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Abstract

Automatic modulation classification (AMC) is vital in cognitive radio, spectrum management, and military
applications. The rapid evolution of wireless networks demands reliable and effective techniques. Traditional
AMC methods, like likelihood-based and feature-based algorithms, face limits in computational complexity and
generalization across different channel conditions. This paper combines Bidirectional Long Short-Term Memory
(Bi-LSTM) and Convolutional Neural Networks (CNN) to form a novel hybrid deep learning model. The model
exploits each branch’s strengths for temporal and spatial feature extraction. The Bi-LSTM branch identifies long-
term temporal relationships, such as phase transitions, in signal sequences. In contrast, the CNN branch captures
local spatial patterns like constellation structures. The proposed model outperforms baseline models—CLDNN,
CNN-GRU, ResNet-LSTM, and VTCNN2—while maintaining lower computational complexity (410,762
parameters) on the RML2016.10b dataset. It achieves a classification accuracy of 92.32% at 18 dB SNR and
performs robustly across low-to-high SNR regimes. These results reveal its potential for deployment in real-time
wireless scenarios that are both noisy and dynamic.
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1. INTRODUCTION

The growing need for reliable and effective information transfer has led to significant advancements in wireless
communications in recent years. However, identifying and categorizing signal modulation techniques is becoming
more difficult as transmitted data volumes and complexities grow. Automatic Modulation Classification (AMC)
is a crucial technique that enables communication systems to recognize various modulation patterns without
knowing the sent data in advance. Applications such as spectrum management, cognitive radio, and improving
communication network effectiveness require this capability. AMC provides vital modulation information,
especially when there is no prior signal knowledge and the situation is non-cooperative. It is the first step needed
for successful demodulation of received signals [1]. The problem becomes worse in military communication,
where engineers work in extremely crowded electromagnetic conditions. Friendly signals must be reliably
broadcast and received. Hostile signals must be identified, categorized, and blocked. These signals employ a broad
range of modulation formats, from basic narrowband schemes to sophisticated wideband systems, and can span
frequencies from high-frequency (HF) bands to millimeter-wave (mm-wave) bands. Thus, blind detection of the
modulation format continues to be a major challenge in both commercial and military applications. To ensure safe
and effective communication in these situations, complex real-time signal detection and processing techniques
are needed [2].

The two primary categories of traditional AMC algorithms are likelihood-based (LB) and feature-based (FB)
techniques. In general, likelihood-based techniques can be classified into the maximal likelihood (ML) theory.
Tests of hybrid likelihood ratio (HLRT), generalized probability ratio (GLRT), and average likelihood ratio
(ALRT). Some of them can provide a greater likelihood of successful classification, but they usually have a high
computational complexity, which prevents them from being used in some real-time applications[3].

FB methods include both feature extraction and classification. The feature extraction stage is when the
received signals' features are extracted. A suitable classifier uses the information gathered during the feature
extraction phase to categorize the different forms of modulation[4]. The most commonly used AMC features fall
into five categories: zero-crossing, statistical, transform domain, instantaneous time domain, and constellation
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shape features[5]. The most commonly used classifiers are support vector machine (SVM)[6], Decision tree

(DTs)[7], Naive Bayes[8], and Nearest neighbor[9]. Both likelihood-based and feature-based techniques have

serious drawbacks while being widely used. Although LB techniques are theoretically ideal in given channel

conditions, they are challenging for many real-time or resource-constrained applications because of their high
computational complexity and need for strong a priori knowledge. On the other hand, FB approaches mostly rely
on manually created features, which might not generalize well in various channel settings or signal situations.

Deep learning (DL) is a more effective and independent option to conventional machine learning (ML)
techniques because of its impressive capabilities in automatic feature extraction and decision-making. Radio
modulation categorization has seen a rise in the use of DL techniques in recent years, since they have demonstrated
greater performance in a variety of communication contexts.[1]. DL models that are most frequently employed
include Deep Neural Network (DNN), Convolutional Neural Network (CNN), Recurrent Neural Network (RNN),
and Long Short-Term Memory (LSTM). Additionally, certain hybrid DL models exist.

To capitalize on the complementary advantages of both temporal and spatial feature learning, we suggest an
effective hybrid deep learning model for AMC that combines CNN and Bidirectional LSTM (Bi-LSTM). From
raw I/Q samples or time-frequency representations, the CNN branch retrieves local spatial patterns (such as
constellation structures or amplitude changes), whereas the Bi-LSTM branch records long-term temporal
dependencies (such as phase transitions or fading dynamics) across signal sequences. Even in low-SNR and non-
linear channel conditions, our model performs robust classification by hierarchically combining these features.
The main contributions of this paper can be summarized as follows:

e A novel parallel hybrid deep learning architecture that combines CNN and Bi-LSTM is proposed for efficient
AMC. Unlike conventional sequential hybrid models, the proposed structure processes spatial and temporal
features in parallel, enhancing feature diversity and learning efficiency.

e The model achieves superior classification accuracy, particularly under low SNR conditions, demonstrating
strong robustness against channel impairments.

e The proposed architecture significantly reduces model complexity and training time compared to benchmark
models such as CLDNN, GRU-CNN, ResNet-LSTM, and VTCNN?2.

o A detailed class-level evaluation is conducted to analyze the model’s performance for each modulation type,
providing deeper insights into classification behavior across different SNR ranges

2. RELATED WORK

One of the earliest important studies in the field proposed a deep neural network (DNN)-based automatic
modulation classification technique that used 21 extracted features [10]. The proposed DNN outperformed a
shallow Artificial Neural Network (ANN)-based classifier, particularly under high Doppler fading channels.
Following this, researchers focused on increasing the robustness and automation of AMC by employing deep
learning architectures. CNNs became the most widely used approach due to their ability to extract hierarchical
spatial features from time—frequency representations (e.g., spectrograms) and raw 1/Q signals. For instance, [11]
reported that CNN-based architectures achieved classification accuracies approaching 90%. Several subsequent
studies have proposed lightweight and efficient CNN designs for AMC in wireless communication systems [12]—
[15]. For example, the ResNet50-based model achieved 95% accuracy in identifying both modulation type and
signal-to-noise ratio [13]. Other works have applied denoising techniques on cyclic spectra to improve robustness
against noise, achieving reliable identification of multiple VHF modulation schemes [15].

RNN s are a family of deep learning models that utilize a hidden state to capture temporal dependencies over
time in order to handle sequential data. Because RNNs use feedback connections instead of standard feedforward
neural networks, they can remember past inputs and simulate time-varying patterns, which makes them especially
well-suited for signal processing applications like (AMC). It was first proposed by Pollack[16]. To solve the issue
of vanishing gradients, the Long Short-Term Memory (LSTM) network was created[17]. The authors in
[18]suggest an innovative and successful RNN-based AMC technique. The suggested approach outperforms the
CNN-based approach at high SNR regimes and increases recognition accuracy from 80% to 91%. Using the
LSTM, the classification accuracy is about90%][19]. For Automatic Modulation Classification (AMC), a novel
data-driven approach based on long short-term memory (LSTM) is suggested [20]. Analysis reveals that under a
range of SNR settings, from 0dB to 20dB, the suggested model produces an average classification accuracy of
about 90%.

A hybrid deep learning model is an architecture that overcomes the drawbacks of individual models by
combining two or more neural network frameworks to capitalize on their corresponding strengths. Investigation
of signal feature extraction by including recurrent, convolutional, and other types of residual layers into a deep
neural network architecture. It was determined that the optimum classification architecture was a Convolutional
Long Short-term Deep Neural Network (CLDNN), which increases accuracy by about 13.5%[21]. CNN and Gated
Recurrent Units (GRU) are combined in the hybrid network-based AMC approach[22]. This method automatically
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extracts and classifies data with different dimensionalities using several structures. On various datasets, the overall
recognition accuracy was 60.64% and 73.2%, respectively.

3.SIGNAL MODEL

The goal of AMC is to identify and classify the modulation-specific types of incoming radio signals by
analyzing and modeling their signal characteristics. The received signal (r(t)) in a typical wireless communication
system can be represented as the convolution of the sent signal (x(t)) with the channel impulse response (h(t),
distorted by additive noise (n(t) which is handled as AWGN as expressed in [2]. The mathematical expression for
this relationship is

RO=x@)*h(®)+n) &
4. PROPOSED METHODOLOGY

Based on the motivations and contributions discussed in the introduction. The proposed model shown in Fig.
1 adopts a parallel hybrid architecture that integrates two specialized feature extraction branches: a spatial feature
branch based on CNN and a temporal feature branch based on (Bi-LSTM network. Unlike conventional sequential
hybrid models, in which the output of one block is fed into the next (e.g., CNN — LSTM or LSTM — CNN), the
parallel design processes the raw 1/Q signal input simultaneously in both branches. This arrangement enables each
branch to independently learn complementary feature representations — the CNN focusing on localized spatial
correlations, and the Bi-LSTM capturing bidirectional temporal dependencies. The absence of cascading
dependency reduces the risk of information loss and ensures that both spatial and temporal patterns are preserved
in their most expressive form. After independent feature extraction, the two representations are concatenated into
a unified feature space and passed to a fully connected classification layer. The parallel approach offers several
advantages over sequential designs, including improved generalization to varying channel conditions, richer
combined feature spaces, and greater architectural flexibility for branch-specific optimization. The following
subsections describe each branch in detail.

—I Input data Ii
T [ ]

—I Concatenation Ii

I Dense (10) softmax |

Fig. 1. The proposed model architecture

4.1. The CNN Architecture Design

The spatial feature extraction branch uses a four-hierarchical, two-dimensional (CNN) to analyze 1/Q input
samples with the complex signal components represented by the shapes (2, 128, 1). The architecture is made up
of First Feature Extraction: ReLU activation and a 128-filter convolutional layer with 1x8 kernels for feature
standardization and dimensionality reduction, uses batch normalization and max pooling (2x2 window). Batch
normalization is used in the second 128-filter convolutional layer (1x8 kernels) of intermediate processing. A
transition layer employing 64 filters (1x3 kernels) and max pooling (1x2 window) comes next. Final 64-filter
convolutional layer (1x8 kernels) for feature refinement. Regularization using batch normalization and dropout
(p=0.3). To gradually change the input, the network uses: To capture both wide and tiny signal features, the kernel
sizes were carefully chosen (8 samples first, followed by 3 samples). Reducing temporal dimensions while
maintaining spatial links using pooling operations, Layers for batch normalization, and maintaining training at all
depths. Dropout layers prevent overfitting in deeper layers. For real-time processing scenarios, this architecture
was tuned to extract discriminative spatial information while preserving computational efficiency.
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Fig. 2. CNN architecture design

4.2 .BI- LSTM Architecture Design

Bi-LSTM is an advanced variant of the RNN designed to overcome the limitations of standard RNNs in
capturing long-term dependencies within sequential data. The Long Short-Term Memory (LSTM) architecture
introduces memory cells and gating mechanisms (input, forget, and output gates) that regulate the flow of
information, enabling the network to selectively retain relevant information and discard irrelevant patterns over
extended time spans.

Unlike conventional RNNs or unidirectional LSTMs, which process sequences in a single temporal direction
(forward or backward), a Bi-LSTM processes shown in fig.3 the input sequence in both forward and backward
directions simultaneously. This dual processing is achieved through two separate LSTM layers:

o The forward layer captures dependencies from past to future.
o The backward layer captures dependencies from future to past.

Each layer maintains its own hidden states and memory cells, and their outputs are typically concatenated to
form a comprehensive representation that encodes contextual information from both temporal directions. This
bidirectional structure significantly enhances the model’s ability to capture complex patterns and contextual
dependencies, making it highly effective for tasks involving sequential data, such as speech recognition, natural
language processing, and signal classification.

Output
Layer

Bidirectional
Layer

LSTM
Input
Layer

Fig. 3. Bidirectional processing

AS shown in Fig.4, A two-layer bidirectional LSTM (Bi-LSTM) architecture is used by the temporal feature
extraction branch to thoroughly examine sequential signal patterns from the (2, 128) input I/Q sequences. With
return sequences=True, the 64-unit Bi-LSTM with ReLU activation in the first layer maintains temporal
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dimensions and fully captures both forward and backward signal dependencies. A second 64-unit Bi-LSTM layer
(return_sequences=False) processes this bidirectional context and combines the temporal characteristics while
preserving the advantages of ReLU activation, which mitigates vanishing gradients. When combined, this design
captures long-range dependencies that are essential for reliable modulation classification in difficult channel
conditions and efficiently represents time-varying signal properties, like as phase transitions and frequency shifts.
Because the Bi-LSTM is bidirectional, it can analyze each time step in chronological and reverse chronological
settings. It provides a refined temporal representation that can be fused with spatial information for superior
temporal analysis.
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Fig. 4. BI- LSTM architecture design

S.EXPERIMENTAL RESULTS AND EVALUATION

5.1. Dataset and Simulation Environment

RML2016.10b is a popular wireless signal detection dataset for machine learning, especially modulation
classification. It will be used for training and testing for the proposed model. The dataset was synthetically
generated using a software-defined radio (SDR) simulation framework (GNU), which created realistic radio
signals with varying modulations and noise conditions. To simulate actual situations, the center frequency, symbol
rate, and other signal parameters were changed. Multiple SNR levels were simulated by adding AWGN (Additive
White Gaussian Noise) in 2 dB steps, ranging from -20 dB to +18 dB. All SNR levels were used to generate each
modulation in order to ensure robustness testing. These datasets were first made available[23]. These are split into
WBFM, AM-SSB, and AM-DSB for analog modulation and 8PSK, BPSK, SPFSK, GFSK, PAM4, QAM16,
QAMO64, and QPSK for digital modulation. Python 3.8 was used for all simulations and model training, together
with the TensorFlow and Keras deep learning packages. After normalizing all input signals before training, the
dataset was divided into 80% for training and 20% for testing. Key attributes of the dataset used in our tests are
compiled in Table 1. With a learning rate of 0.0001, the model was trained using the Adam optimizer. Because
the classification job involved multiple classes, categorical cross-entropy was the loss function employed. A batch
size of 64 was used for training across 30 epochs, and the accuracy metric was used to assess the model's
performance.

TABLE 1. SUMMARY OF DATASET

Attribute Description

Name RML2016.0b

Total samples 1200000

Sampling rate 1 MSps

Snr range From -20 to +18

Modulation types QPSK, PAM 4, 8PSK, BPSK, CPFSK,
BFSK QAM64, QAM16 AM-DSB, WB-
FM

Signal duration .
128 samples per signal (I/Q format)

Complex baseband I/Q samples
Data format
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5.2. Evaluation Metrics

The use of suitable assessment criteria is essential for evaluating the effectiveness of the suggested hybrid deep
learning model for AMC. These measurements aid in assessing the model's ability to successfully and accurately
distinguish between various modulation types under a range of signal situations. We can learn more about the
model's advantages, disadvantages, and effectiveness for practical application by examining its predictions with
statistical and graphical tools. This section explains the primary metrics we used in our studies and how they fit
into the process of evaluating performance.

5.2.1. Classification accuracy

The suggested Bi-LSTM and CNN-based hybrid model's classification accuracy is shown in Fig. 5 across a
broad range of Signal-to-Noise Ratio (SNR) levels, from -20 dB to +18 dB. As can be seen, the model performs
well in a range of noise scenarios. Due to the high noise level, which makes signal features harder to discern, the
classification accuracy stays very poor at very low SNR levels (e.g., —20 dB to —10 dB). Nonetheless, the accuracy
of the model greatly improves as the SNR rises. Around 8 dB, there is a clear improvement that lasts until it
saturates at +6 dB, where accuracy exceeds 90%. This pattern demonstrates the model's capacity for generalization
and high classification accuracy in settings with moderate to high SNR, which is essential for real-world wireless
communication situations. The hybrid architecture is effective in learning discriminative features across various
modulation types, even under difficult noise situations, as evidenced by the stable performance at high SNR levels.
The model performs well, reaching a peak accuracy of 92.32% at 18 dB and increasing to 87.51% at 0 dB. The
model exhibits stability and dependability in low-noise situations, maintaining a continuously high accuracy above
91% between 6 dB and 18 dB.

100
90 r -
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60
50

Accuracy (%)

30
20
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-20 -15 -10 -5 0 5 10 15 20
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Fig. 5. Classification accuracy of the proposed model

5.2.2. confusion matrix

In classification problems, the confusion matrix is a popular evaluation tool that offers a thorough analysis of
the model's prediction accuracy across many classes. In contrast to accuracy alone, which provides a broad
performance metric, the confusion matrix shows how well the classifier differentiates between different kinds of
modulation.

Fig.6 displays the confusion matrices at SNR levels of -2 dB, 0 dB, 10 dB, and 18 dB, which demonstrate the
robust classification capabilities of the suggested model under various channel conditions. For digital modulations
with distinct constellation patterns (CPFSK: 98%, GFSK: 96%, PAM4: 99%), the model performs well at -2 dB.
However, analog signals (AM-DSB: 64%, WBFM: 57%) are more difficult to handle because of noise
susceptibility. For QPSK (93% vs. 75% at -2 dB) and QAM16 (92% vs. 86%), classification accuracy greatly
improves as SNR rises to 0 dB, with misclassifications mostly happening between spectrally similar modulations
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such as QAM16/QAM64. For most digital modulations, high SNR situations (10-18 dB) exhibit near-perfect
accuracy (BPSK/CPFSK/GFSK: 99-100%, PAM4/QPSK: 99%), while results at 18 dB show remarkable
robustness (99% for 8PSK/BPSK).
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Fig. 6. Confusion matrix (a) at -2 dB, (b)at 0 dB, (c) at 10 dB, (d) at 18 dB

5.2.3. Modulation Accuracy Analysis Across SNR Levels

To better understand the model's classification performance, we separately assessed the accuracy of each type
of modulation over a broad range of SNR values, from -20 dB to 20 dB. This per-class analysis makes it possible
to comprehend each modulation scheme's response to various noise situations in greater depth. According to the
results, every type of modulation has a distinct accuracy curve that reflects the properties of the signal and the
model's capacity to distinguish between them at different SNR levels. Early convergence to high accuracy is
demonstrated by modulations like BPSK, QPSK, and GFSK, although other modulations progressively get better
as SNR rises. These curves offer a straightforward and understandable representation of the model's robustness
and sensitivity to each modulation technique separately. This method of analysis facilitates the assessment of the
system's performance both overall and class-wise, which is useful for real-world applications where some
modulation patterns could be more important or common than others. Accuracy of per-class classification for
various modulation types at varied SNR levels (ranging from -20 dB to +20 dB) is shown in Fig.7. The suggested
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hybrid Bi-LSTM and CNN model's ability to differentiate between each modulation class separately is shown in
this picture. It is clear that higher SNR values greatly increase classification accuracy.
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Fig. 7. Classification accuracy for different modulation types over varying SNR (a) 8PSK (b) AM-DSB
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5.3. Comparison with Baseline Models

The performance of the suggested hybrid deep learning model must be compared to a number of well-known

baseline models in order to show how successful it is. Four competitive and modern hybrid architectures—
CLDNN, GRU-CNN, ResNet-LSTM, and VTCNN—have been chosen for comparison in this work. These
models are frequently used in related research and have demonstrated encouraging outcomes in the field of
automated modulation classification (AMC). To guarantee a fair and consistent comparison, all models were
trained and assessed using the RadioML2016.10b dataset under the same experimental conditions.

5.3.1 Convolutional LSTM dense neural network (CLDNN)
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Recently, CLDNN was introduced, utilizing the complementary advantage of CNNs, LSTMs, and DNNs to
combine the architectures of LSTM and CNN into a deep neural network.[19] The convolutional layers with
pooling in CLDNN designs perform feature extraction and dimensionality reduction, converting the lengthy input
sequences into significantly shorter representations of high-level features. To learn long-term temporal coherence
of various modulation types, the shorter sequences are sequentially fed into later LSTM layers.[24] Fig.8illustrates
the proposed CLDNN architecture. The input signal first goes through three stacked convolutional layers, which
extract local patterns and spatial information that are essential for hierarchically differentiating modulation
schemes. An important benefit of using an LSTM layer instead of a pure CNN architecture is that it can capture
the dynamic evolution of wireless signals over time by modeling temporal relationships. Finally, the processed
spatiotemporal representations are classified via dense and output layers.
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Fig. 8. CLDNN architectures

5.3.2 Convolutional Neural Networks and Gated Recurrent Units (CNN-GRU)

A GRU is a more advanced version of an LSTM, consisting of just two gates. It uses a reset gate in place of
an output gate and merges the input and forget gates into a single update gate. Additionally, it mixes the hidden
and cell states, requiring fewer training parameters[22]. As seen in Fig. 9, the model proposed uses a hierarchical
deep learning framework that is tailored for interpreting temporal signals. Three stacked Conv2D layers make up
the first part of the architecture, which uses localized filter operations to extract spatially invariant characteristics
from the input data. The Time Distributed Flatten layer, which prepares the spatial features for recurrent
processing while maintaining the temporal sequence structure, is then applied to these convolutional outputs. The
gating methods of subsequent bidirectional GRU layers allow for the selective retention of significant signal
properties over time steps, thereby capturing long-range temporal dependencies in the data. Once the features
have been analyzed, a Dense layer with softmax activation maps them to the target classes, producing probabilistic
modulation classifications. Specifically for time-varying wireless signals under low-SNR conditions, this hybrid
design offers better performance than standalone convolutional or recurrent architectures in modulation
classification tasks by skillfully fusing the temporal modeling strengths of GRUs with the spatial feature extraction
capabilities of CNNs.
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5.3.3. Vector Temporal Convolutional Neural Network (VICNN)

A deep learning architecture called the Vector Temporal Convolutional Neural Network (VTCNN) uses
temporal convolutional layers to identify sequential correlations in time-series data and is intended for automatic
modulation classification. Unlike recurrent neural networks, VTCNN processes input data efficiently and in
parallel by modeling temporal interactions using convolutional operations. This method enhances the model's
capacity to differentiate between various modulation patterns by efficiently extracting hierarchical temporal
information from multivariate inputs. The VTCNN2 model builds on the original VTCNN and incorporates
architectural improvements to improve training efficiency and classification accuracy, such as additional
convolutional layers, different kernel sizes to capture features at different temporal scales, and optimized pooling
strategies. VTCNN2 relies only on convolutional mechanisms without recurrent layers, which allows it to achieve
faster convergence and robustness in complex or noisy signal environments, making it a good choice for real-time
communication systems. The first layer of the convolutional neural network architecture shown in Fig. 10 is an
input layer made to take in raw signal data in its original format. This is fed into two convolutional layers (Conv
Layer 1 and Conv Layer 2) that learn filter banks and gradually extract hierarchical spatial features, each of which
captures progressively more intricate patterns. As a link between the classifier components and the spatial feature
extractors, the network then uses a flatten layer to convert the two-dimensional feature maps into a one-
dimensional vector representation.

Input data

l

CONV2D(50),1%6,RELU

CONV2D(50),2*3,RELU

!

Dense(128),RELU

Output(10),Softmax

Fig. 10. VTCNN

5.3.4 ResNet and LSTM
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The approach was established in [25].To efficiently analyze time-series signal data for modulation
classification, the suggested deep learning framework integrates recurrent layers with residual convolutional
networks, as shown in Fig. 11. Two residual blocks that allow training of deeper networks through skip
connections while maintaining gradient flow come after a CNN block that extracts preliminary features from the
input tensor (2x128x1). The Time Distributed Flatten layer prepares the spatial information for sequence
processing by transforming it while preserving its temporal ordering. After that, the system uses a dual-phase
LSTM structure, with the first LSTM layer (64 units) processing the entire sequence and the second LSTM
generating the final context vector (64 units). Both short-term and long-term relationships in communication
signals are uniquely captured by this hierarchical temporal framework. In the end, the network produces
probabilities for each of the 11 modulation classes through a thick layer with softmax activation. In difficult RF
situations with time-varying signal characteristics, this hybrid architecture is especially well-suited since it
combines the complementary advantages of residual CNNs for reliable spatial feature extraction and LSTMs for
complex temporal modeling.

Input data
shape (2*128)

Residual network 1,RELU

Residual network 1,RELU

LSTM(64),RELU

LSTM(64),RELU

Output(10),SoftMax

Fig. 11. Resnet-LSTM

5.4 PERFORMANCE ANALYSIS

The performance of the suggested hybrid deep learning model is thoroughly analyzed in this part in comparison
to the chosen baseline models to fully evaluate its efficacy. The assessment centers on how well the model can
identify different types of modulation in a range of channel conditions. By examining the outcomes over a broad
range of signal-to-noise ratio (SNR) values, we hope to show how reliable and broadly applicable the suggested
design is in real-world wireless communication situations.

5.4.1 Classification Accuracy

Fig. 12 presents a comparison of classification accuracy across a range of SNR values for five models: the
proposed Bi-LSTM-CNN and four baseline hybrid models—CLDNN, CNN-GRU, ResNet-LSTM, and
VTCNN?2. According to the Fig, the suggested approach continuously performs better than the baseline models,
particularly in low and medium SNR scenarios (such as between -6 and 8 dB), where noise-induced signal
distortion is more pronounced. The accuracy of all models stabilizes at high SNR levels (over 10 dB), however,
the suggested model continues to retain the best accuracy, nearing 92.5%, while ResNet-LSTM performs at about
92% and the other models at about 86%. By zooming in on the high-SNR zone (0-20 dB), the inset subplot makes
it easier to see the small variations in model performance in low-noise settings.
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Fig.12. Classification accuracy for the suggested model and baseline models

TABLE 2. COMPARISON OF THE SUGGESTED MODEL'S CLASSIFICATION ACCURACY WITH BASELINE MODELS IN

RELATION TO SNR

SNR( dB) CNN-GRU % VTCNN2 % CLDNN % Resnet-LSTM % Proposed model %
-2 719 75.5 82 85.4 87.5

0 83.4 81.4 87 90.1 90

10 85.7 85.4 89 91.2 91.6

18 86.5 85.4 90 92 92.3

5.4.2. Model complexity

Model complexity is a crucial indicator for assessing whether deep learning models can be implemented in
practical applications, particularly on devices with limited resources. The total number of parameters for each
model under evaluation is shown in Table 2

The ResNet-LSTM model contains 770,378 parameters, whereas the VTCNN2 model has over 5.7 million,
making it the most complex model. The high number of parameters in these models is largely due to the use of
deep convolutional or residual structures. With an architecture size of roughly 624,514 parameters each, the CNN-
GRU and CLDNN models exhibit a moderate degree of complexity as a result of the integration of recurrent and
convolutional layers. The suggested BILSTM-CNN model, on the other hand, has the fewest number of
parameters (410,762), indicating its portability and potential for effective deployment in low-power or real-time
systems. These findings highlight how well the suggested model balances classification performance and
architectural simplicity, making it a solid contender for real-world implementation.

TABLE 3. MODEL COMPLEXITY AND PERFORMANCE COMPARISON

Models CNN-GRU VTCNN2 CLDNN Resnet-LSTM Proposed model
Total parameters 2,014,090 5,698,714 624,514 770,378 410,762
Epoch 15 20 20 20 30

Training time
(sec) /epoch 380 200 235 517 145
Predication time

Time(us) /sample 220 183 175 180 173
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An important consideration when assessing the effectiveness of deep learning models is training time,
particularly when deploying them in real-time or resource-constrained settings. The total amount of time needed
for each model's training under identical hardware and condition settings is shown in Table 2. According to the
results, the suggested BILSTM-CNN model successfully strikes a balance between training efficiency and
accuracy. Even though models like ResNet-LSTM and VTCNN2 have comparatively good accuracy, their
training periods were noticeably higher. The suggested model, on the other hand, showed improved classification
performance with quicker convergence and less training time.

6. CONCLUSION

The drawbacks of traditional approaches are addressed by this study's effective hybrid deep learning model for
AMC, which combines CNN and Bi-LSTM architectures. The model is very good at extracting both temporal and
spatial information from raw 1/Q signals. It is robust and has high accuracy (above 90% over 6 dB SNR), especially
under difficult low-SNR conditions. Comparative evaluation against cutting-edge baselines validates its better
scalability, performance, and computational efficiency. Hardware optimization for edge-device deployment and
adaptive architectures for new modulation methods may be the subjects of future research. Providing a viable
alternative for next-generation wireless systems, the suggested framework closes the gap between theoretical
developments in AMC and useful real-world applications.
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