Evaluation of Some Vegetable Oils Against Laboratory and Field Strains of Stored Grain Insects

By

A.A.M. Thabet

Plant Protection Department, Faculty of Agriculture, Sana'a University, Republic of Yemen

Recived 7/7/1999, Accepted 22/9/1999.

ABSTRACT

The present investigation aimed to evaluate vegtable oil of Neem, Sesame and Sunflower oils against laboratory and field strains of the adult stage of stored grain insects, Sitophilus oryza and Rhyzopertha dominica. Aliquots of these oils were added to wheat grains in acetone to provide concentration of 10, 20, 40, 80, 160, 320, 640 and 1280 ppm and then infested with 20 adults of both laboratory and field strains of S. oryza and R. dominica. Mortalities were recorded after 72 hours. Wheat grain samples with acetone only were used as a control. Percentage of mortality was corrected to the percentage of the control.

The data showed that the laboratory strains were more susceptible than the field strains. Also, Neem oil was found to be the most effective than the other tested oils to the laboratory strains of R. dominica followed by Sesame oil, Corn oil and then Sunflower oil. Moreover, Field strains of S. oryza and R. dominica were more tolerant to the tested oils than the laboratory strains. The present results show that Neem oil may prove to be very useful as a grain protectant. Such an approach would have the added advantage of minimizing the use of synthetic insecticides thereby reducing possible deleterious side effects associated with their use on stored food product.

INTRODUCTION

Wheat and sorghum are the most important cereals in the world and a major staple food in the diets of the people in Asia and Africa (ICRISAT, 1992). Insect damage in stored grains and pulses may amount to 10-40% in countries where modern storage technologies have not been introduced. Larval feeding in sorghum grains has been found to adversely affect quality of minerals (Jood et al., 1992), available carbohydrates Jood et al., 1993a), protein and starch digestibility (Jood and Kapoor, 1992), and bioavailability of proteins (Jood et al., 1993b). The measures to control pest infestation in grain and dry food products which depend heavily upon the use of various synthetic insecticides and fumigants to grain storage led to a number of environmental problems including the development of insecticide resistance in some stored grain insects (Champ and Dyte, 1976). Another concern is the accumulation of pesticide residues in treated grains (Snelson, 1987).

In the Yemen Republic, high losses of harvested cereal grain in traditional stores have occurred there losses are caused by several pests, particularly the lesser grain borer, Rhyzopertha dominica (F.), the rice weevil, Sitophilus oryza (Geisthard 1992, and AL-Kirshi et al., 1996). Thus, there is an urgent need to develop safe alternative that have the potential to replace the toxic chemicals.

Many plant species are known to possess insecticidal activity, which are frequently present in the essential oil fraction (Schmidt et al., 1991 and Shaaya et al., 1991)

The present investigation aimed to evaluate efficacy of some vegetable oils against field and laboratory strains of the adult stage of stored grain insects, Sitophilus oryza and Rhyzopertha dominica.

MATERIALS AND METHODS

A- Rearing Method for the Laboratory Strain.

Two laboratory strains of stored grains insects, S. oryza and R. dominica were reared separately in empty Jars (each glass 2L capacity) covered with muslin cloth. After two weeks, the insects were sieved out of the medium and transferred to another Jar. The insects were reared

A.A.M. Thabet.

under constant temperature $(25\pm1^{\circ}C)$ and $70\pm5\%$ R.H.). Two field strains of *S. oryza* and *R. dominica* were collected from grains stores at Taiz and Al-Hoddeida Governorate. The adult stage were used for the experimental work.

B- Bioassay Technique.

Industrially extracted oils from Sunflower, Helianthus annuus (L.), Sesame, Sesamum indicum (L.), Corn, Zea mays (L.) and Neem, Azadirachtin andica and the malathion insecticide were obtained from locally supermarkets in Yemen Republic. It was stored at 4°C. Stock solutions of the oils were prepared in dark bottles using purified acetone. Aliquots of these solutions were added to 200 grams wheat grains to provide the concentration of 10, 20, 40, 80, 160, 320, 640 and 1280 ppm. The treated wheat grains were mixed thoroughly with a glass rod and divided into 20 equal portions. Six of the portions were placed in culture tubes 30 ml capacity for studies on insect mortality. Each portion was infested with 20 adults of either laboratory or field strains of S. oryza and R. dominica.

Mortalities were recorded after 72 hours. Wheat grain samples treated with acetone were used as a control. Percentage of mortality was corrected to the percentage of the control (Abbott, 1925). The LC₅₀ values expressed as part per million (ppm) were determined directly from the log-concentration mortality regression line. Slope and confidence of LC₅₀'s were calculated according to Finney, (1925).

RESULTS AND DISCUSSION

The insecticidal activities of the tested plants oils against laboratory strain of adult stage of S. oryza and R. dominica are illustrated in Table 1. The data show that the laboratory strains were more susceptible than the field strains. Also, Neem oil was found to be the most effective than the other tested oils to the laboratory strains of R. dominica followed by Sesame oil, Corn oil and then Sunflower oil. The LC₅₀ values were 11.89, 32.13, 53.34 and 192. 95 ppm, respectively, while the laboratory strains of S. oryza were more tolerant than R.

Table 1: Activity of Plant Oils to The Field and Laboratory Strains of Adult Stage of S. oryza and R. dominica.

		R. dominica			S. oryza		
Source of Oils	Time (hr) post treatment	LC ₅₀ * Slope (ppm) Confidence Limits			LC ₅₀ * Slope (ppm) Confidence Limits		
Neem Oil	72	11.89	8.19- 17.44	3.49	19.76	12.86- 30.11	3.78
Sesame Oil	72	32.13	12.73- 68.14	3.14	49.26	28.22- 105.1	2.81
Corn Oil	72	53.34	42.47- 96.85	1.98	79.39	62.31- 188.1	2.00
Sunflower Oil	72	192.9	103.2- 286.1	1.79	312.1	210.2- 441.9	1.88
Malathion insecticide	72	0.09	0.04- 0.18	3.20	0.70	0.46- 1.10	1.49

^{*} Calculated from the regression equation of the data after being converted to probits according to Finney (1952)

dominica in all cases. The LC₅₀ values for the tested oils were 19.76, 49.26, 79.39 and 312.14 ppm, respectively. Field strains of *S. oryza* and *R. dominica* were more tolerant to the tested plant oils. The results are shown in Table 2. In general, the field strain of *S. oryza* was more tolerant to malathion insecticide than *R. dominica*. The LC₅₀ values were 1.91 and 1.11, respectively. On the other hand, the Neem oil was found to be effective against the adult of *R. dominica* and *S. oryza* with LC₅₀ values of 26.85 and 68.97 ppm, respectively, while Sunflower oil was the least effective one with LC₅₀ of 349.19 and 405.92 ppm, respectively.

Vegetable oils have a high level of toxicity against adult bruchids and S. oryza (Hill and Schoonhoven, 1981 and Ivijaro, 1984). The present

A.A.M. Thabet.

results show that Neem oil may prove to be very useful as a grain protectant. Currently attention is drawn to the use of Neem-based botanical insecticide because of its specific short environmental persistence and minimal hazard to non-target organisms including humans (Stark and Walter, 1995). Such an approach would have the added advantage of minimizing the use of synthetic insecticides thereby reducing possible deleterious side effects associated with their use on stored food product.

Table 2: Susceptibility of Field Strains of Adult Stage of S. oryza and R. dominica to Plant Oils.

39-33		R	. dominie	ca	S. oryza		
Source of	Time	LC ₅₀ *	Ü	Slope	LC ₅₀ *		Slope
Extract	(hr) post treatment	(ppm) Confidence Limits			(ppm) Confidence Limits		
Neem Oil	72	26.8	18.90- 39.16	2.23	68.9	40.99- 162.15	2.26
Sesame Oil	72	42.9	20.46- 59.14	3.66	79.3	62.31- 102.60	2.19
Corn Oil	72	134.2	74.64- 260.7	2.11	181.9	98.12- 210.12	2.87
Sunflower Oil	72	349.2	236.8- 502.1	2.40	405.9	299.83- 898.13	1.88
Malathion Insecticide	72	1.11	0.82- 2.00	3.27	1.91	1.12- 2.46	2.83

^{*} Calculated from the regression equation of the data after being converted to probits according to Finney (1952)

REFERENCES

Abbott, W.W. (1925). A method of computing the effectiveness of an insecticide. J. Econ. Ent. 18: 265-267.

- Al-Kirshi. A.G., H. Bochow, W. E. Burkholder and C. Reichmuth (1996).

 The biology of the perasitoid *Laelius pedatus* (Say) (Hymenoptera: Berthylidae). and its potential for the biological control of *Trogoderma granarium* (Everts) and *Trogoderma* angustum (Solier). In proceeding of the 20th International Congress of Entomology. P. 554. Florence. Italy
- Comp B.R. and C.E. Dyte (1976). Report of the F.A.O. Global Survey of Pesticide Susceptibility of Stored Grain Pests. FAO. Rant Production and Protection Series No. 5. Rome.
- Finney, D.I. (1952). Probit analysis. Statistical treatment of the sigmoid response curve. Cambridge University Press. 256 pp.
- Geisthard, M. (1992). Report on a short term inquiry concerning stored product beetles in Yemen II. Deutsche Gesellschaft für Technische Zusammenar beit (GTZ). Repert, Eschborn.
- Hill, J. M. and A. V. Schoonhoven (1981). The use of vegetable in controlling insects infestation in stored grains and pubes. Recent. Advances Food Science Technology 1: 473-481.
- I. C. R. I. S. A. T. (1992). International Crops Research Institute for the Semi-Arid Tropics. Annual Report of 1991, Patancheru. India.
- Ivbijaro M. F. (1984). Toxic effects of groundnut oil on the rice weevil Sitophilus oryzae. Insect Science and Its Application Ecology. 6 : 251-252.
- Jood S. and A.C. Kapoor (1992). Effect of storage and insect infestation on protein and starch digestibility of cereal grains. Food. Chemistry. 44: 209-212.
- Jood S.; A.C. Kapoor and R. Singh (1992). Mineral contents of cereal grains as affected by storage and insect infestation, Journal of Stored Products Research. 28: 147-152.
- Jood S.; A.C. Kapoor and R. Singh (1993a). Available carbohydrates of cereal grains as affected by storage and insect infestation. Pant Foods for Human Nutrition 43: 45-54.
- Jood S.; A.C. Kapoor and R. Singh (1993b). Biological evaluation of protein quality of sorghum as affected by insect infestation. Plant Foods for Human. Nutrition. 43: 105-114.
- Schmidt G.H.; E.M. Risha and A.K. M. Nahal (1991). Reduction of progeny of some stored-products. Coleoptera by vapous of Acorus calunus oil. J. of Stored Products Research. 27: 121-127.

A.A.M. Thabet.

- Shaaya E.; M. Kovsky and U. Ravid (1991). Essential oils and other constituents as effective furnigants against stored-product insect. I. Agresearch. 7: 133-139.
- Snelson J. T. (1987). Protectants. A.C.I.A.R. Canberra.
- Stark J.D. and J.F. Walter (1995). J. Agric. Food. Chemistry. 43: 507-512.

الملخص العربي

تقييم كفاءة بعض الزيوت النباتيه ضد السلالات المعمليه والحقليه لحشرات الحبوب المخزونه

عيد الرحمن على محمد ثابت قسم وقاية النبات، كليه الزراعة – جامعة صنعاء الجمهوريه اليمنيه

استهدفت الدراسة الحاليه لتقييم كفاءة بعض الزيوت النباتيه ضد السلالات المعمليه والحقليه للحشرات الكامله لكل من Rhyzoperthra المسلالات المعمليه والحقليم للحشرات الكاملة لكل من الحبوب لتحضير dominica, Sitophilus oryza وقد تم خلط هذه الزيوت بالحبوب لتحضير التركيزات التاليه: ١٢٨، ٢٠، ٢٠، ١٦٠، ١٢٨، ٢٤٠، ٢٠، ٢٠، ٢٠، وضع ٢٠ حشرة كامله من السلاله المعمليه والحقليه لكل تركيز وتسم المبيل الموت بعد تصحيحها.

اوضحت النتائج ان السلالات المعمليه اكثر حساسيه عن نظيرتها الحقليه. كما وجد ان زيت النيم اكثر فعاليه عن الزيوت الاخرى ضد السلالات المعمليه من R. dominica يليه زيت السمسم ثم زيت الذره واخيرا زيت عبد الشمس.

ايضا اوضحت الدراسة ان كلا السلالات الحقليه لكلا الحشرتين اكثر تحملا للزيوت النباتيه عن السلالات المعمليه.

ويمكن القول بان زيت النيم يكون مفيد كمادة واقيه للحبوب المخزونه وبالتالى يمكن استخدام في هذا المجال لتقليل استخدام المبيدات وبيالتالى تقليل مخاطرها.