

International Journal of Comprehensive Veterinary Research

Article:

Investigating Vibrio harveyi infections in Siganus rivulatus and Rhabdosargus haffara from the Red Sea, Hurghada, Egypt

Mohamed Abd El-Aziz Ahmed Abd El-Galil^{1*}, Mahmoud Abdel Rahman Mohamed Abdellah², Mahmoud Hashem Mohamed³, Fatma Abdel-Moghny Salem Mohamed⁴.

¹Fish Diseases and Management Department, Faculty of Veterinary Medicine, Sohag University, Egypt, ² Fish Diseases Lab., National Institute of Oceanography and Fisheries, Hurghada, ³ Fish Diseases Dept., Faculty of Veterinary Medicine, New Valley University, ⁴ Fish Diseases Lab., National Institute of Oceanography and Fisheries, Egypt.

Received: 16 January 2025; Accepted: 11 February 2025; Published: 26 October 2025

Abstract

This study investigated the prevalence of *Vibrio harveyi* infections in two marine fish species, *Siganus rivulatus* and *Rhabdosargus haffara*. The overall infection rate among the sampled fish was 11.23%. A significantly higher prevalence was observed in *R. haffara* (64.52%) compared to *S. rivulatus* (35.48%). These findings identify *V. harveyi* as a notable pathogen impacting both species, with *R. haffara* showing greater susceptibility. The identification of *V. harveyi* was conducted through morpho-chemical tests and experimental infection trials demonstrated its pathogenicity in both species with greater pathogenicity to *R. haffara* (70% mortality rate) in comparison with *S. rivulatus* (50% mortality rate). The histopathological examination of specimens from infected *S. rivulatus* revealed distinct changes in the tissue structure of the liver and kidney. The antimicrobial sensitivity test revealed that *V. harveyi* was highly sensitive to chloramphenicol, with additional sensitivity observed for tetracycline, ciprofloxacin, and ofloxacin. This underscores the critical need for monitoring and managing *Vibrio* infections to safeguard marine fish health and support sustainability in aquaculture industry.

Keywords: Isolation, Red Sea, Rhabdosargus haffara, Siganus rivulatus, Vibrio harveyi.

Introduction

he Red Sea is widely recognized as a biodiversity hotspot, supporting unique ecosystems that sustain a diverse range of marine life, including numerous fish species [1]. It plays a vital role in regional economic activities such as fisheries and tourism, which provide essential livelihoods for local communities and make substantial contributions to regional economies [2].

Rabbitfish, also known as spinefoot, are a notable group of marine fish species within the *Siganidae* family [3]. Among these, *S. rivulatus* holds considerable economic importance in the Eastern Mediterranean, Red Sea, and

Arabian Gulf due to its increasing demand, making it highly valuable to fishermen [4]. In the Egyptian Red Sea, *S. rivulatus* is one of four species from the *Siganidae* family, prized for its commercial potential in intensive aquaculture. It is a popular seafood choice known for its excellent taste, availability, and affordability [5].

Rhabdosargus haffara, a tropical fish native to the western Indian Ocean and the Red Sea, is particularly abundant in the northern Red Sea region. This species is commonly found in shallow waters, including coral reefs and sandy or muddy seabeds [6]. It is an essential part of the Sparidae family's catch in the Egyptian Red Sea, where it is heavily exploited for commercial purposes and serves

*Corresponding author: Mohamed Abd El-Aziz Ahmed Abd El-Galil, Email: mohamed.abdelaziz@vet.sohag.edu.eg, Address: Fish Diseases and Management Department, Faculty of Veterinary Medicine, Sohag University, Egypt.

as a key target for small-scale fisheries and trawling operations [7].

Vibriosis, caused by various *Vibrio* species, is a significant bacterial disease that poses a serious threat to marine aquaculture globally. Its high prevalence, the involvement of multiple *Vibrio* species, and its economic and public health consequences make it a major challenge for aquaculture systems [8].

Chloramphenicol (CAP) is a broad-spectrum antibiotic which makes it widely used in aquaculture practices [9]. Tetracyclines also is a significant class of antibiotics characterized by broad-spectrum activity against a wide range of bacteria, clinical safety and generally favourable tolerability [10]. However, their extensive use in agriculture, often in quantities greater than other antibiotic classes, has led to concerns about the spread of resistance genes [11].

This study focuses on assessing the prevalence and impacts of *V. harveyi* infections in *S. rivulatus* and *R. haffara* within the Red Sea.

Materials and Methods

Ethics Statement

This study adhered to the principles outlined in the Declaration of Helsinki and was approved by the Research Ethics Committee of the Faculty of Veterinary Medicine at Sohag University, Egypt (Soh.un.vet/00080 R).

Study Location and Fish Sampling

During the period from April to June 2021, a total of 276 wild *S. rivulatus* and *R. haffara* (138 fish per species) with an average body weight of 90 ± 10 grams were collected. The fish were transported to the wet laboratory of the Fish Diseases Unit at Hurghada branch of the National Institute of Oceanography and Fisheries (NIOF), where clinical and bacteriological examinations were performed.

Fish for Pathogenicity Testing

In a subsequent study conducted from April to June 2022, 50 apparently healthy individuals of each species (S. rivulatus and R. haffara) with an average weight of 75 ± 10 grams were collected. These fish were acclimated for three weeks before being used in pathogenicity tests.

Aquaria

Glass aquaria (40 x 40 x 100 cm) filled with seawater and supplied with air supply systems were used throughout the study.

Methods

Clinical and Post-Mortem Examination

Fish were clinically examined for external abnormalities following the methods of [12]. Prior to dissection, live fish were euthanized using MS222 (Sigma-Aldrich) in accordance with [13]. Post-mortem examinations were conducted to assess internal changes, following the protocols of [14].

Bacterial Isolation and Biochemical Identification

Samples from the liver, kidney, and spleen of examined fish were aseptically collected and inoculated onto Tryptic Soy Agar (TSA) supplemented with 1.5% NaCl. The cultures were incubated at 28°C for 48 hours [15]. Pure bacterial colonies were isolated through repeated streaking and identified based on morpho-chemical characterization as described by [14,16].

Pathogenicity Test

A total of 50 *R. haffara* and 50 *S. rivulatus* were divided into five groups (10 fish per group):

- 1. Negative Control Group: Untreated fish.
- 2.**Sham Control Group**: Fish injected intraperitoneally (I/P) with 0.1 mL of sterile saline.
- 3.**Challenged Groups**: Fish were divided into three replicates, then I/P injected with 0.1 mL of 0.5 MCF *V. harveyi* bacterial suspension.

Fish were closely monitored for 14 days to record clinical signs, behavioral changes, and average mortality rates [17].

Antibiotic Sensitivity Test

The antibiotic sensitivity pattern of V. harveyi was assessed using commercially available antibiotic discs. The concentrations of antibiotics tested were as follows: tetracycline (30 μ g), ofloxacin (5 μ g), ciprofloxacin (5 μ g), chloramphenicol (30 μ g), erythromycin (15 μ g), cefotaxime (30 μ g), oxolinic acid (2 μ g), cephalothin (30 μ g), gentamicin (10 μ g), amikacin (30 μ g), and streptomycin (10 μ g). The analysis was conducted *in vitro* using the Kirby-Bauer standardized agar disc-diffusion method, as described by [18].

Histopathological Examination

At the conclusion of the experiment, tissue specimens from the liver and kidney of infected fish that survived the challenge were collected. Samples were preserved in 10% neutral buffered formalin (NBF) and processed for histopathological analysis following [19].

Results

Prevalence of infection

None of the examined fish displayed any external abnormalities or internal changes. Isolation results indicated that the overall prevalence of *Vibrio harveyi* infections across all examined fishes was 11.23% (**Table 1**). However, the prevalence varied between species, with *R. haffara* showing a significant higher prevalence of 64.52%, compared to 35.48% in *S. rivulatus* (**Table 1**). Furthermore, organ-specific susceptibility to *V. harveyi* varied, with the liver being the most affected (51.61%), followed by the spleen (35.48%), and the kidney showing the lowest susceptibility (12.91%) (**Table 2**).

Bacterial isolation and Biochemical identification

On Tryptone Soy Agar (TSA), the bacterial isolates produced round, smooth, creamy-colored colonies that adhered firmly to the medium. When cultured on Thiosulfate-Citrate-Bile Salts-Sucrose (TCBS) agar, the colonies appeared yellow. The isolates were identified as Gram-negative rods and exhibited distinct biochemical characteristics, as summarized in Table (3).

Pathogenicity test

Siganus rivulatus, experimentally infected with *V. harveyi*

The experimental infection of *S. rivulatus* with 0.1 mL of a 0.5 MCF suspension of *V. harveyi* resulted in an average mortality rate of 50%. Infected fish displayed notable clinical signs, including lethargy, diminished appetite and head, and mouth ulceration. *V. harveyi* was successfully reisolated and identified from the internal organs of the deceased fish, confirming its involvement in the observed mortality (**Table 4**).

Rhabdosargus haffara, experimentally infected with V. harveyi

The experimental infection of *R. haffara* via I/P injection of 0.1 mL of a 0.5 MCF *V. harveyi* suspension resulted in a notable average mortality rate of 70%. Affected fish displayed various clinical signs, including lethargy, reduced appetite, scale loss and tail rot. *V. harveyi* was successfully reisolated and identified from the internal organs of the experimentally infected fish (**Table 5** and **Figure 2**).

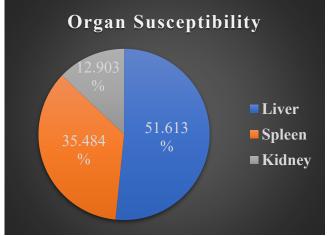


Figure 1: illustrates the organ susceptibility of the examined fish to V. harveyi infection.

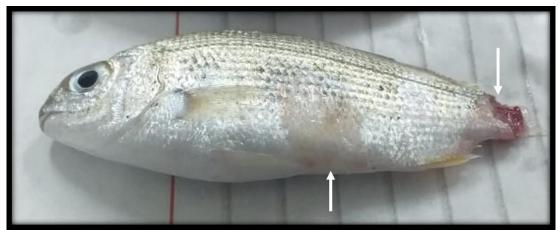


Figure 2: shows R. haffara experimentally infected with V. harveyi exhibiting scale loss (upward arrow) and tail rot (downward arrow)

Antibiotic Sensitivity Test

Vibrio harveyi was highly sensitive to Chloramphenicol, sensitive to Tetracycline, Ciprofloxacin, and Ofloxacin, with medium resistance to Erythromycin, while it was resistant to Cefotaxime, Cephalothin, Amikacin, Oxolinic acid, Streptomycin, and Gentamycin (Table 6).

Histopathology

The histopathological examination of kidney tissue from *S. rivulatus* experimentally infected with *V. harveyi* revealed hydropic degeneration in the collecting tubules, accompanied by intense inflammatory cell infiltration, glomerular atrophy, melano-macrophage centers, hyperplasia, and significant hematopoietic tissue. In the liver tissue, dilated and congested portal venules was observed alongside with thick-walled dilated bile ductules (Figures 3 and 4).

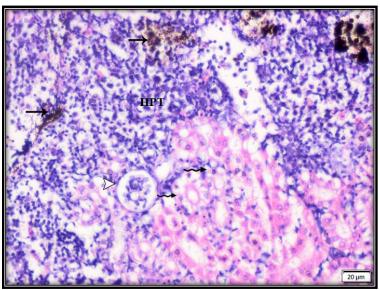


Figure 3: shows kidney tissue structure from S. rivulatus infected with V. harveyi stained with HE stain exhibiting atrophy glomerulus (arrowheads), hydropic degeneration in collecting tubules with intense inflammatory cellular infiltration (zigzag arrows), melanomacrophage centrals (arrows), hyperplasia and intense hematopoietic tissue (HPT).

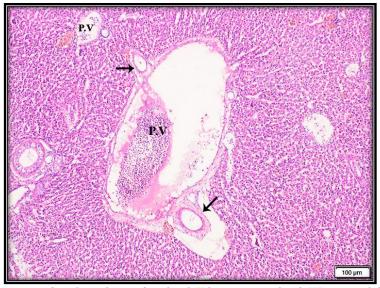


Figure 4: shows liver tissue structure from S. rivulatus infected with V. harveyi stained with HE stains exhibiting dilated and congested portal venules (P.V), thick-walled dilated bile ductulus (arrows)

Table 1 : Prevalence of V. harveyi infection

				Fish species					
Vibrio	No. of examined	No. of	Prevalence	S. rivulatus		R. haffara			
species	fishes	isolates		No. of		No. of			
-					Prevalence		Prevalence		
				isolates		isolates			
V. harveyi	276	31	11.23%	11	35.48%	20	64.52%		

Table 2: Organ susceptibility to V. harveyi

Total No. of	Liver		Spleen		Kidney	
V. harveyi isolates	No. of isolates	%	No. of isolates	%	No. of isolates	%
31	16	51.613	11	35.484	4	12.903

Table 3: Morpho-chemical tests results for V. harveyi identification

Tes	st	V. harveyi
	Growth on TSA	Round, smooth, creamy colored colonies adhered to the media
Colony morphology	Growth on TCBS	Yellow colonies
Gram	stain	Negative, Rod-shaped
КОН	3%	+
Oxid	ase	+
Catal	lase	+
Moti	lity	+
	0%	-
	2%	+
	4%	+
Growth at (Nacl%)	6%	+
	8%	-
	10%	-
Indole prod	uction test	+
Methyl-1	red test	+
Voges-Pros	kauer test	-
Citrate utili	zation test	+
Vibriostat	ic O/129	+

Table 4: Mortality rate of S. rivulatus experimentally infected with V. harveyi

Idiom	Dead fish per day								Total challenged fish	Total mortalities	Mortality rate
Day	1 st	2 nd	3 rd	4 th	5 th	6 th	7 th	8 th to 14 th	10 fish	5	50%
S. rivulatus	0	0	2	1	1	0	1	0			

Table 5: Mortality rate of R. haffara experimentally infected with V. harveyi

Idiom	Dead fish per day								Total challenged fish	Total mortalities	Mortality rate
Days	1 st	2 nd	3 rd	4 th	5 th	6 th	7 th	8 th to 14 th			
R.	0	1	2	2	1	0	1	0	10 fish	7	70%
Haffara	Ü	•	_	-	1	Ü	•	Ü			

Table 6: Antibiotic sensitivity test of V. harveyi

	Antibiotic					
Name and code	Conc. (mcg)/ disc	Stand	lard zone	(mm.)	Inhibition zones of V. harveyi	Interpretation
Traine and code	cone. (meg)/ uise	S	M	R		
Chloramphenicol (C)	30	≥18	13-17	≤ 12	44 mm	S
Tetracycline (TE)	30	≥15	12-14	≤ 11	22 mm	S
Ofloxacin (O)	5	≥16	13-15	≤ 12	20 mm	S
Ciprofloxacin (CIP)	5	≥21	16-20	≤ 15	25 mm	S
Erythromycin (E)	15	≥23	14-22	≤ 13	22 mm	M
Gentamycin (CN)	10	≥15	13-14	≤ 12	11 mm	R
Streptomycin (S)	10	≥15	12-14	≤ 11	10 mm	R
Oxolinic acid (OA)	2	≥37	29-36	≤ 28	17 mm	R
Amikacin (AK)	30	≥17	15-16	≤ 14	2 mm	R
Cephalothin (KF)	30	≥18	15-17	≤ 14	0 mm	R
Cefotaxime (CTX)	30	≥26	23-25	≤ 22	0 mm	R

Discussion

Among bacterial diseases affecting fish, *Vibrio* species belong to the leading contributors to economic losses in aquaculture. These bacteria are naturally found in marine environments, and outbreaks are frequently triggered by stress factors that compromise the fish health and facilitate bacterial proliferation [20]. Stressors associated with *Vibrio* outbreaks include poor water

quality, inadequate nutrient levels, and excessive stocking densities, all of which can increase bacterial loads on fish surfaces [21].

This study reveals that *S. rivulatus* exhibits a lower susceptibility (35.48%) to *V. harveyi* infection compared to *R. haffara* (64.52%). These findings are consistent with previous research by [22], who reported a 22.5% infection rate in *S. rivulatus*, and are comparable to [23],

who observed a 36.7% infection rate in *R. haffara*. The reduced susceptibility in *S. rivulatus* may be attributed to its more robust immune defenses. For instance, [24] highlighted elevated phagocytic and lysozyme activity in *S. rivulatus*, while [25] noted lower tissue iron concentrations in this species. Since iron is essential for bacterial growth [26]. The reduced iron levels in *S. rivulatus* tissues may inhibit bacterial proliferation. These results underscore the importance of species-specific physiological and immune factors in influencing the prevalence of *Vibrio* infections in marine fish populations.

Analysis of organ-specific susceptibility to *V. harveyi* revealed a significant presence in the liver (51.61%), followed by the spleen (35.48%) and kidney (12.91%). This pattern aligns with [27], who identified the liver as the primary site for *Vibrio* colonization, with subsequent involvement of the spleen and kidney. The liver's heightened vulnerability is likely due to its high iron content, which supports bacterial growth [25,28]. This organ-specific susceptibility highlights the role of iron availability and other tissue-specific factors in bacterial colonization and infection dynamics.

Vibrio harveyi demonstrated high sensitivity to Chloramphenicol, sensitivity Tetracycline, to Ciprofloxacin, and Ofloxacin, and intermediate resistance to Erythromycin while it was resistant to Cefotaxime, Cephalothin, Amikacin, Oxolinic acid, Streptomycin, and Gentamycin. These results agreed with the research conducted by [15,29] both of which reported V. harveyi sensitivity to Chloramphenicol and Ciprofloxacin. This alignment across studies highlights the importance of these antibiotics in controlling Vibrio infections while underscoring the specific resistances that may pose challenges in treatment efforts of these infections. Continuous monitoring of antibiotic susceptibility is essential for effective therapeutic programs in aquaculture settings to mitigate the impacts of V. harveyi on marine fish health.

Experimental infection of S. rivulatus with V. harveyi resulted in observable clinical signs, including lethargy, diminished appetite and head, and mouth ulceration, with an average mortality rate of 50%. Our observations are consistent with those of [22], who recorded similar findings on S. rivulatus infected with vibrio. In contrast, R. haffara displayed higher susceptibility, when infected with V. harveyi, the fish exhibited lethargy, reduced appetite with scale loss with extensive haemorrhages and tail rot leading to a 70% average mortality rate which is close to 80% mortality recorded by [23] in R. haffara. These findings highlight the species-specific

susceptibility of the fish to *Vibrio* infections, indicating *R. haffara* with a higher degree of vulnerability than *S. rivulatus*. The varying clinical responses and mortality rates suggest differences in immune response mechanisms, habitat conditions, and adaptive strategies between the two species, which play a crucial role in their ability to withstand *Vibrio* infections [23,25].

Histopathological examination of S. rivulatus infected with V. harveyi revealed distinct pathological changes in kidney and liver tissues. Kidney alterations included glomerular atrophy, hydropic degeneration in collecting tubules, the presence of melano-macrophage centers, dense inflammatory cell infiltration, hyperplasia, and intense hematopoietic activity. Liver tissue exhibited dilated and congested portal venules and thick-walled dilated bile ductulus. These observations are consistent with previous studies, such as [30,31], which documented similar inflammatory responses in fish infected with Vibrio species. Furthermore, [32] reported hepatocyte necrosis and the presence of melano-macrophage centers in infected fish. Reports by [30,31,33,34] also described glomerulonephritis, tubular degeneration, and leukocyte infiltration in the kidneys of fish infected with V. harveyi. These consistent histopathological changes underscore the severe pathogenic impact of Vibrio infections in marine fish, characterized by significant tissue damage and inflammatory responses.

Conclusion

This study underscores the important role of *V. harveyi* as an opportunistic pathogen in marine ecosystems. The bacterium was identified through morphological and chemical characterization. The findings reveal a high prevalence of infections among the examined fish species and confirm the septicemic nature of *V. harveyi* infection. The results underscore the urgent need for effective monitoring and management strategies to mitigate the impacts of *V. harveyi* on marine fish population.

Conflict of interest

The authors declare that they have no conflict of interest.

Author's contributions:

M.AA.A., M.A.M.A., and M.H.M. involved in the conception of the idea experiments and methodology design, performed data analysis and interpretation. M.AA.A., M.A.M.A. and F.A.S contributed their scientific advice, prepared the manuscript for publication and revision. All authors read and approved the final manuscript.

References

- Rasul, N., Stewart, I., and Nawab, Z. (2015).
 Introduction to the Red Sea: Its origin, structure, and environment. Springer. https://doi.org/10.1007/978-3-662-45201-1 1.
- Al-Misned, F. A., Al-Bailey, S. M., and Al-Dhufairi, H. M. (2021). Economic significance of Red Sea fisheries and tourism. *Journal of Marine Economics*, 14(1), 22-39.
- 3. Ghanawi, J., Saoud, I.P. and Shalaby, S.M. (2010).Effect of size sorting on growth performance of juvenile spinefoot rabbitfish, Siganus rivulatus. Journal ofthe World Aquaculture Society, 41(4).
- 4. Deniz, H. (2000). Marine aquaculture in Turkey and potential finfish species. Cahiers Options Méditerranéennes, 47, 349–358.
 DOI.org/10.1787/20745761.
- Mehanna, S.F. and Abdallah, M. (2002).
 Population dynamics of the rabbitfish Siganus rivulatus from the Egyptian sector of the Red Sea.
 Journal of King Abdulaziz UniversityMarine Sciences, 13, 161–170.
- El-Boray, K.F. (2004). Reproductive biology and histological characters of male Rhabdosargus haffara (Teleostei, Sparidae) from Suez Bay, Red Sea. Egyptian Journal of Aquatic Research, 30(B), 226–233.
- El-Mahdy, S.M., Mehanna, S.F., Mohammad, A.S. and Osman, Y.A.A. (2021). Critical lengths and fisheries management of Rhabdosargus haffara (Forsskål, 1775) from Hurghada fishing area, Red Sea, Egypt. Egyptian Journal of Aquatic Biology and Fisheries, 25(5), 57-67.

- **8. Toranzo, A.E., Magarinos, B. and Romalde, J.L.** (2005). A review of the main bacterial fish diseases in mariculture systems. *Aquaculture*, 246, 37–61.
- 9. Romero-Soto, I., Di, O., Leyva-Soto, L., Drogui, P., Buelna, G., Díaz, L., Ulloa-Mercado, R., & Gortáres-Moroyoqui, P. (2018). Degradation of synthetic chloramphenicol in and aquaculture wastewater using electrooxidation. Journal Environment Quality, 47(1), Article 10.2134/jeq2017.12.0475. https://doi.org/10.2134/jeq2017.12.0475.
- 10. Grossman, T.H. (2016). Tetracycline antibiotics and resistance. Cold Spring Harbor Perspectives in Medicine, 6, a025387.
- 11. Granados-Chinchilla, F. C. and Rodríguez, (2017). Tetracyclines in food and feeding stuffs: From regulation to analytical methods, bacterial resistance, environmental and health and implications. Journal of Analytical Methods in Chemistry, 2017, 2017:1315497. DOI: 10.1155/2017/1315497.
- **12. Zhang, X.H., Austin, B., (2000).** Pathogenicity of Vibrio harveyi to salmonids *Journal of Fish Disease 23*, 93–102.
- American Veterinary Medical Association
 (2007). AVMA guidelines on euthanasia.
- 14. Austin, B. and Austin, A.D. (2012). Bacterial Fish Pathogens: Diseases of Farmed and Wild Fish. 5th ed. Chichester: WileyBlackwell.
- 15. Hashem, M. and El-Barbary, M. (2013). Vibrio harveyi infection in Arabian Surgeon fish (Acanthurus sohal) of the Red Sea at Hurghada, Egypt. Egyptian Journal of Aquatic Research, 39, 199–203.
- 16. Thompson, F.L., Thompson, C.C., Hoste, B., Vandemeulebroecke, K., Gullian, M., and

- **Swings, J. (2003).** Vibrio fortis sp. nov. and Vibrio hepatarius sp. nov., isolated from aquatic animals and the marine environment. *International Journal of Systematic and Evolutionary Microbiology*, 53(5), 1495–1501. https://doi.org/10.1099/ijs.0.026580.
- 17. Ranasinghe, P., Bandara, V.C., Gunasena, D.K. and Epa, U.P.K. (2024). Experimental infection and treatment of Vibrio alginolyticus and Vibrio splendidus in captivebred spotted seahorse, Hippocampus kuda larvae. *Aquaculture Studies*, 24(3), AQUAST1629. Available at: http://doi.org/10.4194/AQUAST1629.
- Hudzicki, J., (2009). Kirby-Bauer Disk Diffusion Susceptibility Test Protocol. American Society for Microbiology. https://asm.org/a/ASMScience.
- **19. Mokhtar, D. M. (2020).** Fish histology: From cells to organs. 2nd ed. Apple Academic Press.
- 20. Costinar, L., Herman, V., Pascu, C., Marcu, A.D., Marcu, A. and Faur, B. (2010). Isolation and characterization of Vibrio alginolyticus and Pasteurella species from Siberian sturgeon (Acipenser baerii) in the southwest region of Romania, Preliminary Report. Scientific Papers, 43(1), 125–127.
- 21. Haenen, O.L.M., Evans, J.J. and Berthe, F. (2013). Bacterial infections from aquatic species: Potential for and prevention of contact zoonoses. Scientific and Technical Review of the World Organisation for Animal Health, 32(2), 607–619.
- 22. Hashem, M., Khalifa, E. and El Sherry, Y.M. (2016). Detection of bacterial infections in some Red Sea fish in Hurghada. *Journal of Marine Biology and Oceanography*, 5(4).
- 23. El-Sayed, M.R., Osman, A.E., Emam, A.M., Abd El-Galil, M.A.A. and Sayed, H.H. (2021). Studies on Vibrio alginolyticus infection among some Red

- Sea fishes at Hurghada. Assiut Veterinary Medical Journal, 67(170), 37-50.
- 24. Rabiah, H., Nivin, N., Mike, O., Zeina, K. and Imad, P.S. (2014). Investigations on susceptibility of marbled rabbitfish Siganus rivulatus to various infectious marine bacteria. *Animal and Veterinary* Sciences, 2(6).
- 25. Hikal, W.M., Al Hawiti, A.K., AL Atawi, M.M.S., AlAtawi, M.M.F., Al Balawi, E.M.M., Al Balawi, R.H.M., Al Shehri, S.A.M., Al Qahttani, F.S.N., and Al Balawi, A.S.S. (2020). Determination of iron in some fish species from the Red Sea, Duba Coast, Tabuk, Saudi Arabia. International Journal of Healthcare Sciences, 7(2), 298–308. Available at: www.researchpublish.com.
- 26. Ribeiro, M. and Simões, M. (2019). Advances in the antimicrobial and therapeutic potential of siderophores. Environmental Chemistry Letters, 17, 1485–1494.
- 27. Mahmoud, M.M., Hassan, E.S., Nour El-Deen, E.A., Haridy, M., Salem, F.A.E. and Mohamed, M.A. (2017). Bacterial infections in some Red Sea fishes. Assiut Veterinary Medical Journal, 63(155), 86–93.
- 28. Eissa, I.A.M., Derwa, H.I., El-Lamei, M., Dessouki, A.A., Zaki, M.S. and El-Sheshtawy, H. (2013). Iron in water and some marine fishes in relation to vibriosis at Lake Temsah. Life Science Journal, 10(3), 25202528.
- 29. Liu, P.C., Lee, K.K., Tu, C.C. and Chen, S.N. (1997). Purification and characterization of cysteine protease produced by pathogenic luminous Vibrio harveyi. *Current Microbiology*, *35*, 32–39.
- Dong, H.T., Taengphu, S., Sangsuriya, P., Charoensapsri, W., Phiwsaiya, K., Sornwatana, T., Khunrae, P., Rattanarojpong, T. and Senapin, S. (2017). Recovery of Vibrio harveyi

from scale drop and muscle necrosis disease in farmed barramundi, Lates calcarifer in Vietnam. *Aquaculture*, 473, 89–96.

- 31. Xie, J., Bu, L., Jin, S., Wang, X., Zhao, Q., Zhou, S., and Xu, Y. (2020). Outbreak of vibriosis caused by Vibrio harveyi and Vibrio alginolyticus in farmed seahorse (Hippocampus kuda) in China. Aquaculture, 523, 735168.
- 32. Sumithra, T.G., Reshma, K.J., Anusree, V.N., Sayooj, P., Sharma, S.R.K., Suja, G., Amala, P.V., Joseph, S., and Sanil, N.K (2019). Pathological investigations of Vibrio vulnificus infection in genetically improved farmed tilapia (Oreochromis niloticus) cultured at a floating cage farm in India. Aquaculture, 511, 734217. https://doi.org/10.1016/j.aquaculture.2019.734217.
- 33. Martins, M.L., Mourino, J.L.P., Fezer, G.F., Buglione Neto, C.C., Garcia, P., Silva, B.C., Jatoba, A., and Vieira, F.N. (2010). Isolation and experimental infection with Vibrio alginolyticus in the sea horse, Hippocampus reidi Ginsburg, 1933 (Osteichthyes: Syngnathidae) in Brazil. Brazilian Journal of Biology, 70(1), 205–209. https://doi.org/10.1590/S151969842010000100028.
- 34. Rameshkumar, P., Kalidas, C., Tamilmani, G., Sakthivel, M., Nazar, A.K.A., Maharshi, V.A., Rao, K.S. and Gopakumar, G. (2014). Microbiological and histopathological investigations of Vibrio alginolyticus infection in cobia Rachycentron canadum (Linnaeus, 1766) cultured in sea cage, *Indian Journal of Fisheries*, 61, 124–127.