Laboratory and Field Evaluation of Local Bait Formulations of Certain Pesticides Against Mollusca Species

El-Sayed A. M. Abdallah; Fahmy A. Kassem and Ezzat A.Kadous
Plant Protection Department, Faculty of Agriculture, Alexandria University.

Recived 11/10/1992 Accepted 30/11/1992

ABSTRACT

The molluscicidal efficacy of certain pesticides and some of their mixtures were evaluated under both laboratory and field conditions. Tested compounds and mixtures have been locally formulated using wheat bran as All baits contained 2% blue dye. Toxicity obtained by methomyl 2% wheat bran bait carrier. reference terrestrial selected as molluscicide. The data obtained under laboratory and field conditions against brown smail Eubania vermeculata and white small Theba sp showed that: white snails were more sensitive against tested compounds especially after one day of treatments. Addition of water soluble toxicants to 1% methomyl bait was unable to enhance the molluscicidal activity. While selective herbicide (Atrazine) caused a moderate toxicity against snails, the nonselective herbicide (paraquat) was non-toxic against used snails. The same trend was obtained with tomarin redenticide and copper fungicide compounds such as copper oxychloride and cuprosan. There was a high degree of agreeability between the results laboratory and field obtained under both conditions. Finally methomyl locally formulated bran baits possess the same degree of toxicity against used snails as commercial recommended molluscicide (Limacir).

IS TO SELLEDAN

INTRODUCTION

chemical known used The most effective against terrestrial snails is the metaldehyde, polymerized form of acetaldehyde (Lange and Macleod 1941: Gragg and Vincent 1952: Pappas and Carman 1955; Getzin 1965; Crowell 1967; and Brar Simwat 1973), however, due to not fully and satisfactory control under field conditions many other compounds have been studied for their molluscicidal activity. Among these successfully effective compounds are: carbaryl (Getzin and Cole 1964 and Barry 1969); methiocarb (Daxi 1970), phorate (Barry 1969; Judge 1969; Singh and Agrawal 1978 and Mahendru and Agrawal 1982), aldicarb(Judge 1969; E1-Okda et al. 1978 and Brar and Simwat 1973). Molluscicidal activity of other insecticides have also been studied by El-Okda 1978, 1982, and 1985; Singh and Agrawal 1979 and 1981; Mones and Gifot 1989; and Radwan and El-Wakil 1991. Bait formulation has been proved be effective application against these terrestrial pests (Kassab and Daoud 1964, and EL-Okda 1983). In addition, more attractability has achieved when baits formulated with wheat (El-Okda et. al.1983), or even with wheat bran extract(Stephenson 1972). In the present of pesticides including study several types insecticides, fungicides, herbicides, rodenticides and recommended molluscicides have been locally formulated as baits using wheat bran as carrier material and tested against two abundant species vermeculata) of sp. and Eubania (Theba 1983) that were terrestrial snails (El-Okda, collected from El-Tarh citrus orchard farm. Beheira governorate and tested in the laboratory and under field conditions in order to elucidate difference of pesticides efficiency under different conditions and the potency of mixed pesticides as molluscicides .

JFC & E.S. Vol. 4 He. 2 (1992)

MATERIAL AND METHODS

Local wheat bran baits were laboratory formulated for all tested candidates except metaldehyde 5% (Limacir) which supplied by EniChem Agricultural company. However, technique based on mixing the carrier material with the calculated amount of the tested compounds after resolving it in ethanol. All laboratory formulated baits contained 2% blue dye. Baits were left for dryness in plastic basin before use. Tested compounds were: methomyl (Lannate) 2%, methomyl 1% plus copper sulphate 1%. Atrazine (Gesaprem) 2%, Copperoxychloride 2%, Cuprosan 2%(active ingredient is a mixture of zimeb 15% and 65% Copperoxychloride), Gramaxone (paraquet) 2%, Tomarin (coumafuryl) 1%, ammonium sulphate with blue color 2%, methomyl 1% plus paraldehyda 1%, methomyl 1% pentachlorophenol 1%, Paraldehyde 1%, plus Commercial metaldehyde 5% (Limacir) in addition to Towarin ready made formulation. The tested berticides and fungicides have been recommended by Ministry of Agriculture program against weeds and fungi respectively in citrus farms. They tested here in order to assess their toxicity against mollusca species.

A. Laboratory Experiments: --

1-Experimental Animals: Two economically important terrestrial snails Theba sp. and Eubania sp. were collected from El-Tarh citrus orchard farm, Beheira governorate. Snails were classified according to Janus (1965) and separated in different enough glass jars and left at least 2 weeks under laboratory, condition before use.

2-Testing Procedure: Five gm bait of each cendidate were available to mnails in plastic pots according to Kassem and Abdallah (1992). Samples of 10 experimental animals were kept on plastic cover (15 cm.) containing 5 gm of each beit in glass petri-dish, Snails were placed aside from the bait. One liter plastic pot with

Abdelleh et el.

openings to allow respiration and good ventilation was placed up side down on the plastic plate to keep the snail and bait inside but without contact. Two ml of water were added daily on the top of the plastic plate to induce snail activity (Pappas and Carman, 1955). Three pots were set up for each treatment. Control animals were held in similar condition without toxic compounds. Mortality counts were made after 1,3 and 5 days of treatment. Abbott's formula (1925) was used in all tests to correct mortality counts.

B. Field Experiments:-

The study was carried out in an orchard of two feddans planted with citrus using randomized complete blocks design at El-Tarh Farm, Beheira governorate. Experimental area were 2 blocks separated by irrigation canal, each block was 3 raws of high productive orange trees. The distance between each tree is 5 meters. Each block is three trees width with forty trees long . Two trees were chosen as one replicate separated by one untreated tree. Four replicates were used for each treatment. Baits were distributed as a circle under the tree skirt. Heavy belt of poison bait surrounding all experimental field was applied to prevent any interaction of outsider snails from entering or escaping of experiment due to the heavy infestation of this area with most snail species known in the northern coast of Egypt (Kassab and Daoud, 1964). Snails, Eubania vermeculata; Theba sp; Helicella vestalis and Cochlicella acuta and slugs Limax sp were heavily observed in this area. Population counts of mollusca species were calculated using a wooden frame of one meter square and applied randomly all over the treated and untreated area. Population counts were taken after dawn and before sun - rise. Each treatment consumed 3 kg of the formulated baits prepared 24 hrs before use. Baits were applied before sun - set and after 2 days of slight irrigation. Mortality

JPC&ES. Vol:4 No.2 (1992)

counts were taken after 1.3 and 5 days according to Ballway (1972) and El-Okda (1981) as absence of movement and failure of the animal to withdraw inside its shell when prodding by thin stainless steel needle. Phytotoxicity observations were followed upon treated area compared to untreated ones along the experiment.

RESULTS AND DISCUSSION

1- Laboratory Studies:

Methomyl 2% was proven to possess a good potential as molluscicide candidate (E1-0kda,1982 and E1-Okda et al.1983). The results exhibited that adding water soluble compounds such as paraldehyde or pentachlorophenol to methomyl bait enhanced the toxicity with 20 and 10% respectively after 1 day of treatment than methomyl alone. However, the toxicity of methomyl alone was equal to the toxicity of methomyl in mixtures after 2 days and 5 days. Generally the toxic effect of the tested compounds was time dependent and the highest percentages of mortalities were obtained after 5 days of treatments. However, the differences in mortality between the 5 th and 2 nd days were nonsignificant in the most cases. In spite of both pentachlorophenol was the most efficient to be molluscicide of choice and copper compounds were systematically studied very early in 1920 snails (Shoeb, 1975). against water compounds when tested against white and brown terrestrial snails they caused very poor effect and the mortality percentage doesn t exceed 10% in the case of white snail while with brown snail these percentages were 13.3 ,33.3 , 13.3 and 40 for copperoxychloride, cuprosan, NaPCP, and PCP-OH respectively (Tables 1 and 2). The same weak effect was observed against both kinds of smails using tomarin either using wheat bran as carrier or tomarin ready made baits which the mortality

Abdallah et al

Table(1): Effect of toxic basts after 1. 2 and 5 days against the white manise Thebe ep.

Treatments Mortality percentage							
	Hean + SEM	2 days Mean + SEM	5 days				
ATRAZINE 2% COP.OXYCHLORIDE 2: CUPROBAN LIMACIR METHOMYL NAPCP PARALDEHYDE 1% PARAQUAT PCP-OM 0.5% TOMARIN 1% TOMARIN BAI1 1% MIXLUTBB 1 METH. + CUBO 1% METH. 1% + PARALD.1 METH. 1% + PCP 1%	3.3 + 2.72 0.0 0.0 6.7 + 2.72 20.0 + 4.71 0.0 0.0 0.0 0.0 0.0 0.0 0.0 16.7 + 5.44 40.0 + 4.71 30.0 + 8.17	10.0 + 13.3 0.0 10.0 + 0.0 60.0 + 14.14 70.0 + 4.71 0.0 13.3 + 2.72 3.3 + 2.72 6.7 + 2.72 0.0 70.0 + 4.71 80.0 + 4.71 73.3 + 7.2	53.3 + 7.2 6.7 + 2.72 10.0 + 0.0 90.0 + 4.71 93.3 + 5.44 3.3 + 5.44 23.3 + 7.2 6.7 + 5.44 23.3 + 7.2 10.0 + 0.0 3.3 + 2.72 80.0 + 4.71 90.0 + 4.71 83.3 + 9.81				

Table(2): Effect of toxic baits after 1. 2 and 5 days against the brown garden enail Eubania vermiculata.

Mortality percentage							
Treatments	1 day Mean + SEM	2 days Mean + SEM	S days				
ATRAZINE 2%	6.7 + 5.44	60.0 + 9.43	66.7 + 5.44				
COP. OXYCHLORIDE 2:	0.0	20.0 + 0.0	20.0 + 0.0				
CUPROSAN	13.3 + 10.89	13.3 + 10.89	33.3 + 14.4				
LIMACIR	13.3 + 10.89	93.3 + 5.44	100.0 + 0.0				
HETHOMYL	13.3 + 10.89	93.3 + 5.44	93.3 + 5.4				
NAPCP	0.0	0.0	13.3 + 5.4				
PARALDEHYDE 1%	0.0	0.0	0.0				
PARAGUAT	0.0	13.3 + 5.44	10.0+9.4				
PCP-OH O.5%	0.0	13.3 +10.89	40.0 + 0.0				
TOMARIN 1%	0.0	0.0	6.7 + 5.4				
TOMARIN BAIT 1%	0.0	0.0	6.7 + 5.4				
METH. 1%+Cu80- 1%	13.3 + 5.44	73.3 + 5.44	93.3 + 5.44				
HETH. 1%+PARALD 1%		53.3 + 5.44	86.7 + 5.4				
HETH. 1% + PCP 1%		73.3 + 10.89	100.0 + 0.0				

2 .

days of than 10% even after 5 was less However, the baits were completely treatments. eaten by snails and the slime material produced by very active healthy snails were observed indicating that tomarin, anticoagulant compound, has no effect against both kinds of experimental snails. Methomyl acts mainly against acetylcholinesterase causing muscle spasm and snail gastrobodies retain outside the shell(El-Okda, 1981 and 1985). and metaldehyde affects and causing excessive feeding motoneurones releasing of slime material of the snail. However, exposing snails to poisoned bait containing mixture of both compounds did not However, increase the molluscicidal activity of the mixtures, as found when copper sulphate, or pentachlorophenol added to methomyl baits. White snails were more sensitive towards tested baits than the brown ones only after 1 day of treatments, however the highest mortality was obtained after 5 days of treatments. Atrazine is selective herbicide and is in great favor of killing weeds in corn and orchards, when formulated as wheat bran bait caused 66.7 and 53.3% mortality for brown and white snail respectively after 5 days of treatment. However brown snails were significantly more sensitive than white snails only after 3 days of treatments with mortality of 60.0 and 13.3% respectively. Paraquat is non- selective contact herbicide characterized by a rapid herbicidal effect and kills the green part of plants even in small doses and is also used as defoliant and desiccant (Mees, 1960). This compound caused unimpressive effect, mortality percentages were 20 and 23.3% against brown and white snails respectively after 5 days (tables 1 and 2). The limacir (5% metaldehyde) symptoms of poisoning increased mucus secretion and uncoordinated muscular spasms followed by immobility and death, these symptoms agree with El-okda (1985). However, the molluscicidal effect was maximum

Abdellah et al.

(100% mortality) after 5 days of treatments especially with brown snails. Mills et al (1990 and 1992) showed that acetaldehyde - one of metaldehyde metabolites - was found in the hemolymph of the snail after one meal of metaldehyde, and effects produced the by acetaldehyde on the behavior, feeding motoneurones and neural activity were similar. Paraldehyde was very poor as toxic candidate against both types of smails indicating that paraldehyde is not the right pathway of metaldehyde metabolism, or paraldehyde in not able to reach the site of action when added to diet and /or not able to release the acetaldehyde at the site of action.

2- Field Studies:

phytotoxicity was observed due to used amounts of poisoned baits on tested citrus plants. Table 3 shows the degree of infestation before treatment. Infestation rates have reached 100% in tested area, weeded and neglected orchards were extensively plagued with terrestrial molluscs slugs and smails. In order to prevent any interaction from the surrounding area. a heavy belt of molluscicide was used around the whole experimental area and large number of dead slugs and smails accumulated inside the belt which prove the successful use of the belt. The most dominant snail was Helicella vestalis which contributes 27.5% of the total snail population. The least count was belong to Theba sp that constitute 5.4% of the population. Total number of slugs per feddan was estimated as more than 68000 / feddan. Fluctuation of mollusca counts were observed between the replicates as shown in Table 3, however this phenomenon is known when counting mollusca population under field condition (El- okda and Khalil, 1981). Poisoned baits were applied 2 days after slight irrigation and it has been noticed a very highly degree of agreeability between the effect of

JPC685 Vol:4 No:2 (1992)

Table (3) I Land mollusca infestation before bait application".

Animale	No. of animals in meter square					Total estimated		
	RI	R2	R3	R4	RS	Hean.	No. in feddan	,
E. vermiculate N. vestalis These pieans C. acuta Youngsters Limax ep.	18 46 20 5 60 25	20 16 0 4 26 13	61 197 20 70 348 24	33 26 14 9	27 124 26 163 132 11	31.8 81.8 16.0 53.2 115.0	133560 343560 67200 223440 483000 68880	10.7 27.5 5.4 17.5 38.6

^{*} Remile were collected randomly before sun- rise .

Table 4: Toxicity of the most active beits under field condition.

Type of ensil	Method -yl 2%	Na_PCP 1%	Cimacir 5%	Heth. 1% + CuBD. 1%	Math. 1% + Parald 1%	PCP
Eubenia i Live Omad Mortality %	17 32 65.3	4 36 73.3	15 34 78.4	0 122 100	2 21 91.3	0 43 100
Helicellei Live Dead Mortality %	51 237 6 3.3	0 24 100	25 111 91.4	0 77 100	3 44 93.4	0 46 100
Thebe I Live Dead Mortality X	4 14 77.7	0	4 22 94.6	0 16 100	0 3 100	0
Cochlicella Live Dead Mortality %	4 79 95.2	100 33 0	7 38 94.4	0 36 100	100	0 61 100
Youngstere Live Dead Mortelity %	33 298 67.8	11 76 87.4	43 245 95.1	0 115 100	4 50 93.5	0 58 100

Samples were collected randomly before our rise.

Abdellah et al.

tested pesticides under both field and laboratory conditions. Table 4 summarizes the data obtained field condition after 5 days posttreatment against land snails. All noticed slugs under the trees were completely dead especially with methomyl and limacir, which the average number of three replicates were 49 and 33 respectively. However these numbers of dead slugs were even higher than the average of the untreated ones (16.4, table 3). This could be explained that baits in treated areas attracted these animals more than the untreated ones. Although herbicides have been proven to possess molluscicidal properties (Barry,1969),atrazine and paraguat exhibited very weak toxicity against mollusca species. The copper fungicide tested compounds copperoxychloride and cuprosan and rodenticide tomarin were unimpressive molluscicidal candidates. Only methomyl, methomyl mixtures with either copper sulphate paraldehyde, or pentachlorophenol, and limacir (5% metaldehyde) were highly toxic compounds against land snails Table 4.

Generally youngsters were most abundant enails during the time of experiment, the highest mortality ratio obtained against this type of snails indicates the easy accessibility of whoat bran baits to young snails due to fine particles, however the lowest mortality was observed with the Limacir which was formulated in pellet form compared with locally formulated wheat bran baits.

Acknowledgment: This work has been supported by Alexandria University research project.

REFERENCES

Abbott, W.S. (1925). A method of comparing the effectiveness of an insecticide. J.Econ. Entomol. 18: 265 - 267.

- Balawy, S.S. (1972). Laboratory evaluation of molluscicidal potency of butanol extract of Phytolaca dedcandra (ended). W.H.O Bull. 47:422-51.
 - Barry, B.D. (1969). Evaluation of chemicals for control of slugs on field corn in Ohio. J.Econ. Entomol. 62:1277-1279.
- Brar, H.S., and G.S. simwat (1973). Control of the common slug Laevicaulis alte ferussac (gastropoda) with certain chemicals J. Res. Punj. Agric. Univ 10:99-101.
- Crowell, H.H. (1967). Slug and snail control with experimental baits. J. Econ. Entomol. 60: 1048 1050.
- Daxi.R. (1970). Influence of temperature and relative humidity on the effectiveness of the molluscicide metaldehyde. Isolan and Ioxnil on Limax fiavusl and its eggs Z. Angew Entomol., 67:(57-87). B.A., 52:(56259).
- E1-Okda, M.M.K. (1978). Local laboratory formulations.V. The importance of bait wetting and irrigation applications on the molluscicidal activity of Aldicarb and Methomyl bran baits. J. Agric. Res. Tanta Univ., 4(2):355-62.
- E1-Okda, M.M.K.(1981). Locomotion activity and infestation abundance of certain terrestrial mollusca in fruit orchards. Alexandria province, ARE. Proc. 4th Arab Pesticides Conf. Tanta Univ.vol. 11:279-287.
- Conf. Tanta Univ.vol. 11:279-287.

 E1-Okda, M.M.K. and K. Khalil (1981). Land mollusca as economic pest attacking fruit orchards at Alexandria Governorate. Proc. 4
- th Arab Pesticide Conf. Tanta Univ.289-302.
 E1-Okda, M.M.K.(1982). Efficacy of certain local formulated bran baits against the land mollusca under pear and orange trees in Egypt.Ent. Soc.Egypt.Dec.69,1982, Abst.: (26).
- El-Okda, M.M.K.(1983). Terrestrial snails and slugs (plumonata) destructive mollusca in ornamental plantages in Alexandria, Egypt.

abdelleb et al

Proc. 5th Arab Pesticide Conf. Tanta Univ., vol. (11);369-378.

- E1-Okda, M.M.K., M.M. Emarah, A.S. Moustafa and G. Tadrous (1983). Evaluation of the efficacy of various molluscicide formulations of brans and pellet baits under field conditions in Alexandria province. Proc. 5th Arab Pesticide Conf. Tanta Univ. II: 379 390.
- El-Okda, M.M.K.(1985). Evaluation and symptoms of poisoning of some carbamate compounds to terrestrial mollusca. Alex. S c i . Exch., 6(4):369-378.
- Getzin, L. W. (1965). Control of the gray garden slug with bait formulation of a carbamate molluscicide. J. Econ. Entomol. 58: 158 - 9.
- Getzin, L. W. and S. G. cole. (1964). The evaluation of potential molluscicides for slug control. Wash. State Univ. Agr. Exp. Sta. Tech. Bull. 658, 9 p.
- Gragg, J.B. and M.H. Vincent (1952). The action of metaldehyde on slug Agriolimax reticulatus (Muller). Ann. Appl. Biol. 39:392-95.
- Janus, M. (1965). Land and fresh water molluscs.

 Bruke Publishing Company Limited, London, pp
 (180).
- Judge, F.D. (1969). Preliminary screening of candidate molluscicides. J. Econ. Entomol., 62:1393-1397.
- Kassab, A. and H. Daoud. (1964). Notes on the biology and control of land snails of economic importance in UAR.Agric. Res. Rev., Cairo, Min. of Agric., 42: 77 - 88.
- Lang, W.H.Jr. and G.F. MacLeod (1941).

 Metaldehyde and calcium arsenate in slug and snail baits. J.Econ.Ent., 34(2):321-22.
- Mahendru V. K. and R. A. Agarwal (1982). Changes induced by phorate in the carbohydrate metabolism of the snail Lymnaea acuminata. Pestic. Sci. 13: 611 616.
- Mees, G. C. (1960). Experiments on the herbicidal action of 1.1- ethylene-2.2-dipyridylium

dibromide. Ann. Appl. Biol. 48: 601 - 612. Mills J. D., C. R. McCrohan and S. E. R. Bailey Effects of Metaldehyde and Acetaldehyde on feeding Responses and Neural (1990).

Activity in the Snail. Lymnaea stagnalis.

Pestic. Sci. 28: 89 - 99.

Mills J. D., C. R. McCrohan and S. E. R. Bailey Effects of Metaldehyde Acetaldehyde on specific membrane currents in neurones of the pond snail. Lymnaea stagnalis. Pestic. Sci. 34: 243 - 247.

Mones, R. and J. Gifot (1989). A new slug bait containing 4% thiodicarb. Chem. 110:168062K.

Pappas, J. L. and G. E. Carman (1955). screening tests with various materials against the european brown snail on citrus in California. J. Econ. Entomol. 48:698 - 700.

Radwan, M.A. and H.B.El-Wakil (1991). Impact of certain carbamate and synthetic pyrethroid insecticides on the non-target terrestrial snail Eubania vermiculata. Alex. sci. Exch., 12(2): 305-316.

Singh, O. and R.A.Agarwal (1979). Effect of organophosphorus certain carbamate and pesticides on isolated organs of Pila Toxicol. (Gastropoda). globosa Pharmacol.,50:485-492.

Singh, O. and R.A.Agarwal (1981). Toxicity of certain pesticides to two economic species of snails in Northern India. J. Econ. Entomol.,74: 568-571.

molluscicides. Egypt. J. Bull. 2: 151 - 175.

Stephenson, J. W. (1972). Gelatin as a carrier for S_cyanoethyl [(methyl carbamoyl) oxy]thioacetimidate], an exp molluscicide. Pestic. Sci., 3,81-87. experimental

Abdelleh et al

التثييم المعملي والحقلي ليعض الطعوم المعشرة معليا ضد انواع الرخويات

السيد احمد محمد عبدالله - فهمي احمد قاسم - عزت امين قادرس

تم اختبار الكفاءة الابادية لعدد من المبيدات المشرية والفطرية والعائثية ومبيدات القوارض ومغاليظها تحة كلا من الظرود المعملية والحملية خد الرخويات تم عمل التجهيزات معمليا باستخدام ردة التمع كمادة حاملة مع اضافة الاصبغة زرقاء، اظهرت الدراسة ان مناك توانق كبير بين سعية المبيدات المختبرة تحت كلا من الظروف المعملية والحقلية في سيتها كمبيدات قواقع وكان القوقع الابيش (التيبا) اكثر صامية من التوقع البني (ايوبانيا) وبمنة خامة بعد يوم واحد مزالمعاملة . كما إن اخافة المواد السامة القابلة للنوبان ني الماء مثل كبريتات النعاس والبار العميد وخامس كلوريد النينول لم يزد السمية لمبيد الميثوميل والنتي استضم كمرجع للسمية ضد هذه الرخويات، وبينما صبب مبيد المثائش الافتياري الاترازين سمية متوسطة ضد القواقع فان المبيد الفير اختيارى جرامكون كانعديم الفاعلية تماما ويتساروني ذلك مع مبيد القوارض تومارين ومبيدات الفطريات الكويروزان واوكس كلورو النحاس اخيرا نان سمية الميثوميل المحضر مطيا معمليا باستغدام الردة كلم كانت تتمارى مع المبيد التجاري المسجل مد القواتع اليمامير (٥ % ميتالدميد)٠