CHANGES IN BLOOD CHEMISTRY OF ALBINO MICE DUE TO INDUCED INTOXICATION WITH THE ORGANOPHOSPHORUS PESTICIDE CYANOPHOS.

By
Amal A. Eisa* and Mohamed F.F. Bayomy**

*Plant protection Dept., Fac. of Agric. and **Zoology Dept. Fac. of Sci. Menofia Univ.,

Recived 29/8/1992 Accepted 4/10/1992.

ABSTARCT

The present study examines the toxic effects of single as well as repeated sublethal doses of the organophosphate, cyanophos (animals' were injected intraperitoneally with 1/4 LD value once daily over 1, 2, or 4 days) on male adult albino mice (Mus musculus). Animals received the single dose were decapitated at 24, 48, 96 and 192 hrs post exposure, while those treated repeatedly were sacrificed at 24 hrs after the last injection.

Results indicate the occurence of subtle decline in serum albumin in both cases of treatment whereas both globulins and total proteins exhibited escalation, particularly during the follow-up period for the single dose. Also, this effect vigorously potentiated by elongating duration of administration. The foregoing alterations resulted in a severe disturbance of the albumin/globulin (A/G) ratio where it underwent higly significant decrease in almost all treated groups as compared with their respective controls.

Elevation in activity of aminotransferase enzymes (GPT and GOT) has occurred especially after dosage, whereas alkaline phosphatase was inhibited markedly under the same conditions. This study suggests that the severity of the toxic effect of repeated exposure is duration dependent whereas the toxic action of the single dose is relatively reduced within 8 days post-treatment.

INTRODUCTION

Pesticides used in plant protection should effectively kill the pests and cause little or no harmful effect to non-target individuals. Unfortunately, this is not the case, therefore, a number of WHO reports (1985) have voiced concern about the potential risk of increased production and use of pesticides at a rapid rate allover the world. especially developing countries.

In Egypt, as in many other countries, the continuous use of pesticides became an ever increasing problem that takes part in the environmental pollution since Egypt alone, as has recently reported by Amr (1990), consumes 1-2% of the world wide production of pesticides.

pesticides at their recommended Several methods of application may cause great hazardous toxic side effects on living organisms (Sherif et Moreover, pesticides may 1990). persistent occurrence in the environment and/or accumulation may take place in different tissues of animals (Eto et al., 1980) and human (Smally et al., 1968 and Robens, 1969), especially the liver which is particularly concerned with substances and foreign toxic metabolism of of As matter body. entering the a pesticides induce serious side alterations in some key enzymes such as aminotransferases (GPT and GOT) as well as alkaline phosphatase which significance have prognostic and diagnostic (Zietsow 1971 and Coles, 1974) in evaluation of adverse health effects. According, this investigation was conduced to detect activities of the above mentioned enzymes in addition to some specific protein fractions in blood serum of adult male albino mice (Mus musculus) after exposure to single or repeated doses of the organophosphate, cyanophos.

MATERIAL AND METHODS

Pesticide used :

Eisa & Bayomy

The organophosphate; cyanophos (0-4 cyanophenyl 0,0. dimethyl phosphorothicate) introduced by sumitomo chemical Co., as 50% EC ltd., (Japan) was used in this study. This compound has other names, S4048 and Cyanox.

Probit Mortality Line :

A series of concentrations were prepared in saline solution (0.9 %) and administered to the animals intraperitoneally (i.p). Eight concentrations of the pesticide were ranged from 180 to 1080 mg/kg body weight and each was replicated five times. Five animals were treated with saline solution only and used as a control. The probit line was drawn and the estimated LD₅₀ value was 760 mg/kg (Fig. 1). The data were analyzed statistically according to Finney, (1971).

Animal:

Male albino mice (Mus musculus), 25-30 g., obtained from the breeding unit of the plant protection Dept., Faculty of Agriculture, Menoufia Univ., Egypt, were used for undertaking the present experiments. Animals were housed in groups in wired cages under uniform conditions of light and temperature. The animals were provided with balanced diet and water ad. libitum.

Experimental Design :

1. Single Dosage:

The animals were randomly divided into 4 groups in addition to a control group of 10 mice each. The control animals received saline solution only while the experimental ones received one single dose equals to 1/4 of the LD of organophosphate, cyanophos, intraperitoneally (i.p). Treated animals were decapitated by crevical dislocation at 24, 48, 96 and 192 hrs post-treatment.

2. Repeated Dosage :

Animals of this experiment were divided into 3 groups which were treated once a day for 1,2 or 4 days. The pesticidal dose was i.p. injected into the test animal in a magnitude equals to 1/4 of the LD and the animals were sacrificed at 24 hours after the respective last dose of each group. A control group whose animals received only saline solution in the same way was used for the comparison.

Biochemical Analysis :

Total protein content in the serum was determined by biuret method according to Alexander et al., (1985) using bovine serum albumin as standard. Albumin content was determined using commercial kits of Boehringer Mannheim. Serum globulins were quantified by subtracting serum albumin from the total serum proteins. Serum aminotransferases (GPT and GOT) were determined according to the method of Reitman and Frankel, (1957) using Boehringer Mannheim kits. Serum Alkaline phosphatase activity was assayed by the method of Kind and King (1954).

Statistical Analysis :

Data are presented as means ± standard deviations. Student's t-test was used to evaluate the statistical significance of the results according to Hine and Wetherill, (1975).

RESULTS

Serum proteins :

A- Effect of a single dose :

The data obtained from the quantitative of some serum protein fractions in response to i.p. injection of a single dose (1/4 LD₅₀) of the organophosphate, cyanophose during a follow-up period reached 192 hours are presented in Table 1

Table (1) Effect of a single dose (1/4 LD₅₀ value) of cyanophos on the blood serum proteins of male albino mico.

Parameter	Hours post-treatment					
	Control	24-hr	48-hr	96-hr	192-hr	
Albumin	3.054±0.052	2.978±0.051	3.050±0.085	3.083±0.072	2.813±0.163	
Globulins	2.909±0.063	3.122±0.026	4.595±0.491	2.738±0.394	3.366±0.092	
A/G ratio	1.050±0.014	0.958±0.068	0.644±0.052	1.144±0.163	0.836±0.061	
Total						
proteins	5.963±0.108	6.101±0.313	7.625±0.556	5.821±0.463	6.179±0.157	

Values represent means \pm S.D. Albumin, Globulin and total proteins experessed as g/dl. \pm p < 0.05; \pm p < 0.01 n = 5

Table (2) Effect of a single dose (1/4 LD_{50} value) of cyanophos on the blood alkaline phosphatase and aminotransferase enzymes (GOT and GPT) in male albino mice.

Paramete)Y ————	Hours post-treatment					
	Control	24-hr	48-hr	96-hr	192-hr		
Alkaline	phos-		-				
phatase ²	22.738±2.025	23.240±1.741	17.066±1.688	21.738±2.	532 12.400±2.773		
GOT	39.413±2.625	49.033±2.449	41.310±2.357	38.984±0.	659 43.411±6.673		
GPT (2)	14.678±2.926	24.323±2.969	21.226±1.562	15.734±1.7	727 14.50 2±2 .899		

Values represent means ± S.D.

n = 5

¹⁾ Activity is expressed as Kind and King Units/dl 2) Activity is expressed U/1.

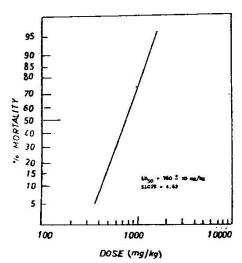
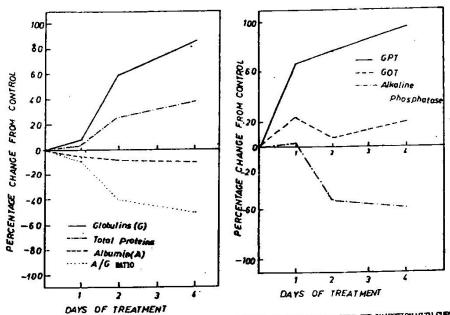



FIG.(1): LOG PROBIT LINE OF MALE ALBINO MICE TREATED BY INTERAPERITONEALLY INJECTION WITH THE ORGANOPHOS-PHATE. CYANOPHOS.

DOSE (1/4 $\mathrm{LD}_{\mathrm{SD}}$ value) of the organophosphate. Cyan-OPHOS ON BLOOD PROTEINS OF MALE ALBINO MICE.

FIG. (2): EFFECT OF DAILY REPEATED INJECTION WITH SUBLETHAL FIG. (3): EFFECT OF DAILY REPEATED INJECTION WITH SUBLETHAL DOSE (1/4 LD₅₀ VALUE) OF THE ORGANOPHOSPHATE. CYANO-PHOS ON BLOOD ALKALINE PHOSPHATASE AND AMINOTRAN-SFERASE ENZYMES (GOT AND GPT) OF ALBINO MICE.

The analysis of serum albumin indicated a small but significant decrease in this parameter only at 24 and 192 hrs after injection (P < 0.05), while globuline showed nearly the reverse pattern where highly significant increases amounted to 58 and 16 % were recorded at 48 and 192 hrs post-treatment respectively.

Concerning A/G ratio, with the exception of the measurement at 96 hr post-treatment this parameter showed highly significant decreases amounted to 9, 37 and 20 % at 24, 48 and 192 hrs post-treatment respectively (P < 0.01).

Total proteins exhibited moderate to small increases at 48 and 192 hrs after treatment, respectively, which were significantly higher than the control value.

B- Effect of Repeated Doses

Figure (2) represents the results of the effect of daily exposure of animals to 1/4 LD for 1, 2 and 4 consecutive days. Serum albumin content displayed a gradual significant decrease reached its maximum decline after 4 days of exposure to the toxicant. On the other hand, globulins underwent progressive elevations which were dependent on duration of exposure amounted 7.3, 59.6 and 86.7 % after 1, 2 and 4 days of pesticide administration respectively.

With respect to A/G ratio, it showed gradual decrease amounted to 9, 40 and 51 % after 1, 2 and 4 days of intoxication respectively (P <0.01) whereas, serum total protein content exhibited progressive elevation reached its maximum magnitude (38 %) after 4 days of pesticide administration.

Serum Enzymes :

A. Effect of a Single Dose:

With respect to GPT, it showed sharp elevations in response to a single i.p. injection

JPC&ES. Vol:4 No:2 (1992)

of the test compound amounted to 66 % and 45 % at 24 and 48 hrs post exposure respectively. This elevation in sGPT was attenuated during the rest of the follow-up period where complete restoration of the normal control level was attained at 192 hrs after exposure.

Similar pattern was also observed concerning sGOT, although the magnitude of alterations was lower and the restoration of the normal value occurred earlier.

Regarding alkaline phosphatase, it showed a statistically significant decreased level compared to the control and only at 48 and 192 hrs post-treatment (Table 2).

B- Effect of Repeated Dosages :

In response to repeated dosage, sGPT displayed an abrupt increase in its activity which did further elevate with increasing dosing duration.

Serum GOT exhibited a moderate significant increase amounted to 24 and 20 % only after 1 and 4 days of treatment with the test article respectively.

The effect on serum alkaline phosphatase appeared only after 2 and 4 days of cyanophos injection where the percentage declines from the control level were 52 and 85 % respectively (Fig. 3).

DISCUSSION

Organophosphorus compounds which are extensively used in agriculture as pesticides leaves a strong biological activity. This effect exceeded the target pests for warm blooded animals, and man and finally present a great risk of acute poisoning. However, the toxic action of these compounds depends largely on their routs or entry into the body (Amr., 1990).

It is evident from the present findings that intraperitoneal administration of cyanophos induced a subtle decrease in serum albumin content which was relatively more pronounced in case of repeated than in single dosage. The reduction of this parameter, under the present experimental conditions might be due to mild damage of hepatic cells that are responsible for the synthesis of albumin with urea (Baucht et al., 1980).

On the other hand, serum globulins showed the quite opposite picture where they increase with both single as well as repeated dosage, the observation which holds true for total proteins in both cases of treatment which might be linked with the animal defence action to counteract toxic effects of cyanophos. The enhancement of globulins as specific protein compounds is not due to increased hepatic protein synthesis since these protein fractions are also produced by hepatic although total extrahepatic tissues protein content was shown to increase in response organochlorine intoxication , with an insecticide, dieldrine in rats (Bhatia et al., 1973).

Examination of the A/G ratio gives a clear evidence of the toxic effect induced by present pesticide where it caused a significant decline in this ratio especially following repeated dosage.

For more identification of the impact of cyanophos on albino mice, our attention was directed towards the assay of activity of some serum enzymes like aminotransferases and alkaline phosphatase.

Aminotransferases are the most relevant liver enzymes whose serum levels are greatly affected in hepatocellular disease, particularly acute liver disease (Harper, 1969, Wilkinson, 1970 and 1976). These enzymes are found in high concentration in the liver (Molander et al.,

1957) and with liver cell damage such as necrosis or abnormal membrane permeability, these enzymes appear with increased level in the blood (Kallai et al., 1964) especially GPT whereas increased blood GOT level also points to myocardial infarction (Wilkinson, 1970 and Garb, 1971).

Cyanophos applied as a single dose, showed a highly significant escalation in sGPT level at 24 hrs post-treatment (+ 66 %) which was still apparents at 48 hrs (+ 45 %) after exposure. Restoration of the normal control level was acheived 96 hrs post-treatment and therefore denoting a complete recovery at 192 hrs post exposure.

The same effect holds true for sGOT level, however, the effect was less pronounced and recovery, as evidenced by serum level of this enzyme, was attained much earlier as compared to sGPT.

Repeated dosage of cyanophos has resulted in an increase in both serum aminotransferase enzymes, however, the effect on sGPT was much pronounced and was also duration-dependent. Our data are in agreement with those recorded by other researchers using differnt pesticides (Enan et al., 1982; Rawi, 1986, Abdel-Raheem et al., 1987 and El-Elaimy et al., 1988a). Other confirmations of the liver cell damage produced in response to pesticide intoxication came from histopathological alterations reported by other investigators (Atwal, 1973 and El-Eanhawy and El-Ganzuri, 1986) which came in favour of our present findings.

This is not surprising matter since liver is particularly the most susceptible organ to damage by different chemical compounds and foreign materials due to its primary role in the metabolism and its anatomical position as the first site of interaction with ingested substances for their biotransformation (Brodie et al., 1955) and detoxification (Conney, 1967).

Alkaline phosphatase which is throught to have a role in cellular transport (Russell et al., 1972) is also reported to be affected during liver dysfunction (Wilkinson, 1970). The analysis of serum alkaline phosphatase activity under the effect of cyanophos revealed the occurrence of highly significant decreases due to single and repeated dosage. It might be speculated that the toxicant could have induced lesions in hepatic as well as extrahepatic tissues. These observations do not agree with those recorded by El-Elaimy et al. (1988b) who recorded an increase in serum alkaline phosphatase level in rats after oral or dermal application of organophosphorus insecticide. The possibility exists that the discrepancy between the present results and the previous work on rats may reside in differences concerning species used, route of application or in type of the test article used.

Alkaline phosphatase was also reported to have an important role in cellular proliferation and differentation (Karaski, 1975) and as a regulator in gene transcription (Hwang and Cough, 1976). In this context the present data confirmed cyanophos teratogenic action in albino mice, as it has been reported before (Murphy, 1965). Recently, Komeil and Abd-Allah (1991) have reported similar inhibiting effect on alkaline phosphatase using another organophosphate member, methyl parathion. It is worthy to emphasise that repeated exposure to this type of pesticide potentiales ites toxic effect, whereas the impact of a single dosage attenuates relatively during 8 days after exposure to the pesticide.

Acknowledgement :

The authors would like to acknowlege with great appreciation the cooperation, guidance and encouragement offered by Prof. Dr. I. Ammar, professor of pesticide, plant protection Dept. Faculty of Agriculture, Menoufia University.

REFERENCES

- Abdel-Raheem, K; El-Mossallamy, N., El-Elaimy, I.A. and Sherif, N. (1987) Biochemical responses to induced intoxication with insecticide. I-Effect of acute and repeated administration carbamate (Methomyl). Bull. Fac. Sci, Cairo. Univ., 56: 1-19.
- Alexander, R.R., Griffiths, J.M. and Wikinson, M.L. (1985) Basic Biochemical Methods. John Wiley and Sons., New York.
- Amr, M.M. (1990) Project of pesticide Intoxication-Egypt. Kasr El-Aini Faculty of Medicine, Cairo Univ., Egypt.
- Atwal, O.S. (1973) Fatty changes and hepatic cell excretion in avian liver. An electron microscopical study of kepone toxicity. J. Comp. Pathol., 83: 115-124.
- Baucht, G; Wahlin, A; Wentzel, T. and Winblad, B. (1980) Renal function and morphology in long term lithium and combined lithium-neuro-leptic treatment. Acta Med. Scand., 208: 381 386
- Bhatia, S.C., Sharma, S.C. and Venkitasubramanian T.A. (1973). Effect of dieldrin on hepatic carbohydrate metabolism and protein biosynthesis in vivo. Toxicol. Appl. Pharmacal., 24: 210 229.
- Brodie, B.B., Axelrod, J.; Cooper, J.R., Gaudette L.; LaDu, B.N. Mitoma, C. and Udenfriend, S. (1955). Detoxication of drugs and ather foreign compounds by liver microsomes. Science, 121: 603 604.
- Coles, B.(1974) Veterinary Clinical Pathology. 2nd ed., Philadelphia London.
- Conney, A.H. (1967) Pharmacological implications of microsomal enzyme induction. Pharmacol. Rev., 19: 317 366.

. ----

- El-Banhawy, M.A. and El-Ganzuri, M.A. (1986).

 Histochemical studies on polysaccharides and lipids in the liver of rats treated with lindane, gwsathion and tamaron. Proc. Zool. Soc A.R. Egypt., 10: 257 269.
- El-Elaimy, I.; Al-Sharkawi, I. and Bayomy, M.F.F. (1988a) Intoxication potentialities of oral and dermal applications of some pesticide. I-Effect on cholinesterase and transaminases enzymes. 13th Int. Cong. Statist. Comput. Sci. Soc. Demog. Res. 109 128.
- El-Elaimy I.; Al-Sharkawi, I. and Bayomy, M.F.F. (1988b) Intoxication potentialities of oral and dermal applications of some pesticides. II- Alterations in Gloucose-6-phosphatase, alkaline phosphatase and 5'-nucleotidase activites. 13th Int. Cong. Statist. Comput. Sci. Soc. Demog. Res. 149 178.
- Enan, E.E.; El-Sebae, A.H., Enan, O.H. and El-Fiki, S. (1982). In vivo interaction of organophosphorus insecticides with different biochemical targets in white rats. J. Environ. Sci. Health., 17:549.
- Eto, M. Seifert, J; Engel, L.J. and Casida, J.E. (1980). Organophosphorus and methyl carbamate teratogens: structural requirements for inducing embryonic abnormalities in chicken and kynurene formaidase inhibition in mouse liver. Toxicol Appl. Pharmacol., 54: 20 30.
- Finney, D.J. (1971) "Probit analysis" 3rd ed. Cambridge Univ. Press, Cambridge, England: 333 PP.
- Garb, S. (1971). Laboratory Tests in Common Use. Springer Publ. Co. Inc., New York.
- Harper, H.A. (1969). Review of Physiological Chemistry. 12th ed. Lange Med. Publ. Lost. Atlos, Clifornia.

JPC&E.S. Vol:4 No.2 (1992)

- Robens, J.F. (1969). Teratologic studies of carbaryl, diazinon, morea, disulfiram and thiram in small laboratory animals. Toxicol. Appl. Pharmacol., 15: 152 163.
- Russell, R.G.G.; Monod, A.; Bonjour, J.P. and Fleisch, H. (1972). Relation between alkaline phosphatase and Ca*-ATPase in calcium transport. Nature, 240: 126-128.
- Sherif, R.M. Fayed, A.H.; Mandour, A.S. and El-Fishawi, A.A. (1990). Mutagenic and teratogenic activity of amitraz and deltamethrin on albino rats Rattus norvegicus. Egypt. J. Appl. Sci., 5: 81 93.
- Smally, H.E; Curtis J.M. and Earl, F.L. (1968)
 Teratogenic action of carbaryl in beagle
 dogs. Toxical. Appl. Pharmacol. 13: 392-403.
- Snyder, S. (1980) A case of flupenazine janudice Anm. J. Gastroenterology, 73: 336 340.
- WHO (1985). Enivronmental pollution control in relation to development. Technical Report Series 18 WHO, Geneva.
- Wilkinson, J.H. (1970). Clinical significance of enzyme activity measurements. Clin. Chem., 16:882-891.
- Wolkinson, J.H. (1976). The principle and practice of diagnostic enzymology. 1st ed. Edward Arnold, London.
- Zietsow, V.E. (1971). Clinical diagnosis of internal diseases of domestic animals and birds. Kalas Moscow, USSR.

- Hine, J. and Wetherill, G.B. (1975). A programmed Text Statistics. Book Three. The t-test and X Goodness of Fit. Chapman and Hill, London.
- Hwang, K.P. and Cough, T.A. (1976) IARC. Sci, Publ., 20: 309.
- Kallai, L.; Hahn, R.; Rober, U. and Zupanic, V. (1964). Correlative between histological findings and serum transaminase values in chronic diseases of the liver. Acta, Medica Scand., 175: 49.
- Komeil A. A. and Abd-Allah, M.A. (1991). Teratogenic effects of certain insecticides on mice. J. Pest. Cont. Environ. Sci. 3. 102 113.
- Karaski, S. (1975) Cell proliferative and subcellular localization of alkaline phosphatase activity in rat liver parenchajna during 920 dye carcinogenesis. Cancer Res., 35 - 482.
- Kind, P.R.N. and King, E.J. (1954). Estimation of plasma phosphatase by determination of hydrolysed with amino-antipyrine. J. Clin. Pathol., 7: 322.
- Molander, P.W; Sheppard, E. and Payne, M.A. (1957). Serum transaminase in liver disease. J. Am. Med. Ass., 63: 1461.
- Murphy, S.D. (1965). Enzymes and glycogen in livers of rats subjected to two stress. Toxical. Appl. Pharmacol., 7: 942.
- Rawi, S.M. (1986). Effect of acute toxicity with Dieldrin an certain enzymes in plasma, heart and liver of rats. Proc. Zooll. Soc. Egypt., 10: 109 119.
- Reitman, S. and Frankel, S. (1957). A colorimetric method for the determination of serum glutomic oxaloacetic pyrvic transaminases: Am. J. Clin. Pathol., 28: 56-63.

المسلخس العسسربي

التغيرات البيوكيميائية في دم الفأر الأبيض بعد المعاملة بالمبيد الفوسفوري (سيانوفوس)

تم دراسة التأثير السام للمبيد الفوسفوري (سيانوفوس) حيث قدرت الجرعة القاتلة لنصف عدد الأفراد المعاملة من نكور الفأر الأبيض ثم عوملت الذكور بربع الجرعة النصفية لمرة واحدة حقنا داخل الفراغ البريتوني وتم أخذ العينات بعد ٢٤ ، ١٩٢ ، ١٩٢ ساعة من المعاملة وتم تكرار المعاملة مرتين أو أربع مرات وأخذت العينات بعد ٢٤ ساعة من أخر معاملة

واتضح من النتائج مايلي:

- ١- الجرعة النصفية للمبيد = ٦٧٠ ملليجرام / كيلو جرام من وزن الجسم.
- ٢- انخفضت كمية الألمبيومين في حالة المعاملة مرة واحدة أو عند تكرار المعاملة بينما زادت كمية الجلوبيولين والبروتين خاصة عند المعاملة مرة واحدة.
- ٦- انخفضت نسبة الألمبيومين إلى الجلوبيولين إنخفاضا معنويا
 مقارنة بالحيوانات الغير معاملة٠
- ارتفع نشاط أنزيمي GPT ، GOT وخاصة عند تكرار المعاملة بينما انخفض نشاط أنزيم الفوسفاتيز القلوي في الحالتين.