EFFECT OF SOME SOURCES OF POLLUTION ON TOMATO PLANTS I-Growth analyses, yield and anatomy

Ansary E. Moftah, Ahmed A. Gendy and Abd El-Halim M. Eid Dept. of Agricultural Botany, Faculty of Agric., Menoufia University, Shebin El-Kom, Egypt.

Recived 13/5/1992 Accepted 28/6/1992.

ABSTRACT

The effects of lead (0, 50, 100 and 200 ppm), dimethoate (0.0, 0.2, 0.4 and 0.8%) and sulfuric acid (0.0, 0.02, 0.04 and 0.08 N) on the growth, yield and anatomy of tomato plants were investigated.

Results showed that 200 ppm of lead decreased plant heights, root length, leaf area and the dry weights of plant organs. The high levels of lead decreased the leaf area index (LAI), the specific leaf weight (SLW) and the leaf area ratio (LAR) but the specific leaf area (SLA) was increased. Foliar spray method was more effective in causing harmful effects on the net (NAR), the relative growth rate (RGR), the relative leaf area growth rate (RLGR) and other growth parameters than soil application method. Lead treated-plants flowered earlier untreated control, but fruit yield was decreased significantly even at 100 ppm. Lead caused a decrease in the area and thickness of xylem tissues in stems. The high levels of dimethoate caused nearly a complete cessation in plant growth. LAI and SLW were decreased, while LAR dimethoate with increased were and treatments. In addition, NAR, RGR and RLGR were negatively affected. The medium and high levels of dimethoate prevented flowering and fruit production. Dimethoate reduced the area of the parenchyma tissues such as cortex and pith. Sulfuric acid caused a significant reduction in all growth parameters. The dry weights of leaves, stem and roots were reduced by all tested H₂SO₄ concentrations, at 75 days of transplanting. The effect on growth analyses was similar to that resulted from dimethoate. Soil treatment was more harmful to affect growth parameters than foliar spray. The soil application of H₂SO₄ caused an early flowering, while the foliar application delayed it. The fruit yield was decreased significantly by all acid concentrations. The high levels of H₂SO₄ ceased flowering and fruiting. A complete destruction in cortex and pith cells was observed under the high acid-levels.

INTRODUCTION

The effects of pollution on plants is very important to be investigated not only because of economic loss from damaged crops, but also because plant injury provides an indication of how pollutant materials may eventually affect human life.

Foy (1970) postulated that plants could be injured by various environmental pollutants which reduced the quantity and/or the quality of plant products. In this concern, Naegele (1974) reported that pollution effects on plant system are a function of three factors: first: the type of toxicant or pollutant and the manner in which it is presented to the plant system; second: the concentration and exposure time of pollutant; third: the genetic response of the plant system as modified by environmental influences. Further indicated that Thomas (1986) studies by pollutants are directly taken up by injured plants.

Lead is the most widespread pollutant omitted from industry, stationary combustion plants and motor vehicles. The problem in Egypt is that most industrial areas are located adjacent to cultivated lands. Moreover, traffic roads and highways are carrying a vast number of

motor vehicles running through the cultivated areas of Egypt. Consequently, there is a danger that lead uptake by plants enters human food chain. This can cause serious problems of lead toxicity to those who consume polluted food. Furthermore, with the widespread of industry and fuel combustion, lead may accumulate in the soil to the limit causing plant toxicity and vegetation damage (Kuboi et al., 1986 and Stiborova et al., 1986) and to reduce the yield of many species (Diehl et al., 1983 and Xian, 1989).

Agriculture, being the main stay of the economy in Egypt, invariably attracts the use of pesticides, which are widely used for crop protection in the region. Considerable amounts these pesticides reach irrigation of drainage water systems by spray drift, areal spraying or run-off from agricultural land. These pesticides may produce stable residues can persist or accumulate environment, and can also enter plants as a polluting chemicals in various ways. Moreover, if plant foliage sprayed with an organic pesticides, some of these compounds are absorbed into the leaves and may still be present when the crop is harvested for animal or human food. In addition, these chemicals may cause changes in fertility and hormone as well as enzyme action (Dix, 1981), and consequently, can alter the physiological processes in plants, thus affect the growth (McConnell et al., 1985 and Venkatesulu and Bhat, 1987) and yield (Hussein et al., 1975 and Sarma, 1979) of many crops.

Sulfuric acid is usually considered as a dangerous source of pollution. In this concern, SO₁ gas was referred to be an ubiquitous industrial by-product and causes a significant damage to the field crops. In addition dew and fogs may be mixed with SO₁ gas to produce a sulfuric acid that can be harmful to plant foliage and other organs (Jacobson et al., 1986 and Tomer an. Kumer, 1987). Acids were found, also, to reduce productivity of several species

(Gupta and Ghouse, 1987 and Murray and Wilson, 1988)

The widespread of pollutants in the environment made it very important to test their effects on tomato plants as one of the most important vegetable crops grown in Egypt, in an attempt to test the effect of lead, as representative of heavy metals; dimethoate [0,0-dimethyl-S-(N-methyl-carbamoyl-methyl) dithiophosphate], as a representative of insecticides used for white-fly control; and sulfuric acid (H₁SO₄), as one of the widely found acids in the environment, on the growth, anatomy, and yield of tomato plants.

MATERIALS AND METHODS

The present investigation was performed at the Agricultural Experimental Station of the Faculty of Agriculture, Menoufia University, during 1989 and 1990 summer seasons. Tomato (Lycopersicum esculentum Mill) seeds of Ace variety were used in this study. In both seasons, tomato seeds were sown on March 10th and then the 40 day old uniform-seedlings were transplanted in clay pots of 30 cm diameter. Every pot was filled with 7 Kg pure sand. The sand culture technique used in this investigation was similar to that described by Hewitt (1952). Two seedlings were transplanted in each pot.

A nutrient solution similar to that recommended by Hoagland and Arnon (1950) was used in this experiment. Each pot received 500 ml of the solution twice a week. Distilled water was used for irrigation whenever needed. Treatments were arranged in a complete randomized block design with 8 replications.

Pollutant treatments: Lead was used as lead chloride at the concentrations of 00, 50, 100 and 200 ppm. These concentrations were chosen to be near from those found in the agricultural

soils (25-100 ppm) or in the extremely polluted areas (200 ppm) as reported by Ali (1982).

Dimethoate emulsion was introduced at the concentrations of 00, 0.2, 0.4 and 0.8%. These concentrations are close to those used in Egyptian environment for controlling many kinds of insect species (Soria, 1967).

Sulfuric acid solutions at the concentrations of 0.0, 0.02, 0.04 and 0.08 N were applied. The chosen concentrations are very close to those produce pH similar to that estimated in the acid rain and collected fogs around industrial areas (Haines, 1979).

Pollutants were applied at vegetative growth stage (30 days after transplanting) in two methods, soil application with irrigation water or foliar spray. Plants in each pot were supplied with a fixed volume of the pollutant solution (20 ml).

Three plant samples were successively taken at random from every treatment, throughout the whole course of development, starting 45 days after transplanting and then, every two week intervals (i.e. 60 and 75 days after transplanting). At each sampling time, five plants were taken out carefully from the pots using a stream of water to minimize loss of root system, and were then cleaned from any adherent dirts using wet muslin cloth.

In the laboratory, plants were separated into leaves, stems and roots; and the following growth parameters were determined:
Plant height (cm), root length (cm), dry matter (g) of plant organs (70°C using a hot-air oven). The data of dry weight and leaf area were used to determine the following growth analyses:

Moftah et al.

The above analyses were determined according to Hunt (1978).

Net Assimilation Rate (NAR), Relative Growth Rate (RGR) and Relative Leaf Area Growth Rate (RLGR) were calculated according to the method of Buttery and Buzzell (1974) as follows:

NAR
$$(g/m^2/day) = \frac{(W_2-W_1)(\log_1 A_2-\log_1 A_1)}{(A_2-A_1)(t_2-t_1)}$$

RGR (mg/g/day) =
$$\frac{(\log_{\epsilon} W_1 - \log_{\epsilon} W_1)}{(t_1 - t_1)}$$

RLGR
$$(cm^2/day) = \frac{(log_i A_1 - log_i A_i)}{(t_1 - t_i)}$$

where: W_1 and W_2 are the total dry weights in grams at t_1 and t_2 (date of sampling at the first and second sampling time, respectively); A_1 and A_2 are the leaf area per plant in cm at t_1 and t_2 , respectively; e is the base of the normal logarithm (2.71828). NAR, RGR and RLGR were calculated between samples 1 and 2 (t= 15 days) and between samples 2 and 3 (t= 15 days).

Anatomical methods: Stem structure was studied at the highest concentrations of each poliutant when was added as soil application only.

Stem samples were taken at the second sampling date, 60 days after transplanting. Segments (10 mm) from the middle part of stems were killed and fixed in formaldehyde-alcoholacetic acid (FAA) solution. The segments were then washed with tap water and were dehydrated in ascending concentrations of ethyl alcohol. were then passed into increasing Samples concentrations of xylol, in absolute alcohol, and then followed by two changes of pure xylol. Infiltration began by adding some wax-shaving to the samples which were covered with xylol. After saturation, infiltration was completed in oven where pure melted wax was added. Segments were then embedded in a special wax to improve their cutting. Samples were microtomed at 15 microns. Sections were fixed to slides by means of albusol adhesive (Sass, 1951). Staining was done using sufranin light-green dye. Photomicrographs were taken by Pentacon Camera attached with a Carl Zeiss Jena Research Microscope.

All data were subjected to statistical analysis according to the procedures outlined by Snedecor and Cochran (1973). The analysis was done using a statistic computer-program (PC-STAT).

RESULTS AND DISCUSSION

Vegetative Growth: Data present in Table (1) indicated clearly that plant height, root length and leaf area were all increased gradually throughout the growing season. It was obvious that foliar application of lead and sulfuric acid was more harmful for plant height than soil ap lication method, while the reverse was true for dimethoate pollutant. The highest concentrations of all pollutants were highly serious in reducing plant height; with the

Mottab et al

								CRYS	after	trans	transplanting	Đ.						
Method of	37	9	75	5.	09	75	4.5	139	75	\$	09	75	4 5	9	5	45	99	5
application		440		100	root length	45	leaf	A.T. 0.	İ	plant	plant height	ا ا	root	root length		loaf	4 area	
	1074					1000							-	(Beason	1990)	i	į	
Control	27.5	38.5	40.3	13.7	20.2	24.5	679	836 1	1150	24.7	32.6	36.8	14.8	60	34.8	144	Ĉ.	710
Lead (ppm)											,	į		:	3 16	740	769	793
	26.3	36.5	40.2	12.5	19.3	23.7	671	828	1040	23.2	29.0	34.4	13.6	18.3	21.7	7	729	3
100	24.0	33.6	36.9	11.3	17.3	20.7	649		910	20.7	26.6	30.3	11.2	17.7	20.3	979		
toliar		7.7	37.7	13.8	19.7	24.5	699		1014	22.9	28.3	30.2	14.1	19.0	23.2	267	25	136
100	22.3	31.3	35.0	13.2	19.2	23.3	664	797	892	100	24.3	27.4	12.1	17.8	71.7	612	5	653
200	21.3	29.7	22.7	27.7	1.8	1.8	7		15	2.4	3.7	7	?	-	7	*	8	18
	2																_	
			50				É	6	. 6.3.		27.1	30.3	13.3		-	732		
7.4	22	27.6	24.5		100	20.5	463	22.5	1006	20.7	22.6	16.9	22.	12.0	12.8	673	521	362
8 .0	19.9	21.9		10.7			20	•				1	1			740		782
folier	3.6	77.7		14.3				839	1142	23.8	30.6	4.5		15.2	18.6	726	743	208
4	24.4	30.3		13.2				9 1	1106	1.17		21.4	12.4			711	6 53 86	3
0.8 1.5.1 (5%)	3.9	23.4	7.2	12.8	18.7	4.9	28	33	2	F. F.		4.9	1.2	- 1		5	. 1	
Sulfuric acid (N)	id (N)																	3
100							1000	811	1070	24.5			4.4	18.5	22.7	720	734	9
0.07	25.8	36.2	38.7	13.2	6	23.3	657	900	1042	23.4	200	25.0	12.6			71.	86	657
0.08	24.8								•							74		8763
foliar 0.02	27.2								1143	25.0						134	742	675
0.0	24.3	35.0	7.75	12.7	17.3	20.5	654	779	60.0	77	29.5	30.7	13.0	16.6	19.4	, m		-80
1. S. D. (58)	m								7.7	1				. 1	80		l	۱

Control values were used for all pollutant treatments.

-H -

JFCEES Vol.4 No.2 (1992)

observation that dimethoate was more deleterious than other pollutants. The effect of those pollutants in reducing plant height might be due to its effect on the activity of the top meristim and consequently, retardation of the vertical expansion and longitudinal growth. Similar results were obtained by Ali (1982) for lead, Schuster (1978) for dimethoate and Tomer and Kumer (1987) for acids.

The same Table showed that root length was affected seriously by all pollution sources during the growth period of both seasons. In this concern, soil pollution was more effective than foliar treatments. It was, generally, obvious that the highest concentrations were more harmful for root length than other levels. clear that dimethoate treatments, particularly as soil application, was the most harmful pollutant as compared with others. Stiborova et al. (1986) found that the high levels of lead were toxic to the meristimatic regions of barely roots, thus retarded their growth and distribution. The negative effect of dimethoate on root growth might be attributed to the inhibitory effect on the vegetative growth, thus reduction in the nutrient supply to other plant organs might occur (McConnell et al., 1985). The deleterious effects of acids on root development were reported by Tomer and Kumer (1987).

It was clear that the middle and high levels of lead significantly decreased the leaf In this respect, foliar (Table 1). harmful than more was application pollution. These findings were in full agreement with those obtained by Bazzaz et al. (1975). affected, acid sulfuric and Dimethoate similarly, the leaf area/plant; in this concern, the highest concentration of both pollutants reduced significantly the area of the leaves. The soil apply ation of either chemical was more harmful than the foliar spray treatments.

Moftah et al.

The reduction in leaf area/plant resulted from dimethoate and sulfuric acid treatments could be attributed to the less foliage, the small and narrow leaves produced on treated plants. Similar results were found by Venkatesulu and Bhat (1987) for dimethoate; and Cowling and Lockyer (1987) for sulfuric acid.

<u>Dry matter content</u>: A gradual increase in the dry matter deposition in the control-plant organs (leaves, stems and roots), as plants grew toward maturity, was indicated in Table (2).

It was noticeable that all pollutant treatments, particularly at highest concentrations, reduced the dry matter contents of the treated-plant organs. In general, soil pollution was more deleterious in reducing the dry matter content than foliar spray treatments. One exception was that, the dry matter of leaves was affected more seriously by lead spray than soil application.

The phytotoxicity of these chemicals could be ascribed to their adverse effects on the vegetative growth, consequently reduced the dry matter accumulation in plant organs. This conclusion was in harmony with those drawn in earlier studies (McConnell et al., 1985, on dimethoate; Jacobson et al., 1986, on acids; and Xian, 1989, on lead).

Growth analyses: Data in Table (3) showed that LAI and SLW values were increased with increasing plant age, while LAR and SLA values were decreased as plants grew. These results may be due to increasing the leaf area and deposition dry matter with leaf age as discussed previously (Tables 1 and 2), with the emphasis that the increase of leaf dry matter was proportionally more than that of the leaf area.

It was clear that the highest levels of lead decreased significantly the LAI, SLW and LAR of treated, comparing with untreated plants.

JPCEES Vol:4 No 2 (1992)

Ireatments			first	Season	uo.		3								- 1					
Method of							days	rs after	1. •	transplanting	plant	ing		second		968800				
*pplication	45	9	75	₽ [99	75	9	l		'n	45	9	7.5	45	9	7.5		4	Ç	15
	j	leaves	:		atem.		<u> </u>	roots	1	ŀ	-	leaves	78.8		-		ł			1
Control Lead (ppm)	2.9	3.8	9.	3.9	7.	2 9.	2 .	6 4.1	1	6.4	. E	4.5	6.2	7.6	9 8.	6 11	11.4	B. B.	4.6	1.7
100	7.00	4 m m	N 10 6	60 E	1.00	7.88	4.00	2 M	44	4.4.	 	44 to		80 80 60 60	60 /-	4 11 9	91	9.6	4.4	4.
foliar				3	0 1	0	7			e.	100000		4		40	40	9	 	, W	70
100	466		440	w w i	٠, ٠,	1 9.1	~ ~	7 4.1		0,00	2.7	4.0	10.4	€0.4	~	~	m, c	80.4	40	
L.S.D. (5%)	0.1		90	0.7	60		~; o	202		4.8 0.11	0.1	2 2 2	E -	4 0	'n) m o	· ~ -	414 610	2 4 2 6	4 m
Dimethoate ((\$)											!			. 1	1		;	,	;
2.4	3.3	8. F	5.3	ED (4)	7.1	9, 0	NI	e e	e (ω, ι	3.1	4.1	4	'n	7.	**	-	6	۳ ه	•
foliar			3.1	, w	9	. ·	17	กษา	4 W	ů. 4.	77	 	o	N 4	ف ف	80.40	4 (3.1	W 6	
000	E 79	ω ω φ. 4.	7.4		٠, L	80 60	40	4.	4 4		2.5	6.3		ומו	60	~~	, ev	. 6	. 4.	, 4
L.S.D. (54)	0 7.2	- 63	₽ .0	9.0	6.0	& O	140	20.00 20.00 20.40	* m 0	ا من د	100	4 60 0	4 m c	n n c	L 0	r 6.	2 -	33	9.9	4.6
Sulfuric acid	(X)								1					>	- -	- 1	2	4	0.5	0.5
	2.2			9,		α	r	4		r	1			1						
0.04	2.0	2.7	9.9 9.3	3.6	6.0	7.7	7.0	. w w	i m m	4 L~ RU	 	2000	0.024	N 44 4	V 40	96.	m :	30.5	3.7	44
	2.3		6.3			•							. ·	•	'n			5.5	 	o O
0.0	40	77	4.		. 60	0 00 1	9 171	- 6.	40	40		4 to	N 10		6.9	0 6	φø	Ю. С.	4.0	4.0
L.S.D. (5%)	×		, C			:		P)		7	30					0		•		

LAI, LAR	0.02 0.04 0.08 0.08 L.S.D. (5%)	501Eurie ac 8011 0.02 0.04 0.08 foliar		Dimethoate	100 200 200 100 100 100 200 L.S.D. (5%)	control." Lead (ppm)	Treatments and Method of application
S	0.94	8 0.95 0.95	0000	0.95	0.99	0.96	t.
5	1.17 1.16 1.10 0.07	11.15	0	1.03	11.17	(cm2/cm2	6
MTS.	7067	***	0	F			1
	. 562 27	297	20072	N & 60	01114 1114	5	75
1	77.4 77.4 68.8 7.2	67 0 79 2 83 5	776	69.2 76.2	70 6 57	72.1	ŝ
	an an an	555	5572	0 U. U. O			60
	9 m m m	40 D		400	OLO LANG		
area index	65.3 67.1 61.1	66.2 66.4	660 600 600 7	\$60.0 \$3.3	57.68 625 57.68 625	57.5	firet e
- 2	296 278 284 76	314	264	203 255 66	244 427 244 247 247 247 247	SLA (cm ³ .4 234 220	45
	330 866 856 856 856 856 856 856 856 856 856	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	254	2411	206 227 208 208 181 131	220 220	60
	265 275 230 86	230	222 7660 2460	195	196 196 196 196 196	SLA 1.g-1) 220 195	75
	3.38 3.60 3.51 0.79	3.29	0.79	3.99	404 4000 000 4048	SLW (mq/cs 4.27 4.55	.
		NUN	4440	444	440 4040	- Î	- 10
	2.95	700	2015	925	7672	SLW mq/cm²)	days
	3.63 3.63 4.34 1.30	3.27 3.17	4. 9 4. 4. 177 18	WAU.	0454 455 9004 470	5 5	
	646	222	1 10.4	400	0000 040	ωi	after 75
	1.05		0	966	0011 011		5 5
		222	8558	900	7604 000	- G	
	1.06 1.05 0.91	1.06	0000	7905	0.000 900	LAI (cm3/cm3 1.05 1.07 1	transplanting
	0.95	000	00.72	570	00	1.15	ting
	38.83°	. 97	250	516	000000000000000000000000000000000000000	G	0.14
	9762	200	- P 6 6		600 T 500 T	(cm1. 59.7 42	4.5
-	477.0	654	#B07	5 47 4 50 4 30	000 000 000 000	1.42.8	_ ;
	51.5 50.1	F184	4973	407	000 000 000	9	60
	36.1 36.1 36.7	37.6	9077	300	130 1 074	3	
1			4000	U1 69 14	1	A 1	75
	212 229 251 29	222	2440	269	120 9 8 8 9 C C C C C C C C C C C C C C C C	(cm)	\$
	182 190 194	ALCOHOL: NAME	2923		171 187 242 240	- 1 1	60
	135	131	2000	161 179 172	21557 21567	131	75
	0 4 4		0444	404	AAU AUUO	4	4.5
	. 71 S		9000	23 23 34 54	NUT NATO	4 9	
	5.26	5.07 4.36	402	5.793	1 A 1 W 1 W 1 W 1 W 1 W 1 W 1 W 1 W 1 W	SLW (mg/cm²)	60
	0 4 00 4	011		U1 U1 U1	PAG 3 550	415	7
1	. 38 . 15 . 22	400	2065	900	044 004 004 004	2	5

In contrast, the SLA was increased with increasing lead levels. The decrease in LAI and LAR under lead treatments could be attributed to the deleterious effect on leaf area. It seems that the effect on leaf dry-matter deposition was much more harmful than on leaf area, as a consequence lead caused a significant decrease in SLW and increase in SLA as compared with control plants.

It was obvious that foliar spray was more harmful in reducing these growth parameters than soil application. The harmful effects of lead pollution to the leaf area and dry matter accumulation were also reported by Bazzaz et al. (1975) and Ali (1982).

The highest levels of dimethoate caused a significant decrease in both LAI and SLW; while LAR and SLA were increased under the middle and high levels. It seems that dimethoate affected the dry matter accumulation more seriously than the leaf area. It was obvious, in general, that foliar spray was more harmful in decreasing LAR, SLA and SLW values; while LAI values were affected more negatively under soil application The reduction in leaf area/plant resulted from dimethoate was ascribed to the less foliage developed per plant (Venkatesulu and Bhat, 1987) and to the small leaflets (Kiplinger et al., 1973). The adverse effect of dimethoate on the dry matter deposition might be. attributed to the injuring effect on the growth of plant organs (Schuster, 1978)

concentrations, acid sulfuric Most particularly the middle and high ones, caused a remarkable decrease in LAI and SLW; while LAR the were increased under SLA concentrations. It was clear from the data that soil application affected both LAI and SLW more negatively than the foliar application; while the reverse was true for LAR and SLA. The adverse effects of HSO, on leaf area and dry weight were reported also by Tang (1986) and (Jacobson et al., 1986), respectively.

Noftah et al.

Data presented in Table (4) showed clearly that NAR and RGR were decreased with time toward maturity; in contrast, RLGR values were increased. The harmful effect of pollutants on these growth parameters was clearly observed during the period between 60-75 days after transplanting; the time by which plants were close to the senescence stage.

The foliar spray of lead caused more damaging effects on NAR, RGR and RLGR than that obtained from soil pollution. The decrease in those parameters might be attributed to the low deposition of dry matter in plant tissues as a result of lead accumulation in plant parts causing toxicity a or inhibition physiological processes. This conclusion is in full agreement with that reported by Ali (1982). On the other hand, dimethoate and sulfuric acid soil treatments caused more deleterious effects on the above parameters than the foliar spray method. The deleterious effects of both compounds on the photosynthetic activity and hence the dry matter accumulation were reported to decrease the NAR and RGR (Granett and Taylor, 1980 and McConnell et al., 1985).

Flowering and Yield: Data presented in Table (5) illustrated that the high concentrations of lead decreased the tomato yield as flowering time was affected negatively. In this concern, soil pollution was more harmful in reducing fruit yield than foliar spray. These findings might indicate that lead exhibited its effect after longer period of growth at which plants might be shifted from vegetative to reproductive stage. Consequently, affecting fruit formation process. Similar results were obtained by Mengel and Kirkby (1987) and Xian (1989).

Flowering and fruit yield were also affected by dimethoate, since 0.8% (foliar spray) and 0.4 and 0.8% (soil application) altered completely the production of flowers and

Control Lead (ppm) method of application toller 15D (54) Disethoate soil (S4) 200 100 50 Treatments #011 0.02 0.03 0.03 foliar 0.03 0.04 0.08 RGR, RLGR, and WAR are relative growth rate, relative leaf area growth rate, and not assimilation rate, respectively. control values were used for comparing all pollutant treatments. Sulfurie acid (N) 3 (mg. g . d . d .) 116 45-60 60-75 5 254 E254 0.337 0.363 0.339 0.330 45-60 60-75 38450 (1989) 0.338 0.337 0.323 0.015 0.330 0.334 0.334 0.322 0.012 (col.d.) 0.358 0.366 0.384 0.377 0.319 0.022 (mg.g'.d') 0.393 0.367 45-60 60-75 0.333 0.193 0.288 0.288 0.238 0.067 days after 0.179 0.296 0.161 0.133 0.240 0.236 0.188 0.120 transplanting 8GR (mg.g'.d'.) 45-60 60-75 20 82 72 22 102 102 97 97 0.171 0.267 0.234 45-60 60-75 0.146 0.130 0.139 0.141 0.022 (a stant season (1990) 0.151 0.229 0.210 0.180 0.120 0.175 0.349 0.386 (mq.q.1,d-1) 0.350 0.238 0.217 0.313 0.354 0.212 0.215 0.246 0.240 0.090 45-60 60-75 0.302 0.194 0.439

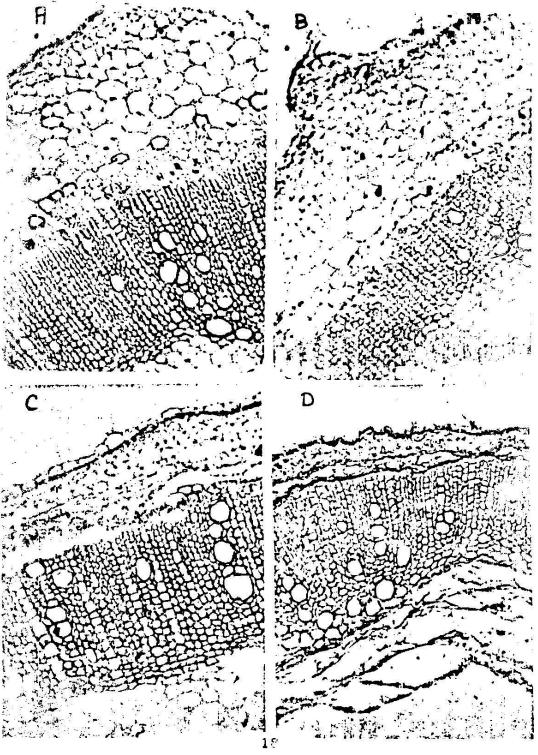
Table (4): Effect of lead, dimerhoate and sulfuric sold on greath. NO. RLOR and WAR of tomato plants at different stages of

Mottah et al.

•1

Table (5):Effect of lead, dimethoate and sulfuric acid on flowering date and fruit yield (g/plant) of tomato plants.

		first s	0.0 SOD	second	season .
	32	dave to	fruit yield	days to	fruit yield
	d of cation	flower	(g/plant)	flower	(g/plant)
abbir	CALION	110461	(9, 20		
Lead	(ppm)				024 2
contr		51.4	750.3	50.2	834.3
soil				99928 19 2 8	011 6
	50	50.0	740.7	49.0	811.6
	100	48.0	639.6	48.0	740.4
	200	46.0	525.5	47.0	647.7
folia	ır				026 6
	50	52.1	745.5	51.3	826.5
	100	50.3	740.2	50.4	789.7
	200	49.0	631.3	48.0	706.3
LSD	(5%)	2.6	48.9	2.3	43.6
Dime	thoate (*)			
soil				40.3	640.0
	0.2	53.1	646.2	49.2	00.0
	0.4	0.0	0.0	0.0	
	0.8	0.0	0.0	0.0	0.0
folia	ar		100000000000000000000000000000000000000		930 1
	0.2	51.6	756.4	50.6	830.1
	0.4	56.4	497.3	53.4	720.5
	0.8	0.0	0.0	0.0	0.0
LSD	(5%)	2.4	56.7	2.8	67.9
	uric aci	d (N)			
soil	200	40.0	633.7	50.0	713.0
	0.02	49.0	500.6	50.0	500.6
	0.04	38.8		- 00.0	000.0
	0.08	00.0	000.0	- 00.0	000.0
foli			****	50.0	782.6
	0.02	50.0	665.1	53.4	560.5
	0.04	53.3		54.2	311.5
	0.08	55.1	278.3	34.2 	511.5
LSD	(5%)	4.8	55.7	1.1	68.4


fruits. The harmful effect of dimethoate on flowering and fruit yield was reported also by Lal (1975) and Elmer and Embleton (1975).

Low acid concentration enhanced flowering, while high concentrations delayed the process. However, all treatments caused a marked reduction in fruit yield. The highest acid concentration caused a complete cessation of flowering thus plants under this treatment were almost fruitless. The reduction in flowering and yield production of many plant species as a result of sulfuric and other inorganic acids were also reported by Heggested et al. (1986).

Stem Structure: Fig. (1-B) showed clearly the effect of 200 ppm lead, in soil application form, on the anatomy of tomato stems. It was clear that the area and thickness of xylem tissues in treated plants became smaller than those of control (Fig. 1-A). Moreover, the width of xylem vessels was less than those of untreated plants. It appeared also that lead treatments affected the walls of cortex cells as they became thinner and relatively loose. The secondary xylem elements of treated stems became more impact with each other than those of untreated ones. The reduction in the area of vascular tissues might be attributed to the negative effect of lead on the division and enlargement of the vascular and intervascular cambial cells, thus decreasing the number of vascular elements.

Fig. (1-C) indicated clearly that the effect of dimethoate 0.8 % was mainly on the parenchyma tissues such as that of cortex and pith. It was evident from the figures that cortex area became small and narrow. Some layers of the cortex cells, particulary those near to the vascular tissues, were crushed and many cells in those layers were completely destroyed. Phloem tissues appeared to be affected as some of its component became loose comparing to control stems (Fig. 1-A). Pith cells were also

Fig. (1): Cross sections of tomato stems as affected by pollutants. A. control: B. lend (200ppm): C. dimethoat: (0.8%): and D. sufferic acid (0.08%), 450%

JP C & E S Vol:4 No:2 (1992)

affected and many of these cells were distributed with dimethoate spray. The decrease in the area of cortex region might be attributed to the effect of the high concentration of dimethoate on the activity of the enzymes which activate the division and elongation of cells of parenchyma tissues.

The cross section of tomato stems appeared in Fig. (1-D) showed markedly that H2SO4 (0.08 N) caused a complete destruction to cortex and pith cells. Both regions appeared as if they are completely empty of cells except some filaments remained from the walls of decomposed cells. Regarding vascular tissues, it was clear that xylem region become narrow. Phloem tissue was also affected as the remaining cortex cells stacked with the xylem elements. The harmful effect of H2SO4 on the tissues might be attributed to the effect of acidity on the chemical compositions of the cell walls and also, as it is well known, to increasing activity of some hydrolytic enzymes that influence the decomposition of parenchyma cells. In this respect, Uhring (1978) found that acidity caused a destruction of the vascular system and a breakdown of the parenchyma cells in petunia plants.

REFERENCES

- Ali, E.A. (1982). Physiological studies on the contamination and toxicity of some plants by certain heavy metals. Ph.D.Thesis, Faculty of Agric., Cairo university.
- Bazzaz, F.A., Carlson, R.W. and Rolef, G.L. (1975). Inhibition of corn and sunflower photosynthesis by lead. Physiol. Plant. 34: 326-329.
- Buttery, B.R. and Buzzell, R.I. (1974). Evaluation of methods used in computing

Moftab et al.

- net assimilation rates of soybean (Glycine max). Crop sci. 14: 41-44.
- Cowling, D.W. and Lockyer, D.R. (1978). The effect of SO, on Lolium perennel grown at different levels of sulfur and nitrogen nutrition. J. of Exp. Bot. 29: 257 -265.
- Diehl, K.H., Rospulo, A., Kreuzer, W. and Judel, G.K. (1983). Behavior of lead tetraethyl in soil and its uptake by plants. Z. Pflanzenernahr. Bodenk. 146: 551-559.
- Dix, H.M. (1981). Environmental pollution, atmosphere, land, water and noise. pp 107-128. John Willy & Sons, N.Y.
- Elmer, H.S. and Embleton, T.W. (1975). Low volume pesticide and nutritional sprays. Citrograph 60: 124-128.
- Foy, C.L. (1970). Plant and pollution. Agron. Health 16: 37-59. (c.f Environ. Health and pollution control 4, 1973).
- Granett, A.L., and Taylor, O.C.(1980). Effect 6 gaseous hydrogen chloride on seed germination and early development of seedlings. J. Amer. Soc. Hort. sci. 105: 548-550.
- Gupta, M.C. and Ghouse, A.K.M.(1987). The effects of coal smoke pollutants on the growth, yield and leaf epidermal features of Abelmoschas esculentus. Environ. Poll. 43: 263-270.
- Haines, B. (1979). Acid precipitation in southeastern United states. A brief Review Georgia J. Sci. 37: 185-191.
- Heggested, H.E., Bennett, J.h., Lee, E.H. and Douglass, L.W. (1986). Effects of increasing doses of sulfur dioxide and

3 F (& B S. Vol:4 No.2 (1992)

- ambient ozone on tomatoes plant growth, leaf injury, Elemental composition, fruit yield, and quality. Phytopathology 76: 1338-1344.
- Hewitt, E.J. (1952). Sand and water culture methods used in the study of plant nutrition. Commonwealth Agricultural Bureaux, Farnham Royal, England. pp 12-50.
- Hoagland, D.F. and Arnon, D.I. (1950). The water culture method for growing plants without soil. Calif. Agric. Exp. Stn. Circ. 347.
- Hunt, R. (1987). Plant growth analysis. The institute of biology's studies in biology No. 96. Edward Arnold, The Comelot Press Ltd, Southampton, Great Britain.
- Hussein, f., Gouhar, K.A. and Guirguis, M.W.(1975). Effect of certain organophosphorus insecticides on fruit quality of valencia orange. Annals Agric. Sci. Moshtohor, 3: 163-171.
- Kiplinger, O.C., Tayama, H.K. and Staby, G. (1973). Tests and observation on rigger begonias. Ohio Florists Association Bulletin 520: 2-3.
- Kuboi, T., Nogucni, A. and Yazaxi, J. (1986).
 Family dependent cadmium accumulation characteristics in higher plants. Plant and Soil 92: 405-415.
- Jacobson, J.S., Trolano, J., Heller, L. and Osmelosko, J. (1986). Influence of sulfate, nitrate, and chloride in simulated acidic rain on radish plants. J. of Environ. quality, 15:301-304.
- Lal, o.p. (1975). Insecticidal spraying causing pollen sterility in chinese cabbage. Acta Agronomica Academiae scientiarum

Noftah et al.

- Hungaricae 24: 145-147 (c.f.Hort Abst. 1976, 46 No 8).
- McConnell, D.B., Short, D.E. and Johnson, C.R. (1985). Pesticide phytotoxicity as influenced by growth regulators and antitranspirant. Hortscience 20: 669-670.
- Mengel, K. and Kirkby, E.A. (1987). Principles of plant nutrition. International potash Institute, Bern, Switzerland. pp 443-449.
- Murray, F. and Wilson, S. (1988). The joint action of sulphur dioxide and hydrogen fluoride on the yield and quality of wheat and barley. Environ. Poll. 55: 239-249.
- Naegele, A.J. (1974). Industrial pollution. Litton Educational Pub. Inc. V.N.R. Company pp. 47-64, N.Y.
- Sarma, P.V. (1979). Influence of certain granular insecticides on the growth and yield of behind Abelmoschus esculentus L. Pesticides 13: 24-27.
- Sass, J.E. (1951). Botanical Microtechnique 2.4 ed. Ames. Iowa State College Press.
- Schuster, D.J. (19788). Tomato pinworm chemical content on tomato seedlings for transplant. Journal of Economic Entomology 71: 195-196.
- Snedecor, G.W. and Cochran, W.O. (1973).
 Statistical methods. Ames. The Iowa State
 Univ. Press. the 6 ed. pp 299-334.
- Soria, F. (1967). Present trends in fruit fly control in Tunisia. Agrumes Presse No 32, pp 1-5.
- Stiborova ,M., Doubravova, M., Brezlnova, A. and Friedrich, A. (1986). Effect of heavy metal ions or growth and biochemical

JPCKES Vol-4 No:2 (1992)

- characteristics of photosynthesis of barley. Photosynthetica 20: 418-425.
- Tang, W. (1986). Influence of simulated acid rain on the growth of cucumber. Shanghai Agric. Sci. Tech. 5: 11-12.
- Thomas W. (1986). Accumulation of born trace pollutants by arctic plants and soil. Water Sci. Tech. 8: 47.
- Tomer, Y.S. and Kumer, N. (1987). Effects of SD on Raphanns sativus L. Indian J. of Ecology 14: 173-178.
- Uhring, J. (1978). Leaf anatomy of Petunia in relation to pollution damage. J. Amer. Soc. Hort. Sci. 103: 23-27.
- Venkatesulu, K., and Bnat, P.K. (1987). Control of green scale on coffee by stem applications of systemic insecticides. Journal of Coffee Research 17: 1-7.
- Xian, X.(1989) Response of Kidney Bean to concentration and chemical form of cadmium, Zink, and lead in polluted soil. Environ. Poll. 57: 127-137.

Noftab et al.

تأثير بعض مصادر التلـوث البيئي علـي :باتات الطمـاطم ١-التأثير على النمـو والمحصـول والتركيب التشريحي

ملخص أليحث

أجرى هذا البعث بكلية الزراعة ع جامعة المتوفية خلال الموسيالسيفيي لعاسي ١٩٩٠ و ١٩٩٠ لذراسة تأثير بعض الملوثات البيئية المسترعة وقد لخبير الرسائي (سئلا لتلثير التلوث بالمناصر الصغرى) بتركيز ١٩٥٠ و ٢٠٠ و ٢٠٠ جزء في الطيون بالعابيسيون (سئلا لتاثير التلوث بالمبيئات المشرية) بتركيز ثم الأعرب و ٢٠٠ و ٢٠٠ و ٢٠٠ مني الكبريتيك المسترية (سئلا لتاثير التلوث الناتي المبيئات المشرية) بتركيز ثم الامرود عبارى على النمو المضرى والزهرى والمحسول التمري وابغا الابركيب التشريعي لنباتات الطماط، وقد استغيالهاء كماملة مقارنة ورتم استخيام عند الملوثات بطرية بين العلماء عن الإضافة مع ماء الرى (تلوث ماني وتلوث التربية) والاخرى و شاعلى المجموع الخصرى الملوثات بطرية بين العماماء عن الإضافة مع ماء الرى (تلوث وقد اظهرت النبات الماملة وليفا مساحة الورقية إلى المنافقة الماملة والمنافقة الماملة والمنافقة المنافة المنافقة المنا

أمن التركيزات المائية في العاينشريت الى توقف شبه كامل لنسو النباقات، حيث تناقص ممثل تراكم السادة البيافة ويزات المائية ويرات الى توقف شبه كامل لنسو النباقات، حيث تناقص المساحة الورقية للنبات والوزن النسوعي لها وعلى المكن من طاك النساحة النسوعية للاوراقية معلى التمثيل وليضا ممثل النسو النسبي سواء للاوراقياد للنبات ككل قد تأثراً بشدة بالسعاملة بالنايمشريت، وقد لوضح الفحص التشريحي ان التركيز المرتفعهمن المبيد ادى الوراقيات الكل النباتات المرتفعهمن المبيد ادى الوراقية الفشرة والنخاع للنباتات التمثيرة ما الناتات النسامة النباتات التسامة المشارة والنخاع للنباتات التسامة المشارة والنخاع للنباتات التسامة التسامة التسامة التسامة المشارة والنخاع النباتات التسامة المشارة والنخاع النباتات التسامة
بنائنسية للتطوت الدسفى يفقد اثرت التركيزات العشنوسطة والعرقفية من حسف الكبريتيك على جمسيع قيم النسبو تلقيراً سالباً مدائلاً لتناثير افتطوت بالدايعشويت الآ أنه كان أشبه خبرراً حند العسشويات العالمية. وفي جمسيع انسالات كلات معاملة التربة الاكثر تناثيراً من رض العبصسوح الغضيرى. وقيد لوسط تهتك شبديد للغلايا البلزنشيسمية السوجودة في مناطق القشيرة والنضاح وليضاً نقص في مدد الاومية الناقلة »