmentation with optical coherence tomography. Invest Ophthalmol Vis Sci. 2005; 46(6): 2012-2017.
- Liu H, Tang J, Lee CA, et al. Metanx and early stages of diabetic retinopathy. Invest Ophthalmol Vis Sci. 2015; 56(1): 647-653.
- Yarmohammadi A, Zangwill LM, Diniz-Filho A, et al. Relationship between Optical Coherence Tomography Angiography Vessel Density and Severity of Visual Field Loss in Glaucoma. Ophthalmology. 2016; 123(12): 2498-2508.
- Matsuzaki M, Hirami Y, Uyama H, et al. Optical coherence tomography angiography changes in radial peripapillary capillaries in Leber hereditary optic neuropathy. Am J Ophthalmol Case Rep. 2018; 9: 51-55.
- 10.Liu L, Wang Y, Liu HX, et al. Peripapillary Region Perfusion and Retinal Nerve Fiber Layer Thickness Abnormalities in Diabetic Retinopathy Assessed by OCT Angiography. Transl Vis Sci Technol. 2019; 8(4): 14.
- 11.Akagi T, Zangwill LM, Saunders LJ, et al. Rates of Local Retinal Nerve Fiber Layer Thinning before and after Disc Hemorrhage in Glaucoma. Ophthalmology. 2017; 124(9): 1403-1411.
- 12.Mammo Z, Heisler M, Balaratnasingam C, et al. Quantitative Optical Coherence Tomography Angiography of Radial Peripapillary Capillaries in Glaucoma, Glaucoma Suspect, and Normal Eyes. Am J Ophthalmol. 2016; 170: 41-49.

- 13.Lee MW, Baek SK, Lee KH, et al. Comparison of retinal layer thickness and microvasculature changes in patients with diabetic retinopathy treated with intravitreous bevacizumab vs panretinal photocoagulation. Sci Rep. 2022; 12(1): 1570.
- 14.Ibrahim AM, Nassar MK, Helal SS. (2022). Assessment of retinal ganglion-cell complex using spectral-domain optical coherence tomography in diabetic patients without retinopathy. Menoufia Medical Journal. 2022; 35(2): 839-845.
- 15.Sugimoto M, Sasoh M, Ido M, et al. Detection of early diabetic change with optical coherence tomography in type 2 diabetes mellitus patients without retinopathy. Ophthalmologica. 2005; 219(6): 379-385.
- 16.Sahin SB, Sahin OZ, Ayaz T, et al. The relationship between retinal nerve fiber layer thickness and carotid intima media thickness in patients with type 2 diabetes mellitus. Diabetes Res Clin Pract. 2014; 106(3): 583-589.
- 17. Hegazy AI, Zedan RH, Macky TA, et al. Retinal ganglion cell complex changes using spectral domain optical coherence tomography in diabetic patients without retinopathy. Int J Ophthalmol. 2017; 10(3): 427-433.
- 18.Toprak I, Yildirim C, Yaylali V. Optic disc topographic analysis in diabetic patients. Int Ophthalmol. 2012; 32(6): 559-564.
- 19.Varma DD, Cugati S, Lee AW, et al. A review of central retinal artery occlusion: clinical presentation and management. Eye (Lond). 2013; 27(6): 688-697.
- 20.Oshitari T, Hanawa K, Adachi-Usami E. Changes of macular and RNFL thicknesses measured by Stratus OCT in patients with early-stage diabetes. Eye (Lond). 2009; 23(4): 884-889.
- 21.Srinivasan S, Pritchard N, Sampson GP, et al. Retinal tissue thickness in type 1 and type 2 diabetes. Clin Exp Optom. 2016; 99(1): 78-83.