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Abstract

This study introduces a comprehensive framework that utilizes deep learning
techniques for the automated detection and segmentation of dental caries in panoramic X-ray
images. The proposed system is designed to assist dental practitioners by highlighting regions
of decay and accurately outlining their boundaries, thereby facilitating more efficient and
precise diagnoses. A two-stage model, Faster R-CNN, is employed for object detection due to
its effectiveness in identifying carious lesions of varying sizes with enhanced localization
accuracy. For the task of semantic segmentation, the DeepLabV3+ architecture is
implemented to generate detailed pixel-level masks of the affected regions, providing a more
granular understanding of the decay patterns. The overall approach encompasses image
preprocessing, model development, and performance evaluation using established
quantitative metrics. The experimental results indicate the capability and robustness of the
proposed method in improving diagnostic accuracy. These findings underscore the potential of
this framework to serve as a valuable clinical aid and pave the way for the future integration of

Al-powered dental analysis tools into modern dental practice.

Key Words : Enhanced Dental Diagnostics - Caries Detection - Sizing in Panoramic - X-Ray

Image.
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1.1 Introduction

Oral health is a critical aspect of overall well-being, and dental decay remains one of the most
widespread oral health problems affecting people globally. Despite advancements in medical
technology, the prevalence of dental decay continues to rise, placing significant strain on

healthcare systems worldwide. As the need for more accurate and efficient diagnostic methods

grows, modern technologies, especially Al, have the potential to revolutionize dental care.

By the year 2017, tooth decay emerged as the most common illness around the globe, impacting
more than 3.5 billion people [22, 19].Even with major progress made in medical technology,
the incidence has not diminished, continuing to impose a substantial burden on healthcare sys-
tems worldwide. Machine learning, especially neural networks, has experienced extraordinary
advancements in the last ten years, achieving performance levels beyond those of humans in
numerous tasks since 2015 [15]. The rate of errors in deep learning models has been reduced
considerably [33], resulting in their extensive use across multiple industries, such as medical
imaging. In certain areas, deep learning models have exceeded human abilities, notably in the

detection of breast cancer [38] and diabetes [21].
1.2 Problem Statement

Dental caries stands out as one of the most prevalent dental health concerns globally, impacting
individuals across various age groups.Conventional detection techniques, which depend on

visual examinations and the manual analysis of X-ray images, frequently result in mistakes and
variable interpretations. This may result in delayed treatments, as well as underestimation of the
decay. The challenges are aggravated by the cumbersome nature of manual detection especially
in a busy clinical environment where dental caries may not be visible to the naked eye. Thus,
there is an imminent need for improved, accurate, and reliable means for caries detection and
diagnosis. Al, especially in the context of deep learning models, provides an opportunity to

revolutionize dental diagnostics in particular, by increasing the accuracy of caries assessments,

by minimizing human error, and by simplifying the diagnosis procedure.
1.3 Aim and Objectives

1.3.1 Aim
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This project aims to develop an intelligent framework that utilizes artificial intelligence to
analyze panoramic dental X-ray images to detect cavities and measure their severity using deep
learning and computer vision techniques. The proposed framework aims to enhance detection

and diagnostic accuracy compared to traditional methods.

1.3.2 Objectives

To fulfill this aim, the project will pursue the following objectives:
1. Detection: Design a model that reliably flags potential carious lesions in panoramic X-ray

images by drawing bounding boxes around them.

2. Segmentation: Use a semantic segmentation model to create accurate pixel-level masks

of areas impacted by caries.

3. Evaluate the detection and segmentation models using standard performance metrics such

as Intersection over Union (loU), Average Precision (AP).
this project aims to deliver a comprehensive answer for the early detection of dental caries of
tooth decay through the incorporation of cutting-edge Al methods within dental practices. The
system will boost the identification of caries and their severity evaluation, leading to increased

precision in diagnosis and aiding in more informed healthcare choices.
1.4 Organization of the Document

This paper is divided into sections designed to give a thorough grasp of the research question,

the methods used, and the results obtained. The breakdown of the document is:

Chapter 1 — Introduction: Presents a general view of tooth decay, the issue being addressed,

the research goals and aims, plus how the document is organized.

» Chapter 2 — Background: Explores dental anatomy, what causes and how to identify
cavities, the tasks of computer vision, and the place of Al and deep learning models in

diagnosing dental issues.

» Chapter 3 — Related Work: Analyzes past research and leading approaches for spotting

and outlining cavities using deep learning methods.

 Chapter 4 — Methodology: Outlines the data collection utilized, the steps taken for data
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preparation, the models implemented for detection and segmentation, as well as the

configuration for training.

+ Chapter 5 — Results: Provides an overview of the experiments carried out, the assessment
criteria utilized, and emphasizes the results achieved in the detection and segmentation

methods implemented in the research.

« Chapter 6 —challenges , limitations , Conclusion and Future Work : Examines the primary
difficulties faced throughout the research and highlights the limitations associated with
the effectiveness of the model.Summarizes the overall findings, highlights the efficiency
of the suggested system, and proposes possible avenues for enhancing lesion identification

and the implementation of the system in healthcare environments.

This research contributes to Al-driven dental healthcare innovations by improving the detection

and assessment of dental caries.

2.1 Results

This segment outlines the results derived from the two main elements of the suggested system:
object detection and semantic segmentation. Each element was examined separately with
relevant performance indicators to evaluate the model’s proficiency in processing panoramic

dental X-ray images successfully.

During the object detection phase, the model’s effectiveness was judged on its capability to
identify possible cavities through the application of bounding boxes. Assessment metrics like
AP and AR were applied across various loU thresholds and object dimensions to gauge the

model’s precision and reliability amid diverse detection scenarios.

In the segmentation phase, the aim was to attain accurate pixel-wise classification to clearly
define the specific shape and size of the carious areas. The segmentation model underwent
evaluation utilizing metrics such as PA, Mean Intersection over Union (mloU), and loss figures

for both training and validation datasets.

Collectively, these findings deliver an in-depth understanding of the system’s capabilities and

its potential to aid in automated dental diagnosis by utilizing radiographic information.

2.1.1 Object Detection Results
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In the initial phase of the system, techniques for object detection were utilized to recognize and
pinpoint areas of decay in panoramic dental X-ray images. The goal of this stage was to create
bounding boxes around possible dental abnormalities utilizing the Faster R-CNN architecture.
Using COCO-style metrics, the model’s efficacy was evaluated numerically, with an emphasis

on precision and recall at various loU thresholds and object dimensions.

Table 5.1: Object Detection Performance Metrics

Metric Value
AP@[10U=0.50:0.95] 0.227
AP@[IoU=0.50] 0.583
AP@[IoU=0.75] 0.095
AP@[IoU=0.50:0.95] (small) 0.0

AP@[IoU=0.50:0.95] (medium) 0.159
AP@[I0U=0.50:0.95] (large) 0.292

AR@[1oU=0.50:0.95] maxDets=1  (0.01
AR@[IoU=0.50:0.95] maxDets=10 |0.158
AR@[IoU=0.50:0.95] maxDets=100 [0.397

AR@[10U=0.50:0.95] (small) 0.0
AR@[I0U=0.50:0.95] (medium) __ |0.322
AR@[T0U=0.50:0.95] (large) 0.468

The table object detection results demonstrate the model’s overall effectiveness based on multiple
evaluation metrics. mAP across loU thresholds from 0.50 to 0.95 settled at 0.227, suggesting a

moderate degree of detection proficiency. Specifically, the average precision when the loU was

0.50 was notably higher at 0.583, indicating the model’s effectiveness when there is a reasonable
overlap between the predicted boxes and the actual ground truth. However, under more stringent

criteria, the precision decreased sharply, with AP@0.75 dropping to 0.095.

When analyzing performance based on object dimensions, it became clear that the model
struggled significantly with smaller objects (AP = 0.0) but exhibited greater proficiency in
detecting medium-sized (AP = 0.159) and large (AP = 0.292) items. In terms of recall, the
model recorded an AR of 0.397 with the allowance of up to 100 detections, whereas stricter
parameters (such as maxDets=1 and maxDets=10) led to diminished recall rates (0.01 and 0.158,
respectively). Like the precision, recall saw an improvement as the size of the objects rose,
achieving AR values of 0.322 and 0.468 for medium and large objects, accordingly. Together,
these findings imply that while the model excels at recognizing moderate and large areas of

concern, it faces difficulties when addressing smaller or less prominent dental elements.
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10 objects are detected 24 objects are detected 30 cbpects are detected
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30 objects are detected

Figure 5.1: Detection Result

Figure 5.1 Sample predictions from the object detection model applied to panoramic dental
radiographs. Each colored bounding box indicates a detected tooth, and the total number
of detections per image is displayed above. We used all 7,754 photos from the original
dataset to train the YOLOvV8 model. Although it took a long time to train, the results were
disappointing and fell short of our expectations for detection accuracy. We thus rebuilt and
reorganized the collection, choosing a more manageable sample of excellent and properly
annotated photos. Following that, we used the Faster R-CNN model, which resulted in noticeably
better performance. Crucially, these choices were informed by our earlier YOLOVS tests; the
knowledge we acquired from those trials helped us better comprehend the data and improve our

strategy as a whole.
2.1.2 Segmentation Result

The subsequent phase of the pipeline concentrated on semantic segmentation, aiming for de-
tailed pixel-level categorization of dental components. Employing the DeepLabV 3+ framework,
the system was trained to differentiate between tooth areas and the surrounding space in com-
prehensive panoramic X-ray visuals. The assessment was carried out using both accuracy
and overlap-related measures to evaluate the system’s proficiency in generating accurate and
reliable segmentation masks. The main performance metrics obtained throughout the training

and validation phases are listed in the table below.
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The DeepLabV3Plus-based semantic segmentation model showcased impressive capabilities
throughout the training, validation, and testing stages. After completing training over 10

epochs, the model recorded the following performance indicators: The results presented in Table

Table 5.2: Segmentation Performance Metrics

Metric [Training [Validation
PA 97.2% 95.3%
mloU (83.8% 79.7%

demonstrate the effectiveness of the DeepLabV3Plus segmentation model. During training, the
model achieved a high PA of 97.2%, indicating that the vast majority of pixels were correctly
classified. On the validation set, the model maintained a strong PA of 95.3%, reflecting
good generalization to unseen data. mIoU scores were also notable, with 83.8% in training
and 79.7% in validation. These values highlight the model’s ability to accurately delineate
the overlap between the predicted and ground truth masks, a critical factor in medical image

segmentation tasks.

these metrics confirm that the model performed reliably and with a high degree of accuracy on

both training and validation datasets.

Mean Intersection Over Union Learning Curve

= Train loU
Validation loU

mioU Score

Epochs

Figure 5.2: loU curve
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Figure 5.3: Accuracy curve
Figure 5.3 : illustrates PA learning curve for both the training set and validation set over a span

of 10 epochs. The PA curve for training displays a swift climb from around 68% to close to
99%, signifying a significant enhancement in accuracy for pixel classification. Likewise, the
validation PA curve progressively ascends from roughly 13% to beyond 95%, showcasing the
model’s successful generalization to new, unseen data. The steady upward movement and the
narrow gap between the training and validation curves in the later epochs highlight the model’s
strength and its capability to effectively differentiate between tooth regions and the background

in panoramic X-ray images.

Figure 5.4: Segmentation output
Figure 5.4:Illustration of the outcomes from semantic segmentation on panoramic dental X-rays.

Every row showcases the initial image, the related annotated ground truth mask, and the mask
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derived from the model’s predictions. The masks generated by the model closely match the
ground truth, demonstrating the model’s capability to accurately recognize and segment distinct

tooth structures.

2.2 Experiment

2.2.1 YOLOvV8n

In this first experiment, our goal was to evaluate how well a simplified object detection model
could recognize dental cavities in panoramic X-rays. For this purpose, we utilized the YOLOv8n
architecture, which is a more efficient version of the YOLOv8 detection framework, to pinpoint
cavities in the X-ray visuals. The collection included annotated radiographic images prepared
for YOLO, where each occurrence of decay was marked with bounding boxes. To suit restricted
processing power, the model underwent training for 30 epochs with a batch size of 2, and the

input images were scaled to 320 by 320 pixels.

During the training phase, there was a steady decline in box loss, class loss, and distribution
focal loss, suggesting effective model learning. As time progressed, metrics saw enhancement,

highlighted by rising precision and mAP figures.

Upon completion of the training, the model delivered the following results on the validation

dataset.

Table 5.3: Validation Results

Metric Value
Precision 0.289
Recall 0.124
mAP@0.5 0.425
mAP@0.5-0.95 (0.194

The model’s results on the validation set are displayed in Table 5.3, where it displays a precision
0f 0.289, recall of 0.124, mAP@0.5 of 0.425, and mAP@0.5-0.95 of 0.194. These outcomes

demonstrate the model’s low recall and middling detection accuracy.

Table 5.4: Test Results

Metric \Value |
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mAP@0.5 0.425
mAP@0.75 0.140
mAP@0.5-0.95 [0.194

The model’s performance on the test set is summarized in Table 5.4, where it obtained a lower
mAP@0.75 of 0.140 and a higher mAP@0.5 of 0.425. With a decrease in precision at higher
thresholds, the overall mAP across 10U thresholds from 0.5 to 0.95 was 0.194, suggesting a
respectable detection capability.

YOLO Evaluation Metrics
0.425

0.40

0.35

0.30

0.25

Value

0.20 0,194

0.15

0.140

0.10

0.05

0.00
MAP50-95 MAPS0 MAP75

Metric
Figure 5.5: YOLOv8n Evaluation Matrics

Figure 5.5 19 Though the model successfully identified some instances of tooth decay, the
overall effectiveness was limited. The relatively low recall (0.124) indicates that the system
often missed a consider- able number of true positive detections. Additionally, while the
mAP@0.5 (42.5%) may seem adequate for a lightweight model, the mAP@0.5:0.95 (19.4%)

shows restricted generalization across different loU thresholds, which is crucial for medical

tasks where accurate localization is essential.

Though the model successfully identified some instances of tooth decay, the overall effectiveness

was limited. The relatively low recall (0.124) indicates that the system often missed a consider-
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able number of true positive detections. Additionally, while the mAP@0.5 (42.5%) may seem
adequate for a lightweight model, the mAP@0.5:0.95 (19.4%) shows restricted generalization
across different loU thresholds, which is crucial for medical tasks where accurate localization

is essential.

The performance observed can be linked to multiple elements:

« A dataset that could be restricted or unbalanced, potentially hindering the model’s capacity

to learn various forms of tooth decay.

* A smaller input dimension (320x320), which might result in a loss of significant visual

information in radiographs.

In conclusion, this experiment illustrates that YOLOvS8n can serve as a rapid and resource-
efficient option for initial detection of dental cavities. However, the model’s effectiveness,

especially regarding recall and mAP@0.5:0.95, is not yet optimal for use in clinical settings.

2.2.2 YOLOvsI

The initial experiment with the YOLOv8n model revealed certain constraints—particularly its
insufficient recall and restricted generalization when dealing with loU thresholds—necessitating
the adoption of a more sophisticated model to boost detection capabilities. Therefore, YOLOvSI
was chosen for the next experiment due to its more extensive and capable architecture, designed
to capture faint visual cues of dental caries that the smaller model might overlook. The aim was
to enhance both sensitivity and accuracy in localization, which are essential in clinical settings,
while also assessing whether a more intricate model could provide significant improvements in
performance. To ensure uniformity, the same dataset utilized in the prior experiment—which
contained annotated dental X-ray images formatted for YOLO—was utilized once again. The
training phase lasted for 30 epochs, employing a batch size of 2 and adjusting input images to
320x%320 pixels.

During the training, a steady decline in box loss, classification loss, and distribution focal
loss was noted, suggesting effective model alignment. The performance metrics demonstrated

consistent advancements in precision, recall, and mAP, as shown in the training charts.

Table 5.5: Training Epoch Metrics
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Metric Value
Precision 0.290
Recall 0.125
mAP@0.5 0.107
mAP@0.5:0.95 10.0337

The model’s performance during training is displayed in Table 5.5, which displays a precision
of 0.290 and a recall of 0.125. The overall mAP spanning loU thresholds from 0.5 to 0.95 was
0.0337, whereas the mAP@0.5 was 0.107. These numbers show poor detection performance
during training, especially when loU criteria are more stringent.

Table 5.6: Test Set Evaluation

Metric Value
Precision (P) 0.762
Recall (R) 0.0818
mAP@0.5 0.425
mAP@0.75 0.140
mAP@0.5:0.95 [0.194

The model’s evaluation on the test set is summarized in Table 5.6, where it obtained a high
precision of 0.762, suggesting reliable positive predictions. But at 0.0818, the recall was
noticeably low, indicating low sensitivity. Moderate localization performance was indicated by
the mAP scores, which were 0.425 at IoU 0.5, 0.140 at 0.75, and 0.194 across the 0.5-0.95
range.

Figure 5.6 displays these evaluation findings. The mAP@0.5 aligns with the results of the
YOLOv8n experiment (0.425), suggesting that the larger model maintained its detection
effec- tiveness at this specific loU threshold. Nonetheless, significant improvements at

elevated loU thresholds or recall rates were not evident.

The visuals of model outputs indicate that YOLOv8I managed to identify several cases of tooth
decay with high confidence levels. However, several false negatives were noted, implying that

the model might still be underfitting or limited by the dataset’s constraints.

Even though YOLOVS]I is structurally more advanced than YOLOv8n, this experiment’s out-

comes did not demonstrate substantial performance enhancements in comparison to the lighter
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YOLO Evaluation Metrics
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0.05

0.00
MAP50-95 MAPS0 MAP75
Metric

Figure 5.6: YOLOv8I evaluation metrics

model. While test set precision improved, recall remained low, and the overall mAP@0.5:0.95
was still restricted. Therefore, simply enlarging model dimensions without improving the
quality or resolution of the dataset may be inadequate for achieving clinical-grade detection of

dental carie.

Challenges and Limitations

3.1 Challenges

3.1.1 Detection Challenges

Throughout the creation and implementation of the suggested method for detecting and seg-
menting caries in panoramic dental X-ray images, several challenges and limitations were

encountered:

* Even though the more sophisticated and bigger YOLOv8] model was anticipated to
provide better outcomes, it did not maintain consistently high precision. Both YOLOv8n
and YOLOVSI encountered difficulties in identifying carious lesions of different sizes,

especially when there were variations in image quality or anatomy.

* This irregularity highlighted essential shortcomings in their capacity to generalize across
various clinical situations, where both detection sensitivity and localization accuracy are

essential.
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* As aresult, these obstacles resulted in the implementation of a more resilient two-stage
detection framework and initiated a thorough restructuring of the dataset to improve the

model’s effectiveness and dependability.

* Although the Faster R-CNN framework demonstrated superior effectiveness relative to
single-stage detectors, it nonetheless exhibited various shortcomings. The model faced
challenges in precisely identifying small carious lesions or those with minimal contrast,
which frequently occur in panoramic dental imaging.

* These difficulties underscore the necessity for additional refinement, especially in im-

proving the model’s capacity to manage faint or less noticeable lesions.

3.1.2 Limitations

Significant limitations of this research are related to:

* Dependence on a single dataset acquired from an online source (Roboflow), which lacked

critical demographic details including patient age, gender, and clinical history.

* The lack of this metadata hampers the model’s capacity to extend its predictions to various

populations and actual clinical settings.

* The comparison of models was confined to just two detection frameworks—YOLOv8
and Faster R-CNN—without investigating more sophisticated or contemporary models
like DETR or those using transformers, which might have provided enhanced detection

precision and resilience.

These shortcomings underscore the necessity for additional research that includes more varied
datasets and a wider assortment of detection frameworks to guarantee the scalability and practical

relevance of the proposed system.

3.2 Future Work

3.2.1 Research Directions
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To boost the efficiency and practical use of the suggested framework, upcoming efforts might

concentrate on the following areas:

* Enhance the identification of very tiny carious lesions, which existing models struggle to
detect efficiently. This could entail utilizing images with higher resolution and improving

the precision of the annotations.

* Open up more detection architectures (including the leading models such as DETR,
YOLOV9 and the transformer based detector) for experiment and assessment on more
challenging tasks.

* Use ensemble learning methods that combine strengths of multiple models to enhance

robustness and accuracy across multiple lesion and imaging types.

* Broaden the dataset by integrating clinically verified images from multiple sources, as well
as incorporating metadata details like the patient’s age, gender, and dental background,

to enhance generalizability and clinical applicability.

* Adopt explainable Al techniques (XAl) to help dental professionals make clear decisions

and encourage the use of these approaches in actual clinical settings.

* Create an intuitive graphical interface (GUI) that enables dental practitioners to engage
with the detection and segmentation system with greater ease. This interface can showcase
X-ray images, emphasize areas of decay, and offer clinical measurements, enhancing the

system’s usability and applicability in practical settings.

3.2.2 Conclusion

This research introduced a framework utilizing deep learning for the automated detection and
segmentation of dental caries within panoramic X-ray images. The project focused on two

primary objectives: detecting objects and performing semantic segmentation.

* During the detection phase, both YOLOv8n and YOLOvS8I were tested initially but showed
subpar results, especially regarding the accuracy of localization and recall rates. Con-
sequently, the Faster R-CNN model was utilized, thanks to its superior accuracy and
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capacity to identify lesions of different sizes, although it faced challenges with detecting

smaller cavities.

* For the segmentation aspect, DeepLabV3+ with a ResNet34 backbone was employed,
demonstrating exceptional ability in accurately marking the precise borders of the de-
cayed areas. The model achieved impressive pixel-level accuracy and loU, signifying

trustworthy segmentation results.

In summary, the suggested system was effective in recognizing and segmenting carious le-
sions, with particular success noted for moderate to larger cavities. Nonetheless, additional
enhancements are needed to better detect very small lesions, increase computational efficiency,
and improve the model’s adaptability. The results affirm the promise of deep learning in pro-
gressing automated dental diagnostics and set the stage for broader practical uses in clinical

environments.
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