

Integrated weed management of wheat under sprinkler irrigation in south Tahreer region in Egypt

I- Effectiveness on different types of weeds

Soliman, F.S. and Sabra. F.S.

Pesticide Chemistry Department, Faculty of Agriculture, Alexandria University, Egypt.

ABSTRACT

Two field trials of wheat crop (*Triticum aesitivum* var. sids 6) were carried out in reclaimed desert land at South Tahreer region in Egypt during 1996-1998 seasons, to evaluate the efficacy of three sowing methods and herbicidal treatments, under hand move sprinkler irrigation system. The methods of sowing are pre-irrigation with tillage before seeds drilling, pre-irrigation with contact herbicide and non pre-irrigation before sowing. Twenty herbicidal treatments, including tribenuron-methyl, metosulam, chlorosulfuron, isoproturon, fenoxa prop-ethyl, tralkoxydim, diclofop-methyl, flamprop-isopropyl, clodinafop-propargyl and imazamethabenz-methyl and some of their combinations, were studied for controlling grassy and broad-leaved weeds under optimum cultural practices management.

The annual weeds observed in the course of this location included spiny emex, black mustard, thimble mustard, clover lambsquarters, scarlet pimpernel, thowthistle, wild oat, annual blue grass and canary grass. Among these thimble mustard and blue grass weeds were the most dominant weeds in the first season, whereas wild oat, ryegrass and thimble mustard were the dominant in the second season. Infestations of grassy weeds in the second season were greater than those recorded in the first season, since wild oat was the dominant weed in this case.

The lowest grassy and total weeds were obtained with pre-irrigated with contact herbicide before wheat sowing compared with pre-irrigated with tillage or with non pre-irrigated system.

Chemical weed control proved to be an effective way for controlling broad leaf and grassy weeds, under the sowing of pre-irrigation system. In this respect all herbicidal treatments except tribenuron-methyl, metosulam and chlorosulfuron, gave best control to grassy weeds, so the highest values were obatined with isoproturon + fenoxaprop-ethyal and isoproturon + diclofop-methyal in both seasons. Fenoxaprop ethyl tralkoxydim, clodinafop-propargyl, diclofop-methyl, dopler and imazamethabenz-methyl were effective against most of grassy weeds except annual blue grass and isoproturon the only herbicide which gave good results against this weed. On the other hand, metosulam, tribenurom-methyl and chlorosulfuron gave best control against broad leaf weeds. Isoproturon gave good control to many broad leaf and grassy weeds, but caused some phytotoxicity to wheat plants. Most herbicidal combinations were effective against all weeds, particularly, metosulam + clodinafop which was suprior in this respect.

The general results in two seasons showed that, pri-irrigation with tillage or with contact herbicide improved wheat grain yield, compared with non-pre-irrigation and all the herbicidal treatments increased significantly wheat grain yield compared with unweeded check.

INTRODUCTION

The following review will be presented the ways in which farming practices can be manipulated to reduce the impact of weed, thereby lowering the requirement for the application of herbicides in wheat. Crop rotation; tillage; cultivar selection; sowing date, and sowing method; nutrients; irrigation system; Leveling of soil; plant growth stimulator and

herbicides are considered in relation to this topic. Many workers have been studied these components of the integrated weed management in wheat cop such as EL-Titu. 1988; Malik, et al 1993; Orson, 1993; Ragehr, 1993; Al-Khatib, 1995; Ulmann and Vanova, 1991; and Ding and Chem, 1995.

Good seedbed preparation with tillage and soil sleveling especially with flooding irrigation system are enhanced the uniform germination of wheat seeds, the rapid growth of the wheat seedlings and this implies a great save in water use. Shafia et al (1995) and platonov et al. (1992), observed that wheat grain yield increased with increasing extent of tillage with and without weed control. Code and Donaldson (1996) also found that, cultivation to 80 mm before Sowing in the first years, followed by direct drilling in subsequent years, resulted in a wild radish population of 6.9 plants/m² in the third week of crop, compared to 116 plants/m² in the first season. Several investigators evaluated the effect of sowing methods, sowing date and rate, cultivar choice, irrigation and fertilizers dates and weed growth and wheat grain yield.

Several herbicides, singly or in combinations, were successfully used to control weeds in wheat crop many years ago. Isoproturon is the alternative herbicide for bromoxynil which gave high weed control efficacy against both type of weeds (Gogoi and Kalita, 1995; Panwar et al., 1995; Soliman, 1995; Soroka et al., 1995 and Sabra et al., 1999.

The sulphonylureas, imidazolinones; and triazolopyrimidines are chemically different, yet all Shaw the same site of action, namely acetolactate synthase (ALS). These new groups of herbicides will be solve the problem of broad leaved weeds in wheat plantation (Gulidov and narezhnaga, 1994; Montazeri, 1995; Koscalny and Peeper, 1996; Koscelny et al., 1996; Kumer et al., 1996 and Sabra et al. 1999).

Graminicides are selective herbicides used against grassy weeds in wheat crop. Diclofop-methyl is a selective herbicide for controlling ryegrass (Khan and Rashid, 1994 Suliman, 1995; Koscelny and Peeper, 1996 and Sabra *et al.*, 1999). Fenoxaprop-ethyl is a graminicide containing the safener fenchlorazole, controlled phalanx's sp. Weeds in winter wheat (Huff et al, 1989, Hallgren, 1990, Soliman, 1995 and Sabra *et al.*, 1999). Tralkoxydim has been registered in France Since 1987 for post-emergence grass control in cereals and it showed excellent selective control of Arena sp. And Labium sp. (Escher Brenner 1990; Juan et al 1995, Panwar et al 1999 El-Shoura 1994 and Sabra *et al.* 1999). Clodinafop-Propargyl also is a new herbicide recently used in wheat against grassy-weeds and compatible with several broad leaved herbicides (Lenerle and Verbeek 1995; Strachan 1995 and Sabra et al., 1999).

The field trials studies were conducted to determine the efficiency of three sowing methods, and herbicide treatments for selective control of weeds. The present work was conducted in two successive seasons during (1996 – 1998) in South Tahreer region to transfer and utilization of integrated weed management to increase wheat grain yield, with optimum cultural practices management.

MATERIALS AND METHODS

The present investigation was conducted in South Tahree region, Desert Development Center (DDC), EL-Khartoum Village, American University, during 1996-1998 seasons. An area of 2.5 feddan, from unit 17, was selected to conduct an integrated weed management programme, under hand move sprinkler irrigation. The field was naturally infested with grassy and broad leaf weeds, and the soil texture is sand. The soil was ploughed and disked deeply to break up soil and then the soil was levelled. The field area was divided into, three main plots. The lands in the first and second main plots were irrigated on November 20 in two

trials, to initiate the germination of the first flush of weeds. In this case population of weeds were reduced either by tillage or contact herbicides (parquet 0.5 L /feddan) before wheat sowing, whereas, the third main plot was not irrigate. High quality of wheat seeds, sides 6 variety was used. Planting depth was not deeper than 2 inches and cross sowing method of wheat (75 Kg/feddan) was done in the whole field experiment using seed driller. The date of sowing was at November, 30, in both seasons and the sowing irrigation was conducted at December, first.

The sub plots (30 m²) were allocated to twenty herbicidal treatments which are shown in Table (1). Herbicidal treatments were applied five weeks after sowing using a knapsack sprayer. The percentages of weed coverage were estimated, according to a visual rating system (Frans and Talber, 1997 and Robert, 1982), after 28 days from herbicides application. The percentages of weed control for total broad leaf and grassy weeds, and for the total weeds were calculated as follows:

The percentages of weed infestations were also estimated to indicate the dominant weeds.

At the heading stage of wheat growth, an assessment of the efficiency of chemical weed control treatments under optimum cultural practices management were recorded by, sampling weeds from random quadrate (minimum 2, with size 0.25 m²) from each plot. The percentages of weeds control were calculated according to the fresh weight of weeds. The efficiency of the pre-irrigated system and weed control treatments were also estimated as the infestation percentage in weeds fresh weight of the treated plots compared to the unweeded check.

Methods for assessment grassy weeds seed production have been developed most extensively for annual grass weeds. Robert's method (1982) were used at harvesting stage to count seed heads in each quadrate (0-25 m²). Two quadrate counts per plot of total grassy weedswere Carried out. Percentage control values of weed control treatments were then calculated.

Obtained yield data were subjected to Analyses of Variance (Snedecor and Cochran, 1967).

RESULTS AND DISCUSSION

The effect of pre-irrigated system with tillage or contact herbicide before wheat sowing and herbicidal treatments were evaluated on controlling weeds compared of none pre-irrigated. Generally, in both two seasons, the annual weeds observed in the course of this location included spiny emex, black mustard, thymble mustard, clover, lambsquarters, scarlet pimpernel, thowthistle, wild oat, annual blue grass and canary grass in the three pre-irrigation systems (Figures, 1-6). Among these thymble mustard and blue grass weeds, were the most dominant weeds, and the broad leaf weeds were much greater than grassy weeds in the first season. On the other hand, infestation of grassy weeds in the second season, were greater than those recorded in the first. This may be due to building up grassy weeds in this area, as a result of application broad leaf herbicide in previous winter wheat season without application of graminicide. Since, wild oat was the dominant weed in this case. Pre-irrigation with tillage was more widespread of the wild oat, than the pre-irrigation with contact herbicide or with none pre-irrigation and the lowest grassy and total weeds were obtained

with the pre-irrigation with contact herbicide. However, under the sprinkler irrigation, it is very important to pre-irrigate the soil, and controlling the emergence weeds before wheat sowing by contact herbicide or tillage.

Chemical weed control proved to be an effective way for controlling broad leaf and grassy weeds under the pre-irrigation system. In this respect, the visual rating system, weed mass at heading stage and final account of grassy seed heads, are the most common methods for evaluation of herbicides efficacy.

1- Visual rating system:

a) Pre-irrigation with tillage Figures 1 and 2 illustrate the following Points in the both two season:

Percentages of weed infestation in the control were 33% for grassy weeds and 67% for broad leaf weeds. The dominant grassy weed was annual blue grass which represents 25.1% while the thumble mustard was (17.4%),and considered the dominant broad leaf weed. With regarding to weed infestation in untreated control in the second season, the pre-irrigation with tillage-increased wild oats compared with pre-irrigation with contact herbicide or with the pre-irrigation method, where the percentages of wild oats coverages in untreated check were 60.6, 28.6 and 24.9 respectively. With regarding to table (2) Chlorosulfuron+ diclofop-methyl treatment (% R = 100)was the most effective combination against all weeds coverage grown in wheat crop followed by chlorosulfuron treatment (% R = 92.9); isoproturon + imazamethabenz-methyl (% R = 92.1) and isoproturon + Fenoxaprop-ethyl = isoproturon + Flamprop - isopropyl (% R = 91.1) in the first season. Whereas, metosulam + clodinafop-propargyl, chlorosulfuron + diclofop-methyl and isoproturon + imaza methabenz-methyl(ready mix) were the best herbicide combinations in the second season.

b) Pre-irrigation with contact herbicide

Figures 3 and 4 indicate that: Percentages of weed infestation in untreated control were 12 for grassy weeds and 88 for broad leaf weeds. Also, the dominant grassy weed was the annual blue grass (9.7%), and thumble mustard (40.5%) was the dominant broad leaf weed in the first season, while wild oats was the dominant weed in the second season (coverage present = 28.6). The same trended was obtained in controlling all weeds by herbicide combinations table (3). Very important observation was noticed with pre-irrigated with contact herbicide. This treatment before wheat sowing decreased weed coverage to 22.4 compared of 31 and 53.8 to pre-irrigated with tillage or non-pre-irrigated respectively. These means that, with sprinkler irrigation system the pre-irrigation of soil and using contact herbicide before wheat sowing is the best method for decreasing weeds population.

c) None-pre-irrigation:

Table 4 and Figures 5 and 6 indicate the following: The percentages of weed infestation in untreated control were 11.2 for grassy weeds and 88.8 for broad leaf weeds, and the dominant grassy weed was canary grasses (7.1%) whereas the thumble mustard (27.8%) was the dominant broad leaf weed in the first season. On the other hand, weed infestation in untreated cheek were 56.7% for grassy weeds and 43.3 for broad leaf weeds in the second season and wild oats (24.9%) and thumble mustard (19%) were the dominant two weeds. Most of herbicide combinations gave good result in controlling all weeds in two seasons.

2- Weed mass at heading stage.

A - Pre-irrigation with tillage

Data in table 2 showed that, percentages of weed infestation in untreated control in the first season were 73.7% for broadleaf weeds and 26.3% for grassy weeds, while the percentages of weed infestation were 85.8 for grasses and 14.2 for broad leaves in the second season. With regard to chemical weed control chlorosulfuron was the most effective herbicide against broad leaf weeds followed by chlorosulfuron + diclofop-methyl and metosulam + clodinafop-propargyl. However, Tribenuron-methyl either alone or in combination with tralkoxydim gave good control in both two seasons. On the other hand. Most of herbicidal treatments are effective against grassy weeds except broadleaf herbicides (Tribenuro-methyl, and metosulam), (chlorosulfuron and isoproturon) and flamprop-isopropyl. The highest herbicidal treatments in controlling all weeds in two seasons (Table 2) are chlorosulfuron + diclofop-methyl followed by metosulm + clodinafop- propargyl.

b) Pre-irrigation with contact herbicides:

In the first season (tables 3 and 5) percentages of weed infestation in weeded check were 57.4% for broad leaves and 42.6% for grassy weeds and the dominant broad leaf weed was black mustard, while the wild oat was the dominant grassy weed. On the other hand, percentages of total grassy and broad leaf weeds infestation during second season were 52.2 and 47.8 respectively, since, wild oat and thumble mustard were the two dominant weeds. Chlorsulfuron and metosulam and their combinations with other herbicides gave good effective control in broad leaf weeds compared of unweeded check whereas, most of herbicide treatments were effective in controlling grassy weeds except broad leaf herbicides tribenuron-methyl and isoproturon). Chlorosulfuron, (chlorosulfuron, metosulam, chlorosulfuron+ diclofop-methyl, tribenuron-methyl + tralkoxydim and isoproturon + imazamethabenz-methyl (ready mix) were the most effective herbicide treatments in controlling all weeds in the first season, whereas metosulam + clodinafop-propargyl, chlorosulfuron | + diclofop-methyl and tribenuron -methyl+tralkoxydim were the best in controlling of all weeds in the second season

c) None Pre-irrigation:

During two seasons, table 4 pointed that, percentages of weed infestation in untreated check were 65% for broad leaf weeds and 34.9% for grassy weeds in the first season and the dominant broad leaf weeds were spiny emex and black mustard, whereas, wild oats was the dominant grassy weed. On the other season, percentages of weed infestation were 49.6 and 50.4 for narrow and broad leaf weeds respectively and the dominant grassy weeds were ryegrass and wild oat, whereas thumble mustard was the dominant of broad leaf weed. The same trend, in the percent of grassy, and broad leaves reduction in relation to herbicidal treatments on pre-irrigated with tillage or contract herbicide were obtained with none pre-irrigated. Also the same trend was obtained with controlling total of all weeds.

3- Final account of grassy seedheads.

we are noticed that annual blue grass was the most dominant weed at all of three preirrigated systems in the first season, whereas wild oat was the dominant the second. This result agrees with the previous data of visual grass weeds coverage.

Chemical weed control proved to be an effective way for controlling grassy weeds (Tables 2, 3 and 4). In this respect, all herbicidal treatments except tribenuron – methyl, msetosulam, chlorosulfuron, Flamprop-isopropyl and unweeded check gave best control to grassy weeds, so, the highest values of control were obtained with isoproturon + fenoxapropethyl and isoproturon + diclofop-methlyl in both seasons. Isoproturon is the only herbicide treatment which gave good control against annual blue grass. These results are in agreement

with the findings of Khan and Rashid 1994; Soliman, 1995; Koscelny and Peeper, 1996; Sabra, 1999; Huff et al., 1989; Hallgren, 1990; El-Shoura, 1994; and Starchan 1995.

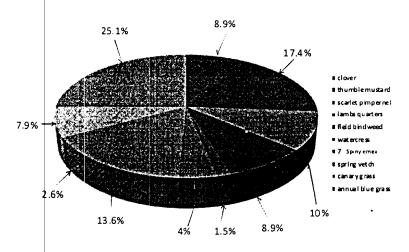


Fig. (1) : Percentages of weed infestation under pre-irrigation with tillage during 1996 - 1997

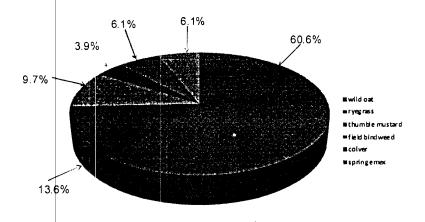


Fig. (2) : Percentages of weed infestation under pre-irrigation with tillage during 1997 - 1998 $\,$

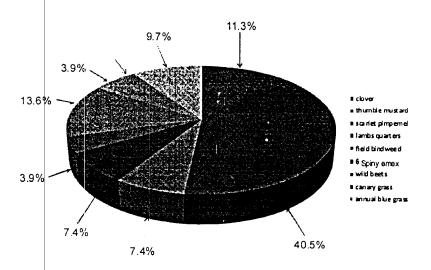


Fig. (3): Percentages of weed infestation under pre-irrigation with contact herbicides during 1996 - 1997



Fig. (4): Percentages of weed infestation under pre-irrigation with contact herbicides during 1997 - 1998

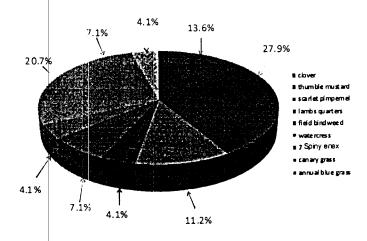


Fig. (5) : Percentages of weed in fest at ion under none pre-irrigation during 1996 - 1997

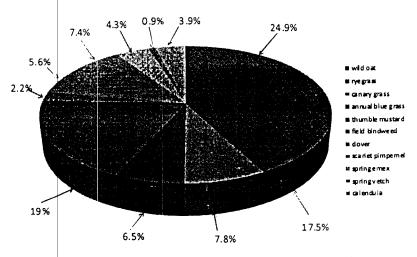


Fig. (6) : Percentages of weed infestation under none pre- irrigation during 1997 - 1998

50% FL + 75% EW 50% FL + 10% EC 50% FL + 20% EC 75% DF + 10% EC 75% DF + 36% EC 10% SC + 24% EC 50% FL + 36% EC Formulation 150/240 SC 75% DF 10% SC 75% DF 20% EC 36% EC 75% EW 50%FL 10% EC 27% EC 25% FL 24%EC 750 ml + 1250 ml 750 ml + 1250 ml 750 ml + 1250 ml 750 ml +500 ml 8 gm + 1250 ml 15 gm +1250 ml 40 ml + 100 ml Rate/fedd. 15 gm 1250 ml 40 ml 750 ml 1250 ml 1250 ml 500 ml 1250 ml 1250 ml 8 gm 100 ml 1500 ml Arelon + puma super Grandstar + Grasp Arelon + Grasp Treade name Arelon + Illoxan Arelon + Suffix Glean + Illoxan Sinal + Topic PU-Assert Puma super Table(1): Common and trade names, rate and formulation of herbicide treatments Grandstar Suffix. BW Arelon Glean Grasp Sinal lloxan Assert Dopler Topic Isoproturon +Imazamethabenz-methl (ready mix) Diclofop methyl + Fenoxaprop-Ethyl Chlorosulfuron + Diclofop -methyl Metosulam + Clodinafop-propargyl Isoproturon +Flamprop-isopropyl Tribenuron-methyl + Tralkoxydim Isoproturon +Fenoxaprop-Ethyl Isoproturon +Diclofop-methyl Isoproturon +Tralkoxydim Imazamethabenz-methyl Clodinafop-propargyl Tribenuron-methyl Flamprop-isopropyl Common narhe Fenoxaprop-ethyl Chlorosufuron untreated check Diclofop-methyl **Isoproturon** Metosulam Tralkoxydim No. of Treat 9 13 12 4 15 16 2 \mathfrak{C} S 9 $\overline{}$ 17 48 19 20 ω g

Table (2) Effect of herbicidal treatments on visual weed coverage, weeds mass and grassy seedheads under pre-irrigation with tillage treatment before wheat sowing in south Tahreer region during 1996 - 1998

wilcai sowing iii	 					I٦	000				Woods.	ssem s	1 am 1 m ²	m ²)	İ		Grassy seedheads number / m ²	sedpes	mnu spe	per / m ²
		Perc	Percentage	OI VISI	or Msuai weed	d coverage	age	1				2011	, D			+	600.		100,	
		1996 -	1997			1997 -	1998			1996 -	1997			1997 -	1998		1996 -	97	1997	- 98
Treatmentstorassy	grassy	broad	total	% R	grassy	broad	total	%R	grassy	broad	total	%R	grassy	broad	total	%R r	number	%R	number	%R
-	4.9		6.3	1	21.3	1.9	23.2	25.2	27	120	147	97.6	1660	30	1690	54.7	160.5	29.0	142	36.0
	6.9	0	6.9	85.3	26	2.1	28.1	9.4	06	385	475	76.1	1596	15	1611	56.8	124	45.1	96	56.8
1 67	2 8	7 0	33	93.0	17.8	0.7	18.5	40.3	7	0	7	9.66	1070	5	1075	71.2	77.5	65.7	163	26.6
9 4	c	6 1	6.1	87.0	5.9	3.5	9.6	2 69	25	605	662	66.7	160	358	518	86.1	62	65.0	29	69.8
· \	0	4.2	4.2	91.1	2.4	4.9	7.3	76.5	115	825	940	52.7	48	370	418	88.8	7	96.9	8	96.4
9	c	8.9	8.9	81.1	3.7	4.4	8.1	73.9	40	980	1020	48.7	06	695	785	0.62	18.5	91.8	29	86.9
2	C	5.4	5.4	88.5	2.6	4.9	7.5	75.8	15	1635	1650	17.0	25	1577	1602	57.1	0	100.0	56	88.3
. α	C	4.2	4.2	91.1	4.2	3.1	7.3	76.5	9	802	808	59.4	350	430	780	79.1	0.5	99.8	42	81.1
o o	0.7	ю	3.7	92.1	2.4	3.8	6.2	80.0	35	200	535	73.1	435	105	540	85.5	-	9.66	33	85.1
10	5.7	2.6	8.3	82.3	8.3	0.7	6	71.0	42	105	147	97.6	635	100	735	80.3	2.5	98.9	82	63.1
11	c	C	0	100.0	5.4	0	5.4	82.6	42	2	4	8.76	295	10	305	91.8	0	100.0	29	86.9
12	6.4	1.2	7.6	83.8	3	0.7	3.7	88.1	186	11	197	90.1	130	11	141	96.2	87	61.5	8	71.2
13	8	23.1	26.1	44.5	4.2	5.4	9.6	69.0	29	729	962	60.0	215	673	888	76.2	12.5	94.5	59	86.9
41	3.5	19.4	22.9	51.3	4.9	8.5	13.4	56.8	20	518	568	71.4	180	1070	1250	66.5	115	49.1	-	95.0
15	6.4	26.9	33.3	29.1	4.2	9.6	13.8	55.5	40	447	487	75.5	110	815	925	75.2	24	89.4	9	95.5
16	7.2	14.9	22.1	53.0	9.6	4.9	14.8	52.3	125	205	330	83.4	1165	250	1415	62.1	43	81.0	158	28.8
17	6.9	13.2	20.1	57.2	4.9	4	8.9	71.3	99	213	279	86.0	380	20	400	89.3	26.5	88.3	36	83.8
18	4.7	22.4	27.1	42.3	0.7	8	8.7	71.9	26	489	515	74.1	130	1340	1470	9.09	115	49.1	18	91.9
19	8.3	25	33.3	29.1	4.2	5.8	10	67.7	145	314	459	6.97	145	333	478	87.2	48	78.8	15	93.2
20	15.5	31.5	47	0.0	23	8	31	0.0	523	1465	1988	0.0	3200	530	3730	0.0	226	0.0	222	0.0
1%									26.3	73.7			85.8	14.2						

wt = weed fresh weight

%R= Percent of weed, reduction %I = Percentage of weed infestation in unweeded ch

Table (3) Effect of herbicidal treatments on visual weed coverage, weeds mass and grassy seedheads under pre-irrigation with contact herbicide before wheat sowing in south Tahreer region during 1996 - 1998

	Pero 1996 - Treatments grassy broad	Percentage 196 - 1997 Dad total	e of vis	Percentage of visual weed contract 1996 - 1997 1997 1997 Treatments grassy broad total %R grassy broad %R grassy bro		rage - 1998 total	%R	grassy		Weed 1997 total	Weeds mass 1997 total %R g	(gm grass	1997 - 1997 - 19 broad	1998 total	%R	الخلصاحا	seedhe - 97 %R	1997 number	اااقا
7	1.2	4.3	86.1	13.9	1.9	13.7	38.8	250	20	143	53.0	1090	0 0	1270	43.8	35.5	57.8 68.4	186	19.8 33.2
	0	1.2	96.1	15.8	2.1	17.9	20.1	82	2	8	85.4	725	0	725	67.9	52.5	53.3	119	48.7
	4.7	4.7	84.8	8	2.6	10.6	52.7	7	622	629	-9.4	20	1405	1475	34.7	61.5	45.3	42	81.9
	9.6	9.6	6.89	3.1	3.7	6.8	9.69	20	470	520	9.6	0	740	740	67.2	9	94.7	11.5	95.0
	4.2	4.2	86.4	5.3	3.7	6	59.8	10	450	460	20.0	22	1420	1475	34.7	22.5	80.0	25	89.2
_	4.9	6.4	84.1	1.7	7.5	9.2	58.9	20	411	461	19.8	0	1920	1920	15.0	2	98.2	12	94.8
	5.9	5.9	80.9	5.8	2.3	8.1	63.8	40	491	531	2.7	2	1500	1505	33.4	2	98.2	35	84.9
	2.6	2.6	91.6	3.8	0.7	4.5	79.9	12	113	125	78.3	200	475	675	70.1	2.5	97.8	42	81.9
	1.2	3.8	87.7	6.7	1.9	8.6	61.6	42	2.2	119	79.3	455	0	455	79.9	2.5	97.8	35	84.9
	1.2	2.4	92.2	3.8	0	3.8	83.0	20	47	26	83.1	110	5	115	94.9	0	100.0	5	97.8
	0.7	က	90.3	2.2	1.2	3.4	84.8	239	2	241	58.1	175	290	465	79.4	30	73.3	19	91.8
T	14.6	16.5	46.6	7.2	6.3	13.5	39.7	48	317	365	36.5	55	875	930	58.8	12	89.3	64	72.4
Г <u> </u>	12.9	17.8	42.4	1.9	8.7	10.6	52.7	06	352	442	23.1	121	879	1000	55.7	42	62.7	6	96.1
	12.7	17.6	43.0	4.9	9.4	14.3	36.2	3	288	291	49.4	50	1325	1375	39.1	40	64.4	6	96.1
	12	15.7	49.2	9.9	4.9	14.8	33.9	34	292	629	-9.4	275	995	1270	43.8	29.5	73.8	121	47.8
_	12	13.9	55.0	4.7	6.3	11	50.9	273	134	407	29.2	555	20	575	74.5	20.5	81.8	42	81.9
	12.6	14.9	51.8	2.6	9.6	12.2	45.5	34	317	351	39.0	10	985	995	56.0	56	50.2	10	95.7
T	14.4	16.3	47.2	3.3	8.7	12	46.4	45	492	537	6.6	0	1350	1350	40.2	45	60.0	မ	97.4
	27.2	30.9	0.0	13	9.4	22.4	0.0	245	330	575	0.0	1180	1079	2259	0.0	112.5	0.0	232	0.0
i								42.6	57.4	i . [52.2	47.8						

wt = weed fresh weight %R= Percent of weed, reduction %I = Percentage of weed infestation in unweeded ch

Table (4) Effect of herbicidal treatments on visual weed coverage, weeds mass and grassy seedheads under none pre-irrigation before wheat sowing at south Tahreer region during 1996 - 1998

_					 															—,				
Las 1 m2	ă۱	- 98	%R	44.2	48.2	59.8	93.3	100.0	88.8	94.2	96.9	89.3	48.2	82.1	78.6	72.8	89.3	55.8	56.7	29.0	96.0	83.0	0.0	
	sads nun	1997	number	125	116	8	15	0	25	13	7	24	116	40	48	61	24	66	97	159	6	38	224	
1	seegue	- 97	%R	59.8	74.7	8.	34.9	86.5	63.3	100.0	99.1	9.66	98.7	96.9	50.7	94.3	64.2	69.4	75.5	75.5	57.6	89.2	0.0	
	Grassy	1996	number	46	29	75.5	74.5	15.5	42	0	1	0.5	1.5	3.5	56.5	6.5	41	35	28	28	48.5	12.4	114.5	
			%R	66.4	76.8	75.0	16.5	67.5	53.8	72.8	79.7	90.1	91.3	93.3	88.9	41.6	70.0	66.2	73.2	90.7	78.2	64.7	0.0	
		1998	total	1600	1106	1190	3975	1545	2200	1295	965	470	415	318	530	2780	1430	1609	1275	445	1040	1680	4760	
,	m,	1997 -	broad	0	0	30	3625	1545	2200	1205	820	120	75	13	10	2760	1240	1543	675	220	975	1660	2400	50.4
	Weeds mass (gm / m²		grassy	1600	1106	1160	350	0	0	06	145	350	340	305	520	20	190	99	009	225	65	20	2360	49.6
	mass		%R	66.1	89.3	86.0	7.77	6.79	61.2	82.1	60.3	71.8	73.9	89.4	81.4	62.4	39.1	47.5	9.09	52.0	42.5	51.1	0.0	
	Weeds	1997	total	225	71	93	1,	213	257	119	263	187	173	20	123	249	\$	348	261	318	381	324	663	
		1996 -	broad	120	7	7.1	148	204	254	119	263	185	160	65	68	242	382	340	229	190	314	289	441	65.1
			grassy	105	64	22	0	6	3	0	0	2	13	5	55	7	22	8	32	128	67	35	222	34.9
			%R	65.2	71.9	73.2	58.4	80.5	72.5	80.3	81.4	4.4	76.4	88.3	87.7	38.1	60.0	67.1	46.5	75.5	45.5	1.42	0.0	
	ige	1998	total	18.7	15.1	14.4	22.4	10.5	14.8	10.6	9	8.4	12.7	6.3	9.9	33.3	21.5	17.7	28.8	13.2	29.3	24.7	53.8	
	coverage	1997 - 1998	proad	2.2	0.5	-	15.4	7.9	12.7	7.3	6.7	4.6	2.2	1.7	3.8	31.4	19.9	10.9	18.1	6.9	27.3	21.1	23.3	
	al weed		grassy	16.5	14.6	13.4		2.6	2.1	33		3.8	10.5	4 6				8.9	10.7	6.3	1	3.6	30.5	
- 1888	of visual		%R g	1	80.5	91.7	87.6	78.1	74.0	92.9	95.9		91.7	6 66	77.5		18.9		40.8	29.0	24.9		0.0	
3 1990	Percentage	1997	total	12	╫╌	4	+-	+	4	+-	1 0	. -	+	,	۱ « ۳	0 0	13.7	6.2	5	12	127	1 ×	16.9	
บ ตนที่ม	Perce	1996 - 1997	broad	6	1.4	0.7	1 4	· ·	0 6	, [2	7 2	7	2	10	0	2 2		2 2			1. 7.			
er regio			grassy		6 ,	20	20		4 4	-	0	20		;	0,0	5 6	5 0	1 4	70			10	6.	
south Tahreer region during 1996 - 1996		1	Treatments	-			0 4	r v	ی ر	0 1	- α		, ;	2 7	- 2	12	5 2	1 4	5 4	2 7	- 07	0 0	200	1%

wt = weed fresh weight %R= Percent of weed, reduction %I = Percentage of weed infestation in unweeded ch

Table (5) Mean of wheat yield of pre-inigated with tillage (Till.) or with contact herbicide (Cont.) and none pre-inigateed (None) as affected by herbicidal treatments during 1996 - 1998.

				Grain yield	Grain yield ton / feddan			
		1996 - 1997	. 1997			1997	1997 - 1998	
Treatments	.IIIT	Cont.	None	Av.	TIII.	Cont.	None	Av.
Ţ	1.287	1.302	1.262	1.258	66.0	1.19	1.03	1.073
2	1.375	1.36	1.151	1.295	96.0	1.31	1.14	1.14
3	1.316	1.126	1.307	1.25	.1.05	1.3	0.99	1.115
4	1.433	1.261	1.229	1.307	1.2	1.29	0.84	1.113
5	1.404	1.17	1.521	1.024	1.17	1.28	1.07	1.177
9	1.258	0.966	1.463	1.229	1.24	1.29	1.07	1.202
7	1.248	1.278	1.326	1.284	1.3	1.2	0.99	1.17
8	1.068	1.214	1.121	1.135	1.18	1.16	1.21	1.186
6	1.243	0.848	1.303	0.131	1.2	1.38	1.22	1.273
10	1.419	1.39	1.375	1.394	1.19	1.28	1.2	1.224
11	1.375	1.141	1.229	1.248	1.27	1.4	1.13	1.268
12	1.433	0.98	1.097	1.17	1.26	1.44	1.19	1.297
13	1.009	0.995	0.966	_	1.12	1.28	6.0	1.103
14	0.995	1.185	0.995	1.058	1.29	1.47	1.24	1.336
15	1.507	1.244	1.082	1.277	1.31	1.37	1.38	1.353
16	1.141	1.112	1.115	1.122	1.36	1.02	1.09	1.156
17	1.448	1.039	1.141	1.209	1.16	1.47	0.93	1.189
18	1.258	0.98	1.156	1.131	1.31	1.36	1.19	1.29
19	1.36	1.097	1.2	1.219	1.468	1.5	1.25	1.432
20	0.907	0.629	0.702	0.746	9.0	0.85	0.73	0.79
Av.	1.273	1.107	1.183		1.195	1.296	1.09	

With regarding to broad leaf weeds metosulam, tribenuron-methyl and chlorosulfuron gave good control to many broad leaf weeds. This results agrees with Gulidov and Narezhnaga, 1994; Montazeri, 1995; koscelny and peeper, 1996; Koscelny et al. 1996.; Kumer et al., 1996; and Sabra, 1999. Isoproturon gave good control to many broad leaf and grassy weeds but it is caused some phytotoxicity to wheat crop.

Most of herbicidal combinations were effective against all weeds ands isoporturon + fenoxaprop-ethyl and isoproturon + diclofop methyl, were the top in this case. These findings were confirmed by Henly 1998; Sabra et al., 1999 and Soliman et al 2000.

Little attention has been paid for controlling grassy weeds along with broad leaf weeds in wheat crop in Egypt. Information is desired on chemical control of mixed populations of broad leaf and grassy weeds infesting wheat crop and their effects on grain yield, Under weed management practices at South Tahreer region. The general results in two seasons table (5), showed that pre-irrigation with tillage or contact herbicide (Paraquat) improved grain yields compared to none pre-irrigated. This result agrees with the finding of Samarjecwa et al., 2005. Who found that, no tillage system resulted in the lowest wheat grain yield. Also, the results in table 5 showed that most of herbicidal treatments significantly, increased grain yield in two both seasons compared with unweeded check and the highest values were obtained with herbicide combinations. These results are in agreement with the findings of Ghanima et al., 1993; Hassanein et al., 1994; Sabra et al 2003; and Soltani and Sikkema, 2005.

They pointed out the importance of integration between more than one methods of weed control specially sowing methods; optimum cultural practices and herbicides to increase the efficacy of weed control and grain yield.

ACKNOWLEDGEMENTS

The authors would like to express their deep appreciation to Prof. Dr. M. H. Sabbah for his cooperation in carrying out this research in the Research Station of DDC. This work was funded by Agricultural Technology utilization and Transfer Project, Ministry of Agriculture of Egypt.

REFERENCES

- AL-Khatib, K. (1995). Western Washington weed control; guide-weed control on wheat. Washington state University; NO EB 1803, 12 PP.
- Code, G.R., ; and Donaldson, T.W. (1996). Effect of cultivation sowing methods and herbicides on wild radish populations; Agriculture, 36 (4): 437-442.
- Ding S. and Chorn, X. (1995). Investigation of Cultivation Techniques for a wheat yield of 600Kg/mu. Henan Nongye Kexue 2, 35.
- El-Shoura, M. (1994). Efficacy of some herbicides on canary grass (*Phalaris minor*) in cereals in Saudi Arabia. Com in sci and Dev. Res. 46(684): 195-206.
- El-Titu, A. (1988). Influence of cultural factors and practice son integrated pest management systems in cereals crops. ISBN 92-825-8250-7.
- Frans, R.E. and Talbert, R.E. (1977) Design of field experiments and the measurement and analysis of plant responses. In: Truelove, B. (ed.). Research Methods in weed Science, southern weed Sci., Soc. USA, 15-23 pp.
- Eschenbrenner, P. (1990). Grasp 60 broad spectrum gramininicide for post-eme. Control in small grains, defense des vegetawx 44 (263): 19-21. (Weed Abst. 40(7):2146-1991.

- Ghanima, E. E.; Hassanein E. E. and Ismail, M. K. (1993). Economic evaluation of herbicides, seeding rate and sowing methods on wheat in Assiut governorate. First ann. Meet. Cairo, 8-9 Sept. NVRP for wild oat control in cereals and some other winter crops, 169-179.
- Gogoi, A.K.; and Kalita, H. (1995). Effect of seeding method and herbicide on weeds, and growth and yield of wheat (*Triticum aestivum*). Indian journal of Agronomy 40 (2) 209-211 (Weed Abst. 45(5): 1944, 1996).
- Gulidov, A.M.; and Narezhnaga, E.D. (19994). Herbicides in winter wheat. Zashchita Rastennii (Moskva)No. 8(18).
- Hallgren, E. (1990). New herbicides for control of annual grass weeds in cereal. Swedish univ of Agric sci. 31: 78-92 (Weed Abst, 40 (2): 373, 1991).
- Hassanein, E. E.; Salim, A. A.; Yahia, Z. R. and Ghanima E. E. (1994). Integrated control of wild pat in Assit Governorate. Second Ann. Meet., Cairo, 11-15 Sept. NVRP for wild pat control in cereals and some other winter crops. 32-34.
- Henly, S. (1998). Spotlight on Harmony M. Control. Crops 6(5) 6-8.
- Huff, P.; Schumacher, H.; Olfers, H.V.; and Banks, M. (1989). Hoe 7113-worldwide results on selectivity and grass weed efficacy. In proceeding of the Brighton Cropprotection conference Weeds. 2: 723-728.
- Juan, V.F.; Irigoyen, J.H.; and Orioli, G.A. (1995). Effect of post, emergence graminicides on the control of *Avena fatua*. Plant Faninha, 13 (1): 10-13.
- Khan, R.U.; and Rachid, A. (1994)) Efficacy of herbicides for control of grassy and broad leaf weeds in wheat crop at El-Marj Libya. Pakistan J. of Botany, 26 (2) 327-330.
- Koscelny, I.A.; Peeper, T.F.; and Krenzer, E.G. (1996). Sulfonylurea herbicides affect hard red wheat forage and grain yield. Weed Technology, (10): 531-534.
- Koscelny, J.A.; and Peeper, T.F. (1996). Herbicides impregnated into granular fertilizer carriers for broad leaf weeds control in winter wheat. Weed Technology, (10): 526-530.
- Kumar, L.; Singh, D.; and Pahuja, S.S. (1996). Evaluation of tribenuron for control of broad leaf weeds in wheat. Haryana Agri. univ. J. of Res. 26(3):199-201.
- Lenerle, D.; and Verbeek, B. (1995). Influence of soil water deficit on Performance of foliar-applied herbicides for wild Oat and oat competition as it influences wheat growth and yield Aust. J. Exp. Agric. Animal Husb., 16, 402-406.
- Malik, R.S.; yadav,. S.K.; Malik, R.K.; Singh, D.P. and rathee, S.S. (1993). Effect of tribenuron and fertility levels for weed control in wheat. Indian Society of Weed Science (III): 83-85.
- Montazeri, M. (1995). Interaction of tribenuron and graminicides in wheat. Proceedings of an international conference, Brighton, vol. 2, 753-7556.
- Orson, J.H. (1993). Integrating cultural and Chemical weed control in cereals,. In Brighton Crop Protection Conference, BCPC, Vol. 3, 977-985.
- Panwar, R.S.; Mailk, R.K.; Samar, S.; and Balyan, R.S. (1994). Influence of tralkoxydim applied alone or as tank mix. on the control of grassy weeds in wheat. Haryana Agric. uniuv. J. of Res., 24(1):25-32.

- Panwar, R.S.; Malik, R.K., and Rathi, S.S (1995). Effect of isoproturon and its combination with tralkoxydim on control of weeds in wheat. Haryana Agricultural university journal of Research 25(4): 181-186.
- Platonov, I. G., Manolii, G.G.; and Mironychev, K.A.(1992). Productivity of a cereal-grass rotation depending on tillage, Liming and mineral fertilizers. Izvestiya Timiryazevskoi sel, Skokhozyaistvennoi Akademii No 3: 25-53.
- Regehr, D.L. (1993). Integrated management in agronomic crops. Association Colloque Ifoam, vol. 2, 17-22.
- Roberts, H.A. (1982). Weed control Handbook BCPC, Blackwell Scientific Publication, London, 252-279pp.
- Sabra, F.S.; I. M. Awwad; F. S. Soliman and A. M. El-Shazly (2003). Integrated weed control strategy in Bangar El-Sokkar district in North Egypt. J. Pest cont & Environ. Sci. II (1): 29-43.
- Sabra, F.S.; Kassem, F.A.; and Khalifa, M.A.S. (1999). Effectiveness of herbicidal treatments against weeds in wheat and their action on yield and yield components. J. Pest cont & Environ. Sci. 7(3): 103-121.
- Shafiq, M; Hassan, A.; and Ahmad, S. (1995). Effect of crop rotation, tillage technique, Fertilization and weed control on yield of wheat and greengram under rainfed condition. In J. of Agricultural Sciences 65 (8): 591-593.
- Snedecor, G. W. and Cochran, W. G. (1967). Statistical Methods 6th ed., Iowa State Univ. Press, USA.
- Soliman, f.; El-Tabakh, S.; and Sabbra, F. (2000). Integrated Weed management of wheat crop In Reclamed Land in Egypt. First Near East conference on improved weed management 5-8. Febrauary 2000, Cairo Egypt.
- Soliman, F.S. (1995) Assessment of some herbicidal combinations in wheat fields of Dierab, Saudi Arabia. Arab Gulfj Scient. Res. 13(3): 521-534.
- Soltan, C. S. and P. H. Sikkema. (2005). Responses of winter wheat to autumn applied post emergence herbicides. Crop protection, In press, corrected Proof, Available online 26 July.
- Soroka, S.V.; Soroka, L.I.; and Andreev, A.S. (1995). Early spring application of arelon in winter wheat crops. Zashita Rasteni (Moskva). No. 4, 14.
- Strachan, P. (1995). Topik- a new graminicides for cereals. Morley Bulletin, 97:1-2 (Weed Abst. 44(11): 4610, 1995).
- Ulmann, L. And Vanova, M. (1991). Intensification of rye and Oats production in potato-growing and Montana production regions (Weed Abst., 40 (11): 3766, 1991).

الملخص العربي

كلية الزراعة قسم كيمياء مبيدات وتقنية المبيدات جامعة الإسكندرية

أجريت تجربتان حقايتان في المناطق المستصلحة بجنوب التحرير لموسمي 1996-1998 على محصول القمح تحت الري بالرش المتحرك وذلك لدراسة تأثير طريقة الزراعة (رى الأرض ثم حرثها والزراعة، رى الأرض ثم الرش بمبيد حشانش بالملامسة ثم الزراعة، وعدم رى الأرض والزراعة) وكذلك تأثير عشرون معاملة ميدات حشانش وتشتمل على مبيدات ترايبنرون-ميثايل، ميتوسولام كلوروسلفيرون، ايزوبروتيرون، فينوكسابروب-ايثايلتر الكوكسيديم، دايكلوفوب-ميثايل، فلام بروب-ايزوبروبايل، إيماز اميثابنز-ميثايل وبعض الخلائط منهم وذلك بهدف مكافحة الحثانش رفيعة وعريضة الأوراق تحت حزمة من العمليات الزراعية المثلى.

اظهرت النتائج ان حشيشتى الكبر وقمح العصافير هما الساندتين في الموسم الزراعي الأولى بينما الزمير والصامة والكبر هي الحشائش الساندة في الموسم الثاني وأن نسبة الحشائش الرفيعة في الموسم الثاني أعلى بكثير من الموسم الأولى وطريقة الزراعة برى الأرض ثم المعاملة بمبيد جرامكسون قبل الزراعة أعطى أقل نسبة حشائش بالمقارنة بالطرق الأخرى. وبالنظر إلى المكافحة الكيماوية نجد أن جميع المعاملات أعطت نسبة مكافحة مرتفعة للحشائش رفيعة الأوراق ماعدا ترايبنيرون-ميثايل، متوسولام، كلوروسلفيرون ومن أفضل المعاملات في هذا السياق كانت معاملات أيزوبروتيرون لمستخدمة لم تعطى أي تأثير على حشيشة البوا رفيعة الأوراق والمعاملة الوحيدة التي أعطت تأثير عليها هي أيزوبروتيرون. يتضبح من النتائج تأثير على على معاملات ترايبنيرون-ميثايل-ميتوسولام وكلوروسلفيرون. أظهر بعض السمية على نباتات القمح في هذه الأراضي الرماية، على الوجه الأخر أعطى مبيد أيزوبروتيرون مكافحة جيدة على الحشائش عريضة ورفيعة الأوراق واظهر بعض السمية النباتية ومن أفضل المعاملات لمكافحة الحشائش الكلية هي معاملة ميتوسولام + كلودنيافوب-بروبارجيل.

اما من ناحية المحصول فإن معاملتي الرى قبل الزراعة والحرث أو المعاملة بالجرامكسون. وكذلك معاملات مبيدات الحشائش اظهرت زيادة معنوية في المحصول بالمقارنة بالكونترول.