MONITORING OF RESISTANCE IN FOUR FIELD STRAINS OF <u>CULEX PIPIENS</u> USING BIOASSAY AND AGAR GEL ELECTROPHORESIS TECHNIQUES.

M. MOURAD* FATHIA I. MOUSTAFA, AND M.S. SHAWIR

* Agricultural Research Center, Centeral Pesticide Lab. Sabahia. Alexandria. Division of Pesticides, Plant Protection Department, Faculty of Agriculture. University of Alexandria, Egypt.

Recaved 15/9/1991 Accepted 14/11/1991.

ABSTRACT

A survey of the susceptibility level in larvae of <u>Culex pipiens</u> conducted at four areas representing the Alexandria governorate. namely Abou-Ker, El-Amria, Moharram-Bey and Sidi-Bishr. The standard bioassey technique of the WHO was used in larvae treatments to the development of resistance follow phenomenon. The susceptibility levels for ten insecticides representing the main groups of insecticides are fluctuated around increasing or decreasing with no sing of resistance. The susceptibility level showed that two out the four localities revealed tolerance malathion and the most tolerant population was Sidi-Bisher followed with Abou-Ker. Likewise tolerance to fenitrothion. carbaryl and methomyl was observed ·in two strains (Moharram-Bey and Sidi-Bisher). Sidi-Bisher population is considered the most tolerant population either for organophosphates carbamates.

A Test for the determination of the esterase responsible to organophosphate resistance, in a single mosquito using agar gel electrophoresis technique showed a close correlation between the frequency of this esterase and level of tolerance in the tested strains.

INTRODUCTION

Bioassay methods are useful in monitoring resistance for many species of insect pests. Many investigators developed and used techniques based on biochemical determination of esterase in monitoring resistance for organophosphate or carbamate insecticides. Georghiou & Saito, 1983 and Moustafa & Abdel-Rahman, 1988 described a simple methods to detect insect resistance to organophosphate insecticides by examining insect esterase activity. Devonshir et al. 1988 used the immunological technique to detect insecticide resistance in Myzus persicase. The levels of resistance to organophosphate, carbamate and synthetic pyrethroid insecticides were reported in Anopheles albimanus and C. pipiens (Georghiou et al (1975) and El-Tarabolsy (1984)

The aim of this course of work is to evaluate the susceptibility of <u>Culex pipiens</u> field strains to certain insecticides from the three major groups: organophosphates (Op's), carbamates and synthetic pyrethroids comparing with the susceptible (laboratory) strain. The relationship between the activity of esterases and <u>C. pipiens</u> tolerance or resistance is also recorded in two collections.

MATERIALS AND METHODS

Insects

larvae of <u>Culex pipiens</u>, were collected from four regions in Alexandria Governorate (Abou-Ker, Sidi-Bishr, Moharram Bey and El-Amria). A susceptible (laboratory) strain was supplied by the high Institute of Health, Alexandria, Egypt, and considered the reference strain in toxicity and biochemical studies. The collected colonies were maintained at a constant temperature, 27 + 1°C, through out the course of this work. The larvae were reared until pupation and adult

emergence took place for maintaining the stock culture. Fourth instar larvae of the first generation was used for bioassay and adults for the biochemical studies.

Insecticides.

1) Synthetic pyrethroids.

- Cypermethrin (CCN 52), 20% E.C. was from Sumitomo Chemical Co. Japan.
- Deltamethrin (RUP 962), 2.5% E.C was obtained from Shell Co.
- Permethrin (Kail) 50% E.C. was obtained from I.C.I Co. England.
- Tetramethrin (Tetramethrin) 25% E.C. was obtained from Sumitomo Chemical.Co. (Japan).

2)Organophosphate

- Chlorpyrifos (Dursban), 48 % E.C. was obtained from Dow Chemical Co.
- Diazinon (Diazinon) 25 % E.C was obtained from Ciba Geigy Ltd. Co. Switzerland
- Fenitrothion (Sumithion) 50% E.C. was obtained from Sumitomo Chemical Co. Ltd. (Japan)
- Malathion (Malathion) 57% E.C was obtained from Cyanamid Co.(U.S.A).

Carbamates.

- Carbaryl (Sevin), 85% W.P was obtained from Union Carbide Co.(U.S.A)
- Methomyl (Lannate) 90% S.P was supplied from Du Pont Company.

Suseptibility tests

The susceptibility tests were carried out according to the method described by the WHO Expert Committee on Insecticides (1963) with slight modifications. Every concentration was replicated three times. Early fourth-instar larvae were placed in plastic cups (180 ml. capacity) containing 100 ml of tap water.

The tested insecticides were dissolved in acetone and prepared in the form of aqueous solutions containing the required concentration. Each cup received twenty five

larvae and left under laboratory conditions. The percentage mortalities were recorded twenty four hours after exposure and compared with those of controls under the same conditions. LCso values were estimated from the lines fitted on logarithemic probability paper. The slopes and confidence limits were determined statistically as discribed by Litchfield and Wilcoxon (1949).

Determination of esterase activity.

The method is based on qualitative biochemical determination of esterase activity recorded by Pasteur et al (1981), with minor modifications to suit our laboratory conditions. gm agar One and polyvinylpyrrolidon (k-90) were dissolved in 100 ml boric buffer (pH 8) and heated. This hot solution is enough to fill 2 glass plates of 17 X 20 Cm dimentions. Single adult of C. pipiens was crushed with a glass rod on glass plate in 10 ul distilled water. A strip of 8X5 mm filter paper was immersed in the resultant adult homogenate. About 50 strips of filter paper were placed on an agar plate. After 30 min. conditioning in refrigerator at 4-5°C. The agar plate was placed on the agar gel electrophoresis device for 4 hours. The strips were removed and the plate was sprayed with 1% acetone solution of the B or naphthyl acetate. The plate was incubated at 37°C for 30 min and few drops of 0.4% aqueous solution of fast blue salt B were added. determination included susceptible and field strains at the same time. Individuals whose reaction colour is purplish are considered tolerant or resistant while individuals whose reaction colour is not apparent are considered as susceptible.

RESULTS AND DISCUSSION

Susceptibility levels of <u>Culex pipiens</u> larvae from different regions in Alexandria to Certain insecticides.

The susceptibility levels of four synthetic pyrethroid, four Organophosphate and two carbamate insecticides to larvae of <u>Culex pipiens</u>, from the four regions in Alexandria were studied. Fourth larval instar was bioassayed according to the WHO method (1963). Regression lines were statistically analyzed by Litchfield and Wilcoxon method (1949) and LCso values were deduced as ug/Litre with their confidence limits and slope values.

1) Abou-Ker strain:

Toxicity of cypermethrin, deltamethrin, permethrin tetramethrin, chlorpyrifos, diazinon, fenitrothion, malathion, carbaryl and methomyl were determined by dipping method to the fourth instar larvae of susceptible and Abou-Ker field strain of <u>C. pipiens.</u> LC₅₀ values were calculated from Ld-p line. The obtained results were statistically analyzed and recorded in Table (1). Ratio of LCso values for Abou-Ker starin to susceptible one was calculated based on (F/S) ratio. The results showed that the Abou-Ker strain had slight tolerance to malathion (2.1 fold), while slightly change from susceptibility was detected for fenitrothion, deltamethrin, chlorpyrifos, carbaryl and permethrin, with tolerance ratios of 1.85, 1.65, 1.47, 1.35 and 1.17 fold, respectively. On the other hand cypermethrin, tetramethrin, diazinon and methomyl showed more efficiency to this strain with F/S ratios of 0.88, 0.88, 0.85 and 0.65 fold, respectively.

2) Sidi-Bishr strain:

Susceptibility levels of sidi-Bishr strain to the same tested insecticides were

Hoursd et al.

Table (i): Susceptibility of fourth instar larvae of <u>Culex pipiens</u> to certain insecticides.

Insecticides				Strains			
		Susceptible	<u></u>	Abou-Ker			
	LC _{so}	(Confid. limits)	Slape	LC ₅₀	(Confid. limits) Slope	Nean**F/S*
Cypermethrin	····	y is tolkinikasis				W 950	
1st collection	1.20	(1.10 - 1.30)	3.56	1.10	(0.96 - 1.25)	2.12	0.88
2nd collection	1.20	(1.13 - 1.27)	4.95	1.00	(0.88 - 1.10)	2.18	
Deltamethrin				•			
1st collection	0.26	(0.23 - 0.28)	3.32	0.29	(0.26 - 0.32)	2.32	1.65
2nd collection	0.24	(0.22 - 0.26)	4.69	0.52	(0.46 - 0.56)	2.46	
Permethrin							
1st collection	2.10	(1.90 - 2.30)	3.40	2.40	(2.02 - 2.80)	1.90	1.17
2nd collection	2.00	(1.90 - 2.10)	4.83	2.40	(2.10 - 2.70)	2.15	
Tetramethrin			46				
1st collection	11.00	(10.0 - 12.0)	3.18	11.0	(8.70 - 15.0)	2.31	0.88
2nd collection	12.00	(11.1 - 12.9)	3.78	9.0	(8.00 - 10.0)	2.50	
Chlorpyrifos							
1st collection		(4.60 - 5.40)	3.69		(4.90 - 6.30)	2.18	1.47
<u>2nd</u> collection	6.10	(5.70 - 6.60)	4.26	11.00	(9.80 -12.20)	2.60	
Diazinon			-		5 <u>0</u> 0		
1st collection		(11.0 -13.00)	3.51		(8.30 -11.00)	2.06	0.85
2nd collection	11.00	(10.2 -11.80)	4.40	10.00	(9.00 - 11.00)	2.78	
Fenitrothion							
1st collection		(18.0 -20 .00)	4.19		(20.0 -26.0)	2.31	1.85
2nd collection	20.00	(19.0 -21 .00)	4.30	49.00	(45.0 -53.0)	3.27	
Malathion							
1st collection		(70.0 -79.00)	4.50		(58.0 -117.0)	1.77	2.10
2nd collection	78.00	(73.0 -82.00)	4.92	220.00	(190.0-250.0)	2.37	
Carbaryl		/aaa .aaa s	1000 <u>1000</u> 0		1101 1011		0 924
1st collection		(930 - 1060)	4.56	1100	(850 -1180)	1.95	1.35
2nd collection	1000	(941 - 1060)	4.71	1600	(1440 -1780)	2.63	
Methomy!				71 - Tarris - 27	44. 4		
1st collection		(46.0 - 54.0)	3.61	25.0		1.96	0.65
2nd collection	40.0	(37.0 - 43.0)	4.25	32.0	(29.0 -35.0)	. 2.82	

LC_{so} for field strains

LC₅₀ for susceptible strain

F/ST

[&]quot; Mean of F/S in two collections

Table (2): Susceptibility of fourth instar larvae of <u>Culex pipiens</u> to certain insecticides.

Insecticides	• Strains										
	Нобият ан -Веу			Sidi-Bisher			E1~Amma				
	LC _{no} (Coof.limits) ug/l	Slope	Hean**F/S*	LC _{so} (Conf.limit ug/l	s) Slope	Mean F/S	LC _{no} (Conf. limits ug/l) Slope	Mean**F/		
Cypermethrin				50000							
1st collection	1.60(1.30-1.60)	2.19	1.06	1.50(1.27-1.76)	2.26	1.34	1.00(0.85-1.10)	2 02	0.92		
2nd collection	1.00(0.89-1.12)	2.40		1.70(1.50-1.90)	3.01		1.20(1.05-1.25)		0.32		
Deltamethrin	900						1.60(1.03-1.63)	2.13			
lst collection	0.24(0.29-0.28)	1.93	0.91	0.30(0.26-0.35)	1.79	1.41	3.00(0.25-0.35)	2 80	1.05		
2nd collection	0.22(0.19-0.25)	2.08		0.40(0.35-0.45)	2.14		0.23(0.20-0.26)		1.03		
Permethrin				,			***************************************	0124			
1st collection	2.80(1.70-2.30)	1.84	0.98	2.30(1.90-2.70)	1.92	1.25	2.50(2.10-3.00)	1 72	1.15		
2nd collection	2.00(1.70-2.30)	2.01		2.80(2.40-3.20)	2.27		2.20(1.90-2.50)		****		
Tetranethrin							1110(1130-1130)				
1st collection	11.00(9.40-12.30)	2.02	0.96	13.00(11.00-15.00	1 2.12	1.84	12.00(10.2-13.8)	2 28	1.05		
2nd collection	11.00(9.89-12.30)	2.47		30.0(27.00-33.00)			12.00(10.7-13.5)		1.03		
Chlarpyrifes							22.00(10.1-1515)	¢			
1st collection	5.20(4.62-5.90)	2.28	1.54	5.00(4.00-5.60)	2.39	1.12	6.90(6.00-7.90)	2 26	1.25		
2nd callection	12.50(10.0-13.3)	2.74		7.60(6.80-8.40)	2.71		6.80(6.10-7.60)		1.23		
Diazinen							0,00 (0.15-7.02)	4.32			
1st collection	9.00(7.99-10.20)	2.20	1.12	12.00(10.5-13.7)	2.12	1.18	16.0(13.7-18.5)	2.13	1.33		
2nd collection	17.00(15.4-18.7)	2.90		15.00(13.0-17.0)	2.49		15.0(13.5-16.6)	2.71			
Ferri trothi on				**************************************	.=0.00.0.00		,				
1st collection	29.00(17.88-22.40)	2.86	1.15	25.00 (22.00-28.00	2.59	2.66	25.0(22.2-27.7)	2.96	1.41		
2nd collection	25.00(23.00-27.00)	3.52		56.00(49.00-64.00	5).	-	30.0(27.0-33.0)	2.18	•		
Malathion	6.0				ā 0 kki			5.65			
1st collection	99.80(81.00-99.00)	3.05	1.63	120.0(104.0-138.0)	2.28	2.41	85.0(74-96)	2.17	1.57		
2nd collection	160.00(148.0 -172.0)	3.65		250.0(220.0-280.0)			155.0(138-174)	2.58	1101		
Carburyl				30 00 00 00 00 00 00 00 00 00 00 00 00 0				L 1.30			
1st collection	950 (860-1060)	5.58	1.08	1100 (950-1250)	2.09	1.15	700.0(615-795)	2.86	0.95		
and the second of the second o	1200 (1005-1325)	2.86		1200 (1076-1338)	2.62		200.0(1100-1300)	3.32	3.50		
Rethanyl ·						•		JIJL			
	62.00(53.00-71.30)		1.39	50.00(43.0-57.0)	2,18	1.13	65.0(56.0-75.0)	2.17	1.09		
2nd cellection	62.69(55.66-69.00)	2.48		50.00(44.0-56.0)	2.62		35.0(31.0-39.9)	2.18	1.43		

Tr/S - LCoo field strains

LCan for susceptible strain

[&]quot;"How of F/S in two collection.

also evaluated as well as in Abou-Ker strain. LCso values were calculated from Ld-p lines for susceptible strain and for Sidi-Bishr strain. The results showed that this strain had slight tolerance to malathion and fenitrothion. While tetramethrin, deltamethrin, cypermethrin, permethrin, diazinon, carbaryl methomyl and chlorpyrifos slightly changed from susceptibility. The tolerance ratios were 2.41, 2.06, 1.84, 1.41, 1.34, 1.25, 1.13, 1.18, 1.15 and 1.12 fold, respectively (Table 2).

3) Moharram-Bey strain:

Permethrin, tetramethrin and deltamethrin showed more efficiency to this Moharram-Bey strain comparing with the susceptible one, with F/S ratios of 0.98, 0.96 and 0.91 fold, respectively, while the strain had slight tolerance to the rest of tested insecticides (Table 2)

4) El-Amria Strain:

The results showed that none of the tested insecticides induced resistance or tolerance in this El-Amria strain. Cypermethrin and carbaryl were more efficient to this strain than to the susceptible one, while the strain had slight changing from susceptibility to malathion, diazinon, chlorpyrifos, permethrin, methomyl, deltamethrin and tetramethrin.

Cypermethrin, tetramethin diazinon and methomyl showed more efficiency to Abou-Ker strain comparing with the other insecticides, while Moharram-Bey strain showed slight sensitivity to permethrin, deltamethrin and tetramethrin. Cypermethrin and carbaryl showed efficiency in El-Amria strain.

The <u>Anopheles albimaus</u>, exhibited tolerance to OP's in June 1970, further collections from the same area (El-Salvador)

in February 1971, showed resistance to a variety of insecticides (Georghiou et al. 1975). Moustafa et al., 1977, investigated the levels of r sistance of S. littoralis in Alexandria vicinity from Abees and Maryute for different compounds. The two field strains showed tolerance and cross tolerance to endrin, phosvel, methyl parathion, bromophos, dichlorfos, malathion and carbaryl.

Qualitative determination of esterase activity.

Esterase activity for the adults of susceptible and four field strains of Culex pipiens was determined. The esterase activity was classified into 3 groups in account of the degree of the reaction taking part between enzyme and the substrate. These groups are (A) for no reaction; (A*) for medium intensity of the colour and (A **) for high intensity of the colour, as indicated by Georghiou and Saito (1983). Individuals whose reaction is nil are considered susceptible while individuals whose reaction is purplish are considered resistant. Table(3) presents the esterase activity Abou-Ker, Sidi-Beshr, Moharram-Bey and El-Amria strains as well as susceptible one of C. pipiens. The results showed that esterase activity in the four field strains was higher than that in the susceptible strain. Sidi-Bishr strain had higher esterase activity (54.20%) followed with Abou-Ker, Moharrm-Bey and El-Amria.

In Conclusion:

The tested strains showed more tolerant to organophosphate and carbamate insecticides comparing with synthetic pyrethroids.

There is a close correlation between the frequency of individuals which had esterase activity and the level of tolerance in the tested strains.

Table (3): Relation between activity of β-esterase and resistance in Culex pipiens adults.

Strains	No. of insect used	Activ	ity of ea	sterase A	% frequency of high activity
Susceptible	64	0.0	55.0	9.0	0.00
Abou-Ker	48	21.0	22.0	5.0	43.75
Sidi-Beshr	48 -	26.0	22.0	0.0	54.20
Moharram-Bey	48	18.0	25.0	5.0	37.50
El-Ameria	48	15.0	28.0	5.0	31 -25

A - No Activity, A" Low Esterase Activity

A" High Esterase Activity.

JPCEES. Vol:4 No:1 (1992).

The tolerant and slight tolerant in mosquito strains to some insecticides may be explained as a result of the wide application of these insecticides in agricultural areas around Alexandria, or in Alexandria city by the health officers and the inhabitants for insect-control. By-time as a results of the insecticidal pressure, the susceptibility levels of this insect has been changed and the phenomenon of tolerance and slight tolerance to certain insecticides appeared.

REFERENCES

- Devonshire, A.L., G.D. Moores and R.H. French Constant 1988. Detection of insecticide resistance by immunological estimation of carboxylesterase activity in Myzus persica (Sulzer) and cross reaction of the antiserm with Phordon humuli (Schrank) (Hemiptera: Aphididae) Bull. Ent. Res. 76: 97-107.
- El-Tarabolsy, A.F. 1984. Biochemical studies on certain mosquito species under the effect of some insecticides. ph. D. Thesis, Faculty of Agriculture, University of Alexandria.
- Georghiou, G. P.; V. Ariarathnam, M.E.
 Pasternak and C.S. Lan (1975).
 Organophosphorus multiresistance in <u>Culex</u>
 pipiens <u>quinquefasciatue</u> in California.
 J. Econ.Entomol. 68:461-465.
- Georghiou, G.P. and T. Saito. 1983. Resistance to Pesticides, Plenum Press, New York. A division of Plenus publishing corrporation, 233 spring street, New York, N. Y. 10013: pp 809.
- Litchfield, J.T. and F. Wilcoxon (1949): A simplified method of evaluating dose-effect experiment. J. Pharmacol Exp. Therap., 96:99-113.

Mourad et al.

- Moustafa, Fathia. I., A.H.El-Sebae, M.A. Mohamed and M. Zeid. 1977. Studies on resistance in Egyptian cotton leafworm, Spodoptera littoralis (Boisd)1: field resistance and cross-resistance in Alexandria vicinity in relation to esterase activity. Alex. J. Agric. Res. 25:429-434.
- Moustafa, Fathia I.; monitoring and S. Abdel-Rahman. 1988. Simple biochemical monitoning methods for resistance in individual larva of the Egyptian cotton leafworm Spodoptera littoralis. Alex. J. Exch. g (3): 275-291.
- Pasteur, N., A. Iseki and G.P. Georghiou 1981. Genetic and biochemical studies of the highly active esterases A and B associated with organophosphate resistance in mosquitoes of the Culex pipiens complex. Biochemical Genetics. 19: 909-919.
- WHO, 1963. Insecticide resistance and vector control 13th report of the WHO expert committee on insecticides. Wld. Hlt. Org., Tech. Rep. Ser. No. 265.

JPC&ES. Vol:4 Bo:1 (1992)

الملخص|لعاربى مستنه

رصد المقاومة في ارسع سلالات حقلية من بعوضة الكيولكسيبنز باستخدام طريقتي التقيم الحيوى والسهجرة الكهربيسة

تم جصر مستوى الحساسية لبرقات البعود من النوع كيولكس ببنز والتى جمعت من السع مناطى تمثل محافظة الاسكندرية وهي ابو قبر والعامرية ومحرم بك وسيدى بشر واستخدمت طريقة التقيم الخيوى الموصى بها من منظمة الصحة العالمية لمعاملة البرقات، وذلك لدراسة تطور ظاهرة المقاومة بها •

وقد اظهرت النتائج تذبذ بمستویات الحساسیة لعشرة مبید ات حشریة ممثلة لمجامیع المبید ات الحشریة الرئیسیة ولم تظهر ای سلالات مقاومة لهذه المبید ات ابید ات ابید ات ابید المجامیع الطهرت سلالتبن من الاربعة سلالات المختبرة تحملا لمبید الملاثیون وکانت اکشسسر السلالات تحملا هی سلالة سیدی بشریلیها سلالة ابو قبر وبالمثل اظهرت سلالستی محرم بك وسیدی بشر تحملا لكل كن مبید الفنتروئیون والكارباریل والمیشومیل و المیشومیل و الکارباریل والمیشومیل و المیشومیل و الکارباریل والمیشومیل و المیشومیل و المیل و المیشومیل و المیشومیل و المیشومیل و المیل و المیشومیل و المیل و المیل و المیشومیل و المیشومیل و المیل و المیشومیل و المیل و

ويمكن القون بان سلالة سيدى بشركانت اكثر السلالات تحملا لمبيدات الغوسفور
العضوية والكاربامات وتم تقدير نشاط انزيمات الاستبراد المسئولة عن المقسساومة
لمبيدات الغوسفور العضوية في اليرقات الغردية باستخدام طريقة الهجرة الكهربيسة
وكانت هناك علاقة ارتباط بين نشاط الاستبريز ومستوى التحمل في الملالات المختبرة و