LABORATORY EVALUATION OF CHINABERRY (Melia azadarach L.)

PREPARATIONS AGAINST THE LARVAE OF THE COTTON

LEAF WORM Spodoptera littoralis (Boisd.)

Ву

Fadia El-Zoghby¹; R.S. Saleh² and O. El-Ansary¹

- 1- Dept. of Plant Protection, Faculty of Agriculture, University of Alexandria, Alexandria, Egypt.
- 2- Dept. of Plant Protection, Faculty of Agriculture, Kafr El-Sheikh, Tanta University, Egypt.

ABSTRACT

nst the 6th instar larvae of S.littoralis. Meridic diet, when mixed with the different chinaberry preparations at 5, 10 and 30% (Wt./Wt.) prolonged development and decreased weight gain of the larvae. Both roated and unroasted seed meal prevented the formation of pupa regardless of the concentration tested. Activity of chinaberry preparations were found to be close to Neem-seed and similar in activity to insect growth regulators.

INTRODUCTION

The leaves and seeds of the Indian neem tree, Azadirachta indica A. Juss, have been used as sources of insect repellents and insecticides (Jacobson, 1981), Neem oil and cake were indicated to be effective against more than 126 economic pests (Ladd et al., 1978 and Jacobson et al., 1983). Biological activity of neem extracted against insects, mites, nematodes and pathogens has been summarized by Warthen (1979) including effects on feeding, growth and toxicity. Chinaberry, Melia azadarach L., was shown to have antifeedant and growth-inhibiting effects against the corn earworm and fall armywarm, much like neem derivatives (Mc-Millan et al., 1969). The bioactivity

of the Egyptian chinaberry ecotype is not well investigated. Thus it was decided to evaluate the activity of various chinaberry fruit preparations against the larvae of the major polyphagous Egyptian pest, Spodop tera littoralis, by measuring development, survival and growth rate.

MATERIALS AND METHODS

Fruits of chinaberry, Melia azadarach L., were collected fresh alongside the irrigation canals at Kafr El-Sheikh province. Whole fruit pulp, free oil pulp, acidified roasted seed, roasted seed meal and unroasted seed meal of the chinaberry fruit were prepared as described previously (Saleh and Moharam, 1987). Materials of each preparation were blended with the diet (Hegazi et al., 1977) to obtain 5, 10 and 30% final Wt./Wt. concentrations. Weighted amount of each diet-preparation concentration and the control were dispensed in plastic cups.

A susceptible strain of the Egyptian cotton leafworm Spodoptera littoralis (Boisd.) was obtained from the Festicide Research Center in Cairo. The culture was reared under the laboratory conditions of 25+2°C and 65+5% R.H. on castor-oil leaves as described by Eldefrawi et al. (1964).

Only the healthy active 6th instar freshly moulted larvae were selected for the test. The larva was considered healthy if it appeared physically normal and crowded actively.

Ten 6th instar larvae were placed per cup for each prepared concentration as well as the control and kept at the previous laboratory conditions.

Mortality, larval weight, food consumed and larval feces weight were recorded daily. The difference between the amount of food

consumed and feces produced during the larval instar is the weight of food digested, (800 HOO and Frankle, 1965).

RESULTS AND DISCUSSION

Chinaberry fractions incorporated into meridic diet at the rates of 5, 10 and 30% (Wt./Wt.) affected the survival, development and growth rate of the 6th instar larvae of the cotton leafworm S.littoralis (Table 6). The 6th instar larvae underwent larval/pupal moult in 7 days. Larvae developed at a slower rate in various preparations of chinaberry regardless of the concentration of the tested fraction. The larvae reached the pupal stage within 10 days when maintained on diet mixed either whole fruit pulp or seed meal (roasted and unroasted); this period was 9 days using the different concentrations of the acidified roasted seeds. On the other hand, the free oil pulp did not affect the rate of development of the larvae at any of the used concentration (7 days as the control).

Larvae which survived to the pupal stage differed widely according to the chinaberry preparation and concentration, and ranged from 90% for the control to 0% for the seed meal. Both roasted and unroasted seed meals inhibited the normal formation of the pupae at the concentration of 10 and 30% and the unroasted seed meal at the low concentration of 5%. The other preparations including the whole fruit pulp, free oil pulp and acidified roasted seed affected the survival of the larvae in a lesser extent, mainly, with the highest concentration (30%).

Whole fruit pulp of chinaberry caused a high percent of mortality ranged from 66.67% to 88.89, according to the used concentrations.

The highest percent of mortality occurred in the 7th day of the larval instars when the food was treated with 10 and 30% of the whole pulp, (Table 1). When the food was treated with 5% of the whole pulp, the highest mortality was obtained in the 10th day (Table 1). On the contrary, the free oil pulp, acidified roasted seeds and roasted seed

meal preparations of chinaberry caused a low percent age of mortality which ranged from 10 to 30% in the first two concentrations (5 & 10%) while the third concentration (30%) caused 60:65% mortality (Tables 2, 3, 4).

The roasted seed meal gave the same percentages of mortality which were obtained by the whole pulp preparation (Tables 1 & 5).

According to the mortality percentages recorded in Tables 1, 2, 3, 4 and 5, it could be concluded that the different treatments of the chinaberry fruits (heating, acidifying and roasting) decreased the toxicity factors in these preparations.

Comparisons of larvae fed on diets mixed with various preparations of chinaberry were made on the basis of the weight gain per larva in relation to the average weight of the larva at the beginning and end of the fifth instar. The average weight gain was higher than the control especially for the low concentration (5%) of the acidified roasted and free oil pulp. However, the high concentration (30%) of all chinaberry preparations decreased significantly the larval weight gain.

In conclusion, these results suggest that the active principle of chinaberry fruit is present mainly in the seeds and that heat treatment of the seeds (roasting) did not affect greatly the compound(s). The activity of the chinaberry seeds seemed to be similar to that of the neem-seeds (Prabhaker et al. 1986) where mortality occurred mostly during ecclysis. Thus the action of chinaberry seed meal acts in a manner close to the action of insect growth regulators (Ascher and Nemmy, 1984; Jones, 1984; Ladd et al., 1984 and Weaver, et al., 1984) and similar to the neem seed extract(Prabhaker et al., 1986).

REFERENCES

- Ascher, K.R.S. and N.E. Nemmy (1984). The effect of CME 134 on Spodoptera littoralis eggs and larvae. Phytoparasitica, 12: 13-27.
- El-Defrawi, M.E., A. Toppozada, N. Mansour and M. Zeid (1964). Toxicological studies on the Egyptian cotton leafworm, Prodenia litura. I- Susceptibility of different larval instars of Prodenia to insecticides. J. Econ. Entomol. 57: 591-593.
- Hegazi, E.M., A.M. El-Minshawy and S. Hammad (1977). Mass rearing of Egyptian cotton leafworm Spodoptera littoralis (Boisd.) on semi-artificial diet. Proc. 2nd Arab Pestic. Conf. Tanta Univ-Egypt.
- Jacobson, M. (1981). Neem research in the U.S.D.A, Chemical, biological and cultural aspects. Proceedings of the 1st International Neem Conference, German Agency for Technical Cooperation, Eschborn. pp. 33-42.
- Jacobson, M., J.B. Stokes, J.D. Warthen, R.E. Redfern, D.K. Reed, R.E. Webb and L. Telck (1983). Neem research in USDA: an up-date.

 Proceedings 2nd Int. Neem Conf., Rauishlozausen, pp. 31-42.
- Jones, S.C. (1984). Evaluation of two insect growth regulatros for the bait-block method of subterranean termite (Isoptera: Rhinotermitidae) control. J. Econ. Entomol. 77: 1086-1091.
- Ladd, T.L., M. Jocobson, and C.R. Burift (1978). Japanese beetles.
 extracts from neem seeds as feeding deterrents. J. Econ.
 Entomol. 71: 810-813.

- Ladd, T.L., J.D. Warthen and M.G. Klein (1984). Japanese beetle

 (Coleoptera: Scarabaeidae). The effects of azadirachtin on
 growth and development of the immature forms. J. Econ. Entomol.

 77: 903-905.
- McMillan, W.W., M.C.B. Bowman, R.L. Burton, K.J. Starks and B.R. Wiesman (1969). Extract of chinaberry leaf as a feeding deterrent and growth retardant for larvae of the corn earworm and fall armyworm. J. Econ. Entomol. 62: 708-710.
- Prabhaker, N., D.L. Coudriet, A.N. Kishaba and D.E. Megerdirk (1986).

 Laboratory evaluation of Neem seed extract against larvae of
 the cabbage looper and beet armyworm (Lepidoptera:Noctuidae)

 J. Econ. Entomol. 79: 39-41.
- Saleh, R.S. and Y. Moharam (1987): Studies on the oil of the Egyptian chinaberry ecotype, Melia azadarach L. (In Press).
- Soo Hoo, C.F., and G. Frankel (1965). The consumption, digestion and utilization of food plants by a polyphagous insect, Prodenia eridania (Cramer). J. Insect Physiol. 12, 711-730.
- Warthern, J.D. (1979). Azadirachta indica: Source of insect feeding inhibitors and growth regulators, U.S. Dept. Agric., ARM-NE-4.
- Weaver, J.E., J.W. Begley and V.A. Kondo (1984). Laboratory evaluation of alsystin against the German Cockroach (Orthaptera: Blattellidae): effects on immature stages and adults sterility. J. Econ. Entomol. 77: 313-317.

Table 1- The effect of the whole pulp of Melia azadarach on the successful development, digestability and larval weight of S.littoralis 6th instar larvae to the pupal stage.

Conc.	Days after treat- ments	% morta- lity	x food consumed in mg/ larva	ж feces in mg/ larva	Digesta- bility		% sur- vival larvae	% prepupae
5%	1	0	211	5.6	97.35	143	100	0
	2	0	220	27.8	87.36	192	100	0
	3	0	164	34.4	79.02	221	100	0
	4	0	168	53.3	68.27	247	100	0
	5	33.33	213	70.0	67.32	297	66.67	0
	6	44.44	120	54.0	55.00	348	55.56	O
	7	44.44	118	32.0	72.88	320	55.56	О
	8	55.56	33	20.0	39.39	330	44.44	O
	9	55.56	13	17.5	23.91	325	44.44	0
	10	77.78	20	15.0	25.00	380	22.22	О
	1.1	77.78	20	15.0	25.00	310	22.22	О
	12	77.78	10	10.0	0.00	285	22.22	0
	13	-	-	- *	-	~	~	22.22
10% =	1	00	437.8	50.0	88.58	271.1	100	0
	= 2	11.11	513.8	128.8	74.93	342.5	88.09	0
	3	22.22	132.9	78.6	40.86	411.4	77.78	0
	4	44.44	132.2	84.0	36.46	405.0	55.56	0
	5	55.56	105.0	80.0	23.81	465.0	44.44	0
	6	55.56	212.5	50.0	76.47	435.0	44.44	0
	7	66.67	116.7	30.0	74.29	343.3	33.33	11.11
	8	66.67	70.0	10.0	85.71	253.3	33.33	11.11
	9	66.67	30.0	10.0	66.67	240.0	33.33	11.11
	10	-	-	- *	-	-	-	44.44
30%	1	0	318.9	35.6	88.84	153.3	100	()
,	2	11.11	302.5	43.8	85.52	160.0	88.09	O _i
	3	44.44	66.0	30.0	54.54	212.0	55.56	0
	4	77.78	150.0	75.0	50.00	215.0	22,22	0
	5	77.78	110.0	70.0	56.36	290.0	22.22	0
	6	77.78	90.0	55.0	38.89	250.0	22.22	0
	7	88.89	210.0	60.0	71.43	380.0	11.11	0
	8	88.89	110.0	30.0	72.73	300.0	11.11	0
	9	88.89	60.0	30.0	50.00	260.0	11.11	0
	10	88.89	50.0	30.0	40.00	240.0	11.11	0
	11 12	-]	-	- % - *	-		-	0 1 1.11
					1	Ð 9	_	11.11
Contro		0	530.0	126.0	76.22	228.0	100	0
	2	0	408.0	145.0	64.46	450.0	100	0
	3	9	462.0	251.0	45.67	534.0	100	0 ,
	4	Q	500.0	421.0	15.80	600.0	100	. 0
	5	12	533.0	280.0	47.47	631.0	100	0
	6 =	10	140.0	16.0	88.57	630.0	90	90

^{*} The larvae were fasting.

Table 2- The effect of the free oil pulp of Melia azadarach on the successful development, digestability and larval weight of S.littoralis 6th instar larvae to the pupal stage.

Conc.	Days after treat- ments	% Morta- lity	x food consumed in mg/ larva	x feces in mg/ larva	Digesta- _bility	x larval weight in mg.	% sur- vival larvae	% prepupa
				5,53	***************************************			
5%	1	0	386	53	86.3	313	100	0
J/5	2	0	375	177	52.8	443	100	0
	3	10	266	119	55.3	463	90	0
	4	20	924	258	72.1	686	80	0
	5	20	331	179	45.9	616	80	0
	6	20	243	193	20.6	463	80	50
	7	30	100	40	60.0	670	70	60
	8	-	-	-	-	_	_	70
10%	1	0	444	55	87.6	361	100	0
	2	0	378	115	69.6	494	100	0
	3	10	198	102	48.5	498	90	0
	4	10.	683	250	63.4	760	90	0
	5	10	352	337	4.3	508	90	0
	6	10	600	230	61.7	340	90	80
	6 7	-	**	-	-	04	-	9C
30%	1	0	390	40	89.7	328	100	0
30%	1 2	0	64	62	3.1	306	100	0
	3	0	166	76	54.2	286	100	0
	4	20	163	75	54.0	305	80	O
	5	60	170	80	52.9	385	40	0
	6	60	110	65	40.9	340	40	0
	7	60	55	45	18.2	280	40	0
	8	-	-	-	_	-	-	40

Table 3- The effect of the free oil pulp of Melia azadarach on the successful developmental, digestability and larval weight of S.littoralis 6th instar larvae to the pupal stage.

Con c.	Days after treat- ments	% Morta- lity	x food consumed in mg/ larva	x feces in mg/ larva	Digesta- bility	x larval weight in mg.	% sur- vival larvae	%% prepupa
						X-		
5%	1	0	222	22	90.1	193	100	0
370	2	0	889	79	88.9	281	100	0
	3	0	263	89	62.7	378	100	0
	4	11.11	329	173	47.4	426	88.89	0
	5	11.11	446	156	65.0	530	88.89	11.11
	6	11.11	622	208	66.6	680	88.89	33.33
	7	22.22	184	156	15.2	496		
	8	33.33	640	254	60.3	645	77.78	33.33
	0	33.33	040	234	00.3	040	66.67	55.56
10%	1	0	372	37	90.1	266	100	0
	2	0	411	102	75.2	429	100	0
	3	0	2 98	18	94.0	488	100	0
	4	0	697	321	53.9	743	100	0
	5	· O	331	200	13.4	596	100	0
	6	0	502	360	28.4	480	100	66.67
*	7	-	ess			~	en .	100
109	,		477					
20%	1	0	477	52	89.1	230	100	0
	2	0	300	77	74.3	262	100	0
	3	0	148	55	62.8	275	100	0
	4	0.	128	68	46.9	273	100	0
	5	16.67	148	56	62.2	288	83.33	0
	6	16.67	114	52	54.4	274	83.33	0
	7	33.33	113	20	82.3	278	66.67	0
	8	66.67	695	25	96.4	400	33.33	0
	9	-	-	~	-	-	-	.22.22

Table 4- The effect of the roasted seed meal of Melia azadarach on the successful development, digestability and larval weight of S.littoralis 6th instar larvae to the pupal stage.

Conc.	Days after treat-	% Morta- lity	x food consumed in mg/ larva	x feces in mg/ larva	Digesta- bility	x larval weight in mg.	% sur- vival larvae	% prepupae
5%	1	0	244	7	71.3	174	100	0
	2	0	302	43	85.8	253	100	0
	3	0	290	81	72.1	367	100	Ö
	4	0	304	129	57.6	402	100	0
	5	11.11	286	127	55.6	496	88.89	11.11
	6	11.11	414	154	82.8	557	88.89	22.22
	7	22.22	200	175	12.5	475	77.78	44.44
	8	22.22	370	65	82.4	520	77.78	55.56
	9	22.22	520	90	82.7	330	77.78	55.56
	10	33.33	500	70	86.0	350	66.67	66.67
	11	-	-	-	-		-	-
.0%	1	0	278	12	95.7	172	100	0
	2	0	231	46	72.3	218	100	0
	3	0	188	54	71.3	276		0
	4	0	236	90	61.9	343	100	0
	5	22.22	141	93	34.0	386	100	0
	6	33.33	350	97	72.3	535	77.78 66.67	0
9	7	33.33	213	87	59.1	497	66.67	0
	8	33.33	308	110	64.3	524	66.67	
	9	33.33	275	50	81.8	320	66.67	11.11
	10	55.56	185	45	75.7	330	40.44	11.11 22.22
		43.33	103	73	73.7	330	40,44	22.22
0%	1	0	100	14	86.0	159	100	0
	2	0	231	24	69.6	162	100	0
	3	0	93	20	78.5	166	100	0
	4	22.22	153	37	75.8	194	77.78	0
	5	44.44	70	26	62.9	230	55.56	00
	6_	44.44	172	60	65.1	232	55.56	0
	7	44.44	164	64	61.0	216	55.56	O
	8	66.67	67	17	74.5	263	33.33	0
	9	66.67	25 °	15	40.0	485	33.33	0
	10	66.67	20	10	50.0	490	33.33	0
	11	66.67	25	10	60.0	180	33.33	0
	12	66.67	15	5	66.7	185	33.33	0
	13	66.67	15	5	66.7	185	33.33	0
	14	-	-	•	-	-	-	22.22

Table 5- The effect of the roasted seed meal of Melia azadarach on the successful developmental, digestability and larval weight of S.littoralis 6th instar larvae to the pupal stage.

Conc.	Days after treat- ments	% Morta- lity	x food consumed in mg/ larva	x feces in mg/ larva	Digesta- bility	x larval weight in mg.	% sur- vival larva	% prepupae
5%	_1	0	2 69	19	92.9	196	100	0
	2	O	346	32	89.0	242	100	0
	3	33,33	162	58	64.2	345	66.67	0
	4	55.56	170	55	57.6	415	44.44	0
	5	55.56	238	53	77.7	381	44.44	0
	6	66.67	50	37	26.0	410	33.33	0
	7	77.78	. 75	65	13.3	400	22.22	0
	8	88.89	400	20	95.0	670	11.11	0
	9	88.89	110	50	54.5	500	11.11	0
	10	88.89	900	30	96.7	400	11.11	0
	11	-	-	-	-	_		11.11
10%	J 1	0.	299	17	94.3	166	100	0
	2	11.11	186	26	86.0	193	88.89	0
	3	11.11	108	18	83.3	191	88.89	0
	4	55.56	158	33	79.1	275	44.44	0
	5	77.78	360	20	94.4	365	22.22	0
	6	77.78	315	40	87.3	305	22.22	0
18	7	77.78	200	35	82.5	260	22.22	0
	8	77.78	600	5	98.3	230	22.22	0
	9	88.89	~		<u>~</u>	280	11.11	0
	10	88.89	~	-	_	170	11.11	0
	11	n 3 - n	-	-	-	-	-	11.11
30%	1	0	452	10	97.8	153	100	0
	2	55.56	288	45	84.4	248	44.44	0
	3	77.78	170	30	82.3	390	22.22	0
	4	88.39	430	60	86.0	510	11.11	0
	5	88.89	330	20	93.9	440	11.11	0
	6	88.89	100	60	60.0	400	11.11	0
	7	88.89	120	20	83.3	360	11.11	0
	8	88.89	-*	-	-	280	11.11	0
	9	88.89	# :	-	2	250	11.11	0
	10	-	64	TE VA	190	+		11.11

^{*} The larvae were fasting.

Table 6- Weight gain, development and survival of Spodoptera lirroralis 6th instar larvae reared on diet treated with chinaberry preparations.

Chinaberry preparation and conc. (%)in diet	Average weight gain per larva (mg.)	Average developmental time (days)*	Average % pupation	
Whole pulp	»*			
5	193.6	10	22.2	
10	179.2	10	22.2	
30	92.3	10	11.1	
Free oil pulp				
5	487.2	7	70.0	
10	335.7	7	80.0	
30	167.0	7	20.0	
Acidifies roas	ted seed			
5	531.9	9	44.4	
10	447.3	9	55.5	
30	118.0	9	16.6	
Roasted seed m	eal			
5	387.1	10	33.3	
10	385.0	= 71 %	0.0	
30	73.2	- **	0.0	
Unroasted seed				
5	238.9	10	0.0	
10	155.0	- **	0.0	
30	153.2	~ % *	0.0	
Control	403.0	7	90	

^{*} From the beginning to the end of 6th larval stage.

AN IN

** Failed to reach the pupal stage.

بسم الله الرحمن الوحيـــم

- " تقييم معملى للتحضيرات المختلفة من نهات الزنزلخت وذلك على يرقيات المحتلفة من نهات الزنزلخت وذلك على يرقيات
- د و فادية الزغبي * و د و رشدى صالــــ * * د و لسامـة الانصــاري *
 - * كلية الزراعة _ جامعة الاسكندرية النهات
 - ** كلية الزراعة جامعة طنط--ا قدم وقاية النهات،

لقد تمت دراسة التحضيرات المختلفة من ثمار نهات الزنزلخت على السر اليرقى الساد س ليرقات دودة ورق القطن و ولقد ثم خلط هذه التحضيرات كل على حدة وذلك على البيئة الصناعية وذلك بتركيزات كانت و و و و و و و و لك بنسبة وزن لوزن و ولقد أدى ذلك الى اطالة فترة النبو والتطور كذلك سببت نقص في وزن البرقات المتوقع و وقد أدت المعاملة بكل من البذور المحمصة والغير محمسة الى منع تكوين العذارى وذلك بغير النظر عصدن التركيزات للمختبرة و قد وجد أن نشاطات التحضيرات المختلفة للزنزلخت مشابهة لنشاط كل من بذور نهات النبم وكذلك لمنظمات النبوالحشرية و