10.21608/avmj.2025.384590.1708

Assiut University web-site: www.aun.edu.eg

ISOLATION AND CHARACTERIZATION OF AEROMONAS VERONII FROM NATURALLY INFECTED NILE TILAPIA

MANAR M. ABDELALEEM ^{1,2}; AWATEF HAMED HAMOUDA ²; WALAA F.A. EMEISH ¹ AND KARIMA A. BAKRY ¹

Received: 12 May 2025; Accepted: 13 June 2025

ABSTRACT

Aeromonas species are common pathogens that induce significant economic losses in aquaculture. This study investigated Aeromonas infection in cultured Nile tilapia (Oreochromis niloticus) in Qena Province, Egypt, with fifty fish were sampled. Bacteriological examinations as well as a molecular-based approach with 16S ribosomal DNA sequences were used. Moreover, a challenge experiment was conducted to assess the pathogenicity of the isolated Aeromonas. Clinical findings of the naturally infected fish were characterized by generalized septicemic signs of hemorrhagic ulcerations, ascites, and exophthalmia. Based on morphological, biochemical, and molecular characterization, 30 isolates (60% prevalence) of Aeromonas were identified in internal organs. The 16S rDNA gene sequencing and phylogenetic analysis confirmed the identity of the isolated Aeromonas as A. veronii. Four sequenced A. veronii displayed 99.92% and 99.84% identity with the 16S rDNA gene of A. veronii species available in the GenBank database, accession numbers MT302825 and KC633849, respectively. The phylogenetic position of the nucleotide sequences identified here were clustered with other fish-infecting A. veronii. Results of the waterborne challenge experiment revealed that the A. veronii (accession number PV495274) produced mortality rate of 75.6 % with the same clinical picture as the naturally infected fish. Findings herein concluded that A. veronii is a predominant pathogen in tilapia aquaculture in Qena Province and the biochemical and genomic characterization providing critical data for disease management. The study highlights the need for targeted surveillance and control measures against Aeromonas infections in this economically vital sector.

Keywords: Oreochromis niloticus; motile aeromonas septicemia; fish mortality; bacterial isolation; 16S rDNA gene sequencing; phylogenetic analysis.

INTRODUCTION

Egypt dominates African aquaculture production, with Nile tilapia (O. niloticus)

Corresponding author: Walaa F.A. Emeish E-mail address: ewalaa@vet.svu.edu.eg
Present address: Department of Fish Diseases, Faculty of Veterinary Medicine, South Valley University, Qena 83523, Egypt

representing its primary cultivated species. Globally, Egypt ranks among the leading tilapia producers, surpassed only by China and Indonesia while exceeding production in Thailand, Bangladesh, and the Philippines with an annual yield of 1.11 million metric tons in 2020, tilapia emerged as Egypt's predominant farmed fish species and the world's second most cultivated fish following

¹ Department of Fish Diseases, Faculty of Veterinary Medicine, South Valley University, Qena 83523, Egypt

² Department of Fish Health and Diseases, Faculty of Fish and Fisheries Technology, Aswan University, Aswan 81528, Egypt.

various carp species (FAO, 2022). Notably, the domestic market consumes approximately 97.5% of Egypt's tilapia output, with exports totaling merely 28,110 metric tons in 2020 (GAFRD, 2020). Industry value chain tilapia assessments identify the aquaculture, cornerstone of Egyptian complemented by mullet as the secondary species in private aquaculture operations (Eltholth et al., 2015).

classified within the Aeromonas. Gammaproteobacteria class (Aeromonadales order, Aeromonadaceae family), comprises facultatively anaerobic, motile, non-sporeforming, Gram-negative rods (Dias et al., 2012; Piotrowska and Popowska, 2014). Traditional taxonomy divided Aeromonas into two phenotypic groups: (1) motile mesophiles (e.g., A. hydrophila and A. veronii) with optimal growth at 35-37 °C and zoonotic potential, and (2) non-motile psychrophiles (e.g., A. salmonicida) thriving at 22-28 °C with piscine specificity (Saavedra et al., 2006). Contemporary genomic substantially analyses have revised Aeromonas taxonomy, expanding the genus to 36 validated species through both novel discoveries reclassification and (Fernández-Bravo and Figueras, 2020). Our previous study concluded that the cause of motile aeromonas septicemia and mortality in summer season in Qena Province was A. veronii (Bakry and Emeish, 2022).

The classification of *Aeromonas* has been further refined using 16S ribosomal RNA sequencing, DNA-DNA hybridization, and whole-genome sequencing. These methods have revealed significant phenotypic and genotypic heterogeneity within the genus, complicating species identification (Janda and Abbott, 2010; Chenia, 2016).

Motile aeromonas septicemia (MAS) is one of the most significant diseases affecting Nile tilapia, characterized by high mortality rates and severe clinical signs. Infected fish often exhibit external ulcerations, abdominal swelling, hemorrhagic septicemia, and

darkening of the skin (Dong et al., 2017; Haenen et al., 2023).

In Egypt, unexplained mortalities in tilapia farms during summer months have been linked to *Aeromonas* infections. Affected fish show red sores on the skin, loss of activity, and hemorrhagic fins, with severe cases exhibiting abdominal dropsy and detached scales (El Asely *et al.*, 2020; Abdelsalam *et al.*, 2021). These outbreaks result in significant financial losses due to fish mortality and reduced marketability of survivors.

Thus, the aim of this study was to isolate, phenotypically characterize, and molecularly identify *Aeromonas* pathogens associated with septicemia in farmed Nile tilapia (*O. niloticus*) from Qena Province, Egypt, using *16S rDNA* gene analysis. Moreover, challenge experiment was conducted to assess the pathogenicity of the isolated *Aeromonas* species.

MATERIALS AND METHODS

- **1. Ethical statement:** This research adhered to established ethical standards for animal studies and was approved by the Ethical Research Committee of the Faculty of Science at South Valley University in Qena, Egypt (Approval No. 010/12/24).
- 2. Fish sampling and clinical examination: Fifty Nile tilapia with body weight of 25-30 g showing septicemic signs were purchased from private fish farm in Qena Province, Egypt. Fish were transported to the Aquatic Diagnostic Laboratory, Faculty of Veterinary Medicine, and South Valley University in fiberglass tanks. Nile tilapia underwent clinical examination to document visible clinical signs and postmortem lesions, following the protocols described by Noga (2010).
- **3. Bacterial isolation**: After surface sterilization and fish dissection, sterile inocula were collected from the spleen, and kidneys. These inocula were directly cultured onto tryptic soy agar (TSA; Oxoid, England)

and incubated at 28°C for 48 hours. Dominant colonies were purified on fresh TSA. Suspected Aeromonas isolates were subcultured on Aeromonas Isolation Medium (HiMedia, India) with Aeromonas selective supplement (FD039) and incubated at 26 °C for 24 hours. After incubation, individual colonies were restreaked into fresh selective media and reincubated under identical conditions, where dark green, opaque with dark centers colonies were presumptively considered to be Aeromonas. Isolates were preserved in Brain Heart Infusion (BHI; Oxoid, England) broth supplemented with 20% glycerol and stored at -80 °C for future analysis.

4. Conventional identification of the suspected isolates:

Bacterial isolates were identified using biochemical phenotypic and standard methods, as described by Austin and Austin bacterial The isolates (2016).were phenotypically characterized through comprehensive biochemical profiling and morphological analysis. Initial assessment included examination of colony morphology and Gram staining characteristics. Metabolic evaluated characters were through cytochrome oxidase activity (using oxidase test strips) and catalase reaction with 3% hydrogen peroxide. Motility was determined via semisolid agar inoculation, carbohydrate metabolism was assessed using triple sugar iron agar for fermentation patterns. Additional biochemical included citrate utilization (Simmons' citrate agar), esculin hydrolysis (bile esculin agar), and nitrate reduction capacity. Furthermore, indole production (Kovac's method), Voges-Proskauer, and methyl red tests. The isolates were further characterized for hydrogen sulfide production, capability to grow in 5 and 10% NaCl, and susceptibility to the vibriostatic agent O/129 (150 μg/mL; Oxoid)

5. Molecular identification of suspected isolates

5.1. DNA extraction: Genomic DNA was extracted from isolates using the GeneJET Genomic DNA Purification Kit (Thermo

Scientific, EU), following the manufacturer's protocol, and stored at -20 °C until analysis. The purity and the concentration of the extracted DNA were measured using a NanoDrop Lite spectrophotometer (Thermo Scientific).

5.2. PCR amplification: The extracted DNA was subjected to polymerase chain reactions (PCR) assay to amplify the 1502 base-pair (bp) hypervariable segment of the Aeromonas 16S rDNA gene using genus-specific primers 16S rDNAAGAGTTTGATCATGGCTCAG 3' and 16S-rDNA R GGTTACCTTGTTACGACTT 3' according to Borrell et al. (1997). The PCR reactions were carried out in a total volume of 50 µl which consisted of 25 µl Cosmo PCR Red Master Mix (Willowfort, UK), 2 µl of each primer, 4 µl template DNA and 17 µl H₂O (RANase /DNase free).

The PCR amplification was performed in the CFX96 Real-Time PCR Detection System starting with an initial denaturation step at 93 °C for 3min and followed by 35 cycles consisted of denaturation at 94 °C for 1min, annealing at 56 °C for 1min, an extension step at 72 °C for 2 min, and a final extension step at 72 °C for 10 min. Negative controls to which no template DNA was added, were also included in every set of reactions.

- **5.3. Analysis of the PCR products**: After electrophoresis in 1.5% agarose gel and ethidium bromide staining, PCR products were visualized using UV transillumination. 100 bp DNA plus ladder (Qiagen, GmbH) was used to determine the fragment sizes.
- **5.4. Sequencing of** *16S rDNA* **gene:** For identification of the isolates at the species level, amplified DNA fragments of four suspected *Aeromonas* were gel-purified using the Zymoclean Gel DNA Recovery Kit (Zymo Research, USA) following the manufacturer's protocol. Macrogen Inc. (Seoul, South Korea) commercially sequenced purified amplicons. *16S rDNA* gene sequences were trimmed and edited

using the biological sequence alignment editor, BioEdit software. The nucleotide sequences obtained were analyzed using Basic Local Alignment Search Tool (BLASTn;

http://www.ncbi.nlm.nih.gov/BLAST/) to establish sequence similarities (Altschul *et al.*, 1997) against the GenBank database. Sequences of the four *A. veronii* isolates were deposited in the GenBank database and assigned the accession numbers PV495274, PV495275, PV495276, and PV495277.

5.5. Phylogenetic analysis: Sequences with higher identities, query cover of 100%, E-

value of zero and isolated from different fish species were downloaded from the GenBank for phylogenetic analysis of *A. veronii* (Table 1). The evolutionary history was inferred by using the Maximum Likelihood method and Tamura-Nei model (Tamura and Nei, 1993). Sequences were aligned using the Muscle alignment tool and evolutionary analyses were conducted in MEGA11 software as per Tamura *et al.* (2021). The alignment length used for phylogenesis was 1274 bp. Bootstrap confidence values were calculated with 1000 repetitions and the analysis involved 14 nucleotide sequences.

Table 1: Aeromonas species used for phylogenetic tree construction

Accession number	Organism	Host origin	Infected organ	Locality
PV495274	Aeromonas veronii	Oreochromis niloticus	Internal organs	Egypt, Qena
PV495275	Aeromonas veronii	Oreochromis niloticus	Internal organs	Egypt, Qena
PV495276	Aeromonas veronii	Oreochromis niloticus	Internal organs	Egypt, Qena
PV495277	Aeromonas veronii	Oreochromis niloticus	Internal organs	Egypt, Qena
MT302825.1	Aeromonas veronii	Clarias gariepinus	Gut	-
KC633849.1	Aeromonas veronii	Goldfish	-	-
OQ217596.1	Aeromonas sp.	Aquaculture water (Sea bass)	-	South China
KT364222.1	Aeromonas sobria	Clarias fuscus	Heart	-
KC884671.1	Aeromonas veronii	Diseased fish	-	-
ON383477.1	Aeromonas veronii	Tilapia	Pune Hatchery Fry	-
MT661567.1	Aeromonas sp.	Fresh aquaculture pond (Hyriopsis cumingii)	-	-
KM585590.1	Aeromonas sp.	Zebrafish	Intestine	-
MG063196.1	Aeromonas veronii	Ornamental fish	-	China
ON606317.1	Aeromonas veronii	Wetland (<i>Lebeo catla</i>)	-	-

6. Pathogenicity of the *A. veronii* isolated to Nile tilapia

6.1. Fish husbandry conditions: Apparently healthy juveniles Nile tilapia (average weight, 20 ± 0.5 g) was obtained from stocks maintained at the aquatic laboratory of the

Faculty of Veterinary Medicine, South Valley University and acclimated for 15 days in 260 L tanks. No clinical signs or mortalities were observed during the acclimation period. Prior to the challenge experiment, 10 randomly selected fish were subjected to

bacteriological screening to verify that all fish were negative for *Aeromonas* infection.

Throughout the experiment, tanks were supplied with dechlorinated freshwater, and the water quality parameters were maintained as follows: temperature was 28 ± 1 °C, dissolved oxygen was 7.3 mg/L, and pH was 7.0. The photo period was set to 12 h light / dark intervals. Fish were fed once a day to apparent satiation with a pelleted commercial tilapia feed (Skretting).

6.2. Experimental design and waterborne challenge:

Nile tilapia (n= 90), apparently healthy and devoid of any signs of infection, were distributed in 120-L fiberglass tanks where they were divided into two groups (n=45 / group) with three replicates per group (n=15 / replicate), the first is bacterial challenge group for clinical signs and mortality records, and second one is the mock control group.

Before the actual challenge experiment, A. *veronii* (accession number PV495274) was passed three times in healthy Nile tilapia through IP injection of 0.1 mL of culture (\sim 1 x 10^9 CFU/mL).

The most appropriate challenge dose used in the experiment was established based on the mortality rate recorded in a waterborne prechallenge experiment (data not shown). Briefly, bacteria were grown in 1 liter of TSB with shaking (200 rpm) at 28°C until they reached mid-log phase (18 hr). The CFU of bacterial counts was determined using a standard plate count method following 10-fold serial dilutions as previously described (Miles *et al.* 1938).

For the actual challenge, fish in the challenge group were immersed in A. veronii suspension (1 × 10⁷ CFU/mL) for 1hr, with continuous aeration. Mock control fish underwent the same procedure but were exposed only to sterile TSB medium. After exposure, all fish monitored twice daily for signs of illness or death over 14 days.

Freshly dead fish were bacteriologically examined to re-isolate and confirm the infection by *Aeromonas* from the internal organs. Identification of re-isolated bacteria was conducted by the molecular approaches as described above.

RESULTS

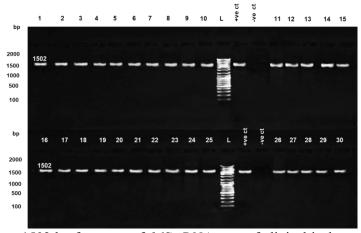
1. Clinical signs and post-mortem findings in suspected infected Nile tilapia

Suspected fish exhibited generalized signs of septicemia. Clinical examination revealed hemorrhagic lesions with associated scale detachment and erythema, particularly in the opercular region and fin bases. Severe hemorrhagic ulcerations were observed in the musculature, accompanied abdominal distension (ascites), hemorrhagic protruded anal opening, exophthalmia and corneal clouding. Necropsy findings indicated generalized visceral congestion, hemorrhagic enteritis, hepatomegaly with gall bladder distension, and hemoperitoneum (Fig. 1).

2. Morphological and biochemical identification of isolated bacteria

Bacterial cultures isolated from infected specimens developed circular, convex, glossy colonies with a cream-colored appearance on Tryptic Soy Agar (TSA). Gram staining and light microscopy confirmed the presence of Gram-negative, rod-shaped Conventional biochemical testing revealed consistent profiles across all isolates, demonstrating positive reactions for oxidase, catalase, motility, indole production, glucose fermentation with gas production, esculin hydrolysis, nitrate reduction, and the methyl red test. Negative results were obtained for the Voges-Proskauer test, H₂S production, and citrate utilization, and couldn't grow on media containing 5 and 10% NaCl. All isolates exhibited resistance to the vibriostatic agent O/129 (150 μg), a key feature differentiating Aeromonas from Vibrio sp. (Table 2). Growth on Aeromonas Isolation Medium Base

Aeromonas selective supplement (FD039) produced colonies of dark green opaque with dark centers that were characteristic of the genus *Aeromonas*. These morphological and biochemical characteristics supported the taxonomic classification of all isolates within the *Aeromonas* genus according to the criteria established in Bergey's Manual of Systematic Bacteriology (Martin-Carnahan *et al.*, 2005). Among the 50 Nile tilapia examined, biochemical analysis identified *Aeromonas* sp. in 30 cases, yielding a prevalence rate of 60%.


3. Polymerase chain reaction

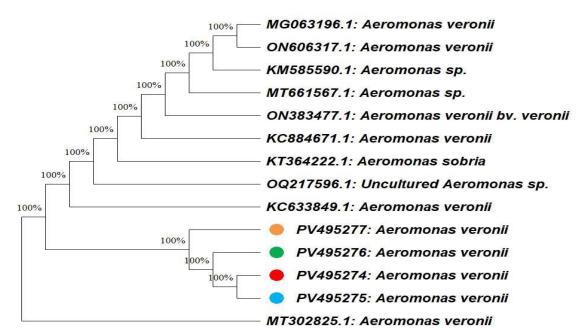
Molecular analysis confirmed the presence of *Aeromonas* through successful PCR amplification of a 1502 bp *16S rDNA* gene segment in 30 isolates (60% prevalence rate), as shown in **Fig. 2.**

Table 2: Conventional biochemical characteristics of the suspected *Aeromonas* isolates

Test	Reaction	
Gram stain	-	
Motility	+	
Oxidase	+	
Catalase	+	
Indole	+	
Glucose with gas	+	
H ₂ s production	-	
Voges-Proskauer	-	
Nitrate reduction	+	
Esculin hydrolysis	+	
Methyl red	+	
Citrate utilization	-	
Growth on 5 and 10% Nacl	-	
Resistance to vibriostatic agent O/129	Resistant	

Note: + means positive; - means negative

Figure 2: Amplifying a 1502 bp fragment of *16S rDNA* gene of clinical isolates of *Aeromonas* using Aeromonas-specific primers. L: 100 bp ladder, Lane 1-30: Clinical isolates of the present study, +ve ct: Positive control, -ve ct: No-template control.


4. Sequence analysis and phylogenesis of the *16S rDNA* gene

Sequencing of the *16S rDNA* gene of four isolates of *Aeromonas* sp. resulted in 1272, 1276, 1278 and 1282 bp valid sequences which revealed higher similarity with different *Aeromonas* sp. sequences available in GenBank. For example, the greatest sequence identity of 99.92% was with *A. veronii* (accession number MT302825) isolated from the gut of *C. gariepinus*, and

99.84% with *A. veronii* (accession number KC633849) isolated from goldfish. The *16S rDNA* sequences obtained from four isolates were deposited in the GenBank database using Bankit submission tool and given the accession numbers PV495274, PV495275, PV495276, and PV495277 of the 1272, 1276, 1278 and 1282 bp valid sequences, respectively.

Based on 16S rDNA sequence data, construction of the phylogenetic tree using maximum likelihood algorithms demonstrated splitting of the tree into 2 major clades which mainly contain A. veronii which are isolated from various fishes (Fig. 3). One clade is further divided into 2 subclades, one

comprising organisms infecting various fish species and the other subclade clustered *A. veronii* species of the present study. The other clade only clustered *A. veronii* (accession number MT302825) which showed the highest sequence identity with the sequences of the present study.

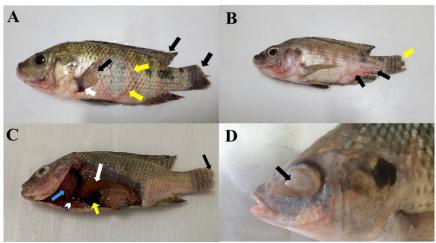


Figure 3: Un-rooted maximum likelihood phylogenetic tree showing the relationship between *Aeromonas veronii* described in this study and the closest *Aeromonas* sequences from GenBank database based on *16S-rDNA* gene sequences. Numbers at branching points indicate bootstrapping confidence levels from maximum likelihood. GenBank accession numbers are listed beside the species name. The colored circles represent the species of the present study.

5. Clinical manifestations and mortality patterns in A. veronii-challenged Nile tilapia

Nile tilapia experimentally infected with A. veronii (accession number PV495274) began exhibiting clinical signs consistent with motile aeromonad septicemia (MAS) within 2 days post-challenge (dpc), with initial mortality observed at 12 hours postchallenge. Affected fish displayed external symptoms including petechial hemorrhages around the mouth, focal scale loss leading to ulcerative skin lesions, fin erosion, and exophthalmia, often accompanied by corneal opacity or ulceration. Internally, pathological findings included hemorrhagic septicemia, gall bladder distension, petechial hemorrhage and friable degeneration of visceral organs (Fig. 4).

Mortality dynamics followed a distinct pattern, peaking at 3 dpc and culminating in a 75.6% cumulative mortality rate (Fig. 5) at 6 dpc. No further deaths were recorded beyond 6 dpc, and surviving fish, including those initially showing clinical signs, recovered by 7 dpc and remained healthy until the trial's end. Bacteriological analysis veronii re-isolation confirmed A. moribund or freshly deceased specimens, with colonies verified through morphological and molecular methods as described above. In contrast, mock control groups remained asymptomatic throughout the study. The challenge trial was terminated at 14 dpc following 8 days without mortality, ensuring robust observational endpoints.

Figure 4: Gross pathology in experimentally infected Nile tilapia following 1 hour immersion challenge with 1x10⁷ cfu/mL of *Aeromonas veronii* (accession number PV495274): (A) Severe dermal lesions characterized by multifocal scale loss, ulcerative dermatitis (yellow arrows), hemorrhages at the base of the pectoral fin (white arrow) and sloughing of dorsal, pectoral, and caudal fins (black arrows). (B) Ventral hemorrhagic dermatitis with pronounced peri-anal and caudal peduncle involvement (black arrows), and progressive caudal fin erosion (yellow arrow). (C) Sloughing of the caudal fin (black arrow). Branchial hyperemia with filamentous congestion, indicating acute gill pathology (blue arrow), hepatomegaly with petechial hemorrhages (white arrow) and marked gallbladder distension (yellow arrow) and hemorrhages in the body cavity (arrowhead) suggesting systemic infection. (D) Bilateral exophthalmia with corneal opacity consistent with systemic septicemia (black arrow).

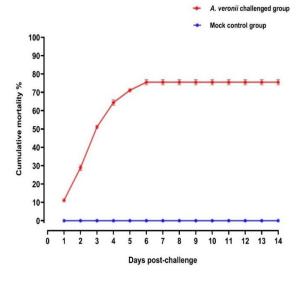


Figure 5: Percent mortality curves of Nile tilapia after 1hour immersion challenge with 1x10⁷ cfu/mL with *Aeromonas veronii* (accession number PV495274) and for mock control fish. Mortality was recorded for 14 days post-challenge. The percents represent the cumulative mortality of 3 tanks/treatment. Data is presented as the mean ± standard error of the mean (SEM).

DISCUSSION

Aeromonas is a significant pathogen in aquaculture, causing septicemia in fish and shellfish that often leads to mass mortality and substantial economic losses (Noga, 2010). Among the 36 documented species (Fernández-Bravo and Figueras, 2020), A. hydrophila, A. veronii, A. caviae, and A. jandaei are the primary species associated with MAS in fish (Janda and Abbott, 1998; Joseph and Carnahan, 2000). Previous study on Clarias gariepinus in Qena Province concluded that A. hydrophila, and A. veronii are the main causative agents of MAS (Emeish et al., 2018).

The clinical signs and post-mortem lesions of naturally infected fish revealed typical signs of septicemia, which aligns with the previously reported clinical manifestations. Acute infections often result in rapid fatal septicemia with minimal gross signs, while affected fish may exhibit skin reddening, exophthalmia, abdominal distension, and

fluid accumulation in scale pockets (Yardımcı and Aydın, 2011).

identification of Aeromonas Accurate isolates is fundamental for determining the dominant pathogenic species in Nile tilapia. Precise pathogen characterization supports epidemiological investigations, outbreak tracing, and the development of targeted control and treatment strategies. Molecular provide techniques the most reliable identification of fish pathogens, even during early infection stages, due to their rapid and precise diagnostic capabilities (Buller, 2004). In this study, 30 isolates were presumptively identified as Aeromonas through sp. conventional morphological and biochemical analyses, though species-level classification remained inconclusive. The bacterial genus was confirmed through 16S rDNA gene amplification applying Aeromonas-specific primers, following the protocol established by Borrell et al. (1997)

The present investigation identified 30 isolates as A. veronii, a globally distributed pathogen of significant concern in freshwater aquaculture systems. This bacterium has been extensively documented as a highly virulent agent in numerous piscine species (Sun et al., 2016; Zhang et al., 2018; Bakry & Emeish, 2022). This pathogen is associated with severe clinical manifestations, including hemorrhagic septicemia, necrotic ulcerations, generalized cutaneous pallor, abdominal distension (dropsy), and progressive necrosis of fin and tail tissues (Hassan et al., 2017; Hoai et al., 2019). Consistent with prior research, A. hydrophila and A. veronii are the most frequently detected Aeromonas sp. in fish and aquatic environments (Ottaviani et al., 2011; Emeish et al., 2018). While A. veronii predominates in both fish and water samples, A. hydrophila exhibits prevalence in diseased fish compared to healthy individuals (Hu et al., 2012). In contrast, A. sobria was the predominant species in diseased fish from Spain (Beaz-Hidalgo et al., 2010).

In this study, 16S rDNA amplification detected Aeromonas sp. in \\ \% of samples,

with sequencing confirming the presence of A. veronii. These findings are consistent with the 56% prevalence reported by Lee et al. (2002) but lower than the 78% observed by Hussain et al. (2014). Conversely, our detection rate was higher than the 42% reported by Bakry and Emeish (2022). Discrepancies in prevalence rates may reflect variations in sampling periods, fish species, and geographic location. Prior research indicates seasonal fluctuations in Aeromonas distribution, with pathogenic species (A. hydrophila, A. veronii, A. caviae) predominating in warmer months (Lee et al., 2002).

The predominance of A. veronii in this study stems from its ubiquitous, psychrotrophic opportunistic, and characteristics in aquatic ecosystems, as well as its commensal presence in fish intestines. Furthermore, the outbreak occurred elevated temperatures, summer, when reduced dissolved oxygen, and associated water parameter fluctuations likely induced physiological stress, weakening immune defenses and increasing infection susceptibility. Wassif (2018) isolated A. veronii, a pathogen affecting both fish and humans, from Nile tilapia and Ictalurus punctatus (channel catfish) during mass mortality outbreaks in Egyptian fish farms (El Sharkia and El Ismailia governorates).

According to the phylogenetic analysis based on the *16S rDNA* gene sequences of the *Aeromonas* strains, we observed that our isolates clearly belong to *A. veronii* and are grouped in a separate clade within the *A. veronii* clusters and show a relatively short phylogenetic distance from the other *Aeromonas* species with high confidence levels of 100% bootstrapping.

Concerning the results of the experimental challenge with *A. veronii* (accession number PV495274), several pathological changes were observed externally and internally on infected fish which supported the findings on naturally infected fish and *A. veronii* could be re-isolated from kidney and spleen.

Consistent with earlier reports (Hu et al., 2012; El Asely et al., 2020), A. veronii was the most frequently isolated species from the kidney, spleen, and liver likely due to their high vascularity and hematopoietic function. rendering them particularly (Kusdarwati et al., 2017). Toxemia arises from the absorption of Aeromonas-produced toxic metabolites, leading to capillary hemorrhages. These pathological effects likely stem from virulence factors, including motility, outer membrane proteins, toxins, proteases, secretion systems, sensing, and iron acquisition mechanisms (Sun et al., 2016). Hemolytic and cytotoxic linked to activities, virulence expression, play a pivotal role in disease development (Zhang et al., 2018).

The mortality patterns observed in our study experienced peak deaths at 3 dpc and reached 75.6% total mortality by day 6. Bakry and (2022)documented Emeish similar outcomes, reporting 80% mortality in infected tilapia with mortalities peaking slightly later at 4 days post-infection. This difference in timing could reflect variations in experimental conditions, such as the specific bacterial strain used, the dosage administered, or water temperature during the trials. Eissa et al. (2016) recorded 70% mortality when injecting tilapia directly with 120 million bacterial cells per milliliter, while El Asely et al. (2020) observed mortality rates ranging from 60-100% depending on the bacterial isolate and dosage. Together, these paint a consistent picture: A. studies veronii poses a severe threat to Nile tilapia, with mortality severity depending on three key factors - how the bacteria enter the fish (through water vs injection), the specific bacterial strain's virulence, and the infection dose.

When comparing different *Aeromonas* species, *A. hydrophila* appears even more dangerous under controlled conditions. While 100% mortality rate occurred within just 48 hours when high concentrations of *A. hydrophila* were injected into muscle tissue (Ibrahem *et al.*, 2008). Overall, our results fall within the range of reported mortality rates

for *Aeromonas* infections in tilapia, reinforcing the pathogen's significant threat to aquaculture. The observed differences in mortality timing and severity across studies likely stem from variations in experimental protocols, bacterial virulence factors, and host susceptibility.

CONCLUSION

This study identifies A. veronii as the primary pathogen in Nile tilapia, with a 7.% prevalence confirmed via 16S rDNA gene sequencing. Its virulence and summerassociated outbreaks—linked to elevated temperatures and poor water quality—highlight its threat to aquaculture. Discrepancies with prior studies likely reflect geographic or seasonal variations. Proactive monitoring and strain-specific management are recommended to mitigate losses.

Abbreviations: CFU, Colony-forming unit; MAS, Motile aeromonas septicemia; PCR, Polymerase chain reaction; dpc, Days posthydrophila, challenge; A. Aeromonas hydrophila; A. veronii, Aeromonas veronii; A. caviae, Aeromonas caviae; A. jandaei, salmonicida, Aeromonas jandaei; A. Aeromonas salmonicida; TSA, Tryptic Soy Agar; TSB, Tryptic Soy Broth; BHI, Brain Heart Infusion; bp, base-pair; 16S rDNA, 16S Ribosomal RNA; IP, Intraperitoneal injection; SE, standard error.

ACKNOWLEDGEMENT

The authors would like to thank the members of the Cell and Molecular Physiology Research Center, Faculty of Veterinary Medicine, South Valley University, Qena, Egypt, for their help and support the facilities needed for the molecular investigation.

REFERENCES

Abdelsalam, M.; Elgendy, M.Y.; Elfadadny, M.R.; Ali, S.S.; Sherif, A.H. and Abolghait, S.K. (2023): A review of molecular diagnoses of bacterial fish

- diseases. Aquaculture International, 31(1): 417-434.
- Altschul, S.F.; Madden, T.L.; Schäffer, A.A.; Zhang, J.; Zhang, Z.; Miller, W. and Lipman, D.J. (1997): Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic acids research, 25(17): 3389-3402.
- Austin, B. and Austin, D.A. (2016):
 Aeromonadaceae representatives
 (Motile Aeromonads). Bacterial fish
 pathogens. Disease of farmed and
 wild fish, 6th edition, Springer Nature
 publishing. pp: 161-214.
- Bakry, K.A. and Emeish, W.F. (2022):
 Aeromonas veronii Causes
 Hemorrhagic Septicemia in Cultured
 Nile Tilapia in Qena
 Governorate. SVU-International
 Journal of Veterinary Sciences, 5(4):
 125-137.
- Beaz-Hidalgo, R.; Alperi, A.; Buján, N.; Romalde, J.L. and Figueras, M.J. (2010): Comparison of phenotypical and genetic identification of Aeromonas strains isolated from diseased fish. Systematic and Applied Microbiology, 33(3): 149-153.
- Borrell, N., Acinas, S.G., Figueras, M.J. and Martinez-Murcia, A.J. (1997): Identification of Aeromonas clinical isolates by restriction fragment length polymorphism of PCR- amplified 16S rRNA genes. J. Clin. Microbiol., 35(7): 1671-1674.
- Buller, N.B. (2004): Bacteria from fish and other aquatic animals: A practical identification manual, CABI publishing.
- Chenia, H.Y. (2016): Prevalence and characterization of plasmid-mediated quinolone resistance genes in Aeromonas spp. isolated from South African freshwater fish. International Journal of Food Microbiology, 231: 26-32.
- Dias, C.; Mota, V.; Martinez-Murcia, A. and Saavedra, M.J. (2012):

- Antimicrobial resistance patterns of Aeromonas spp. isolated from ornamental fish. Journal of Aquaculture Research and Development, 3: 1-4
- Dong, H.T.; Ataguba, G.A.; Khunrae, P.; Rattanarojpong, T. and Senapin, S. (2017): Evidence of TiLV infection in tilapia hatcheries from 2012 to 2017 reveals probable global spread of the disease. Aquaculture, 479: 579-583.
- Eissa, I.; El Lamei, M.; Ismail, T.; Youssef, F. and Mansour, S. (2016): Advanced studies for diagnosis of aeromonas septicemia in Oreochromis niloticus. Suez Canal Veterinary Medical Journal, 21(1): 221-233.
- El Asely, A.M.; Youssuf, H.; Abdel Gawad, E.; Elabd, H.; Matter, A.; Shaheen, A. and Abbass, A. (2020): Insight into summer mortality syndrome in farmed Nile tilapia (Oreochromis niloticus) associated with bacterial infection. Benha Veterinary medical journal, 39(1): 111-118.
- Eltholth, M.; Fornace, K.; Grace, D.; Rushton, J. and Häsler, B. (2015): Characterisation of production, marketing and consumption patterns of farmed tilapia in the Nile Delta of Egypt. Food Policy, 51: 131-143.
- Emeish, W.F.; Mohamed, H.M. and Elkamel, A.A. (2018): Aeromonas infections in African sharptooth catfish. J. Aquac. Res. Dev, 9(9): 548.
- Fernández-Bravo, A. and Figueras, M.J. (2020): An update on the genus Aeromonas: taxonomy, epidemiology, and pathogenicity. Microorganisms, 8(1): 129.
- Food and Agriculture Organization of the United Nations (2020): Universal software for fishery statistical time series. Food and Agriculture Organization of the United Nations, Fisheries and Aquaculture Department.
- General Authority for Fishery Resources Development (2020): Fish statistics

- yearbook. Ministry of Agriculture and Land Reclamation. General Authority for Fishery Resources Development.
- Haenen, O.L.; Dong, H.T.; Hoai, T.D.; Crumlish, M.; Karunasagar, I.; Barkham, T. and Bondad-Reantaso, M.G. (2023): Bacterial diseases of tilapia, their zoonotic potential and risk of antimicrobial resistance. Reviews in Aquaculture, 15: 154-185.
- Hassan, M.A.; Noureldin, E.A.; Mahmoud, and Fita. M.A.N.A.(2017): Molecular identification and epizootiology of Aeromonas veronii infection among farmed Oreochromis niloticus in Eastern Province, KSA. Egyptian Journal of Aquatic Research, 43(2): 161-167.
- Hoai, T.D.; Trang, T.T.; Van Tuyen, N.; Giang, N.T.H. and Van Van, K. (2019): Aeromonas veronii caused disease and mortality in channel catfish in Vietnam. Aquaculture, 513: 734425.
- Hu, M.; Wang, N.; Pan, Z.H.; Lu, C.P. and Liu, Y. J. (2012): Identity and virulence properties of Aeromonas isolates from diseased fish, healthy controls and water environment in China. Letters in applied microbiology, 55(3): 224-233.
- Hussain, I.A.; Jeyasekaran, G.; Shakila, R.J.; Raj, K.T. and Jeevithan, E. (2014): Detection of hemolytic strains of Aeromonas hydrophila and A. sobria along with other Aeromonas spp. from fish and fishery products by multiplex PCR. Journal of food science and technology, 51: 401-407.
- Ibrahem, M.D.; Mostafa, M.M.; Arab, R.M.H.; Rezk, M.A.; Elghobashy, H.; Fitzsimmons, K. and Diab, A.S. (2008): Prevalence of Aeromonas hydrophila infection in wild and cultured tilapia nilotica (O. niloticus) in Egypt. In Proceedings of the 8th International Symposium on Tilapia in Aquaculture, 2: 1257-1270.

- Janda, J.M. and Abbott, S.L. (1998): Evolving concepts regarding the genus Aeromonas: An expanding panorama of species, disease presentations, and unanswered questions. Clin. Infect. Dis., 27: 332-344.
- Janda, J.M. and Abbott, S.L. (2010): The genus Aeromonas: taxonomy, pathogenicity, and infection. Clinical microbiology reviews, 23(1): 35-73.
- Joseph, S.W. and Carnahan, A.M. (2000): Update on the genus Aeromonas. ASM News, 66: 218-223.
- Kusdarwati, R.; Kurniawan, H. and Prayogi, Y.T. (2017). Isolation and identification of Aeromonas hydrophila and Saprolegnia sp. on catfish (Clarias gariepinus) in floating cages in Bozem Moro Krembangan Surabaya. In IOP Conference Series: Earth and Environmental Science, IOP Publishing, 55(1): 012038.
- Lee, C.; Cho, J.C.; Lee, S.H.; Lee, D.G. and Kim, S.J. (2002): Distribution of Aeromonas spp. as identified by 16S rDNA restriction fragment length polymorphism analysis in a trout farm. J. Appl. Microbiol., 93(6): 976-985.
- Martin-Carnahan, A. and Joseph, S.W. (2005): Aeromonadales ord. nov. In Bergey's Manual® of Systematic Bacteriology (pp. 556-587). Springer, Boston, MA.
- Miles, A.A.; Misra, S.S. and Irwin, J.O. (1938): The estimation of the bactericidal power of the blood. J Hyg (Lond)., 38(6): 732-49.
- Noga, E.J. (2010): Fish disease: diagnosis and treatment. 2nd Ed., John Wiley & Sons.
- Ottaviani, D.; Parlani, C.; Citterio, B.; Masini, L.; Leoni, F.; Canonico, C. and Pianetti, A. (2011): Putative virulence properties of Aeromonas strains isolated from food, environmental and clinical sources in Italy:

 a comparative

- study. International journal of food microbiology, 144(3): 538-545.
- Piotrowska, M. and Popowska, M. (2014):

 The prevalence of antibiotic resistance genes among Aeromonas species in aquatic environments. Annals of microbiology, 64: 921-934.
- Saavedra, M.J.; Figueras, M.J. and Martínez-Murcia, A.J. (2006): Updated phylogeny of the genus Aeromonas. International Journal of systematic and evolutionary microbiology, 56(10): 2481-2487.
- Sun, J.; Zhang, X.; Gao, X.; Jiang, Q.; Wen, Y. and Lin, L. (2016): Characterization of virulence properties of Aeromonas veronii isolated from diseased Gibel Carp (Carassius gibelio). International journal of molecular sciences, 17(4): 496.
- Tamura, K. and Nei, M. (1993): Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Molecular biology and evolution, 10(3): 512-526.
- Tamura, K.; Stecher, G.; and Kumar, S. (2021). MEGA 11: Molecular Evolutionary Genetics Analysis

- Version 11. Molecular Biology and Evolution. https://doi.org/10.1093/m olbev/msab120
- Wassif, I.M. (2018): Biochemical and Molecular Characterization of Aeromonas Species Isolated from Fish. Alexandria Journal of Veterinary Sciences, 57(1).
- Yardımcı, B. and Aydın, Y. (2011):

 Pathological findings of experimental
 Aeromonas hydrophila infection in
 Nile tilapia (Oreochromis
 niloticus). Ankara Üniversitesi
 Veteriner Fakültesi Dergisi, 58(1):
 47-54.
- Zhang, D.; Xu, D.H.; Shoemaker, C.A. and Beck, B.H. (2020): The severity of motile Aeromonas septicemia caused by virulent Aeromonas hydrophila in channel catfish is influenced by nutrients and microbes in water. Aquaculture, 519: 734898.
- Zhang, D.X.; Kang, Y.H.; Chen, L.; Siddiqui, S.A.; Wang, C.F.; Qian, A.D. and Shan, X.F. (2018): Oral immunization with recombinant Lactobacillus casei expressing OmpAI confers protection against Aeromonas veronii challenge in common carp, Cyprinus carpio. Fish Shellfish Immunol., 72: 552-563.

عزل وتوصيف بكتيريا الايروموناس فيروني من أسماك البلطي النيلي المصابة طبيعياً

منار ممدوح محمد عبد العليم ، عواطف حامد حموده ، ولاء فتحى عميش ، كريمة علاء الدين بكرى

أنواع الإيروموناس هي مسببات أمراض شائعة تسبب خسائر اقتصادية كبيرة في تربية الأحياء المائية. ركزت هذه الدراسة في عدوى الايروموناس في أسماك البلطي النيلي المستزرعة في محافظة قنا، مصر، حيث تم أخذ عينات من خمسين سمكة. تم تقييم الفحوصات البكتريولوجية بالإضافة إلى النهج الجزيئي باستخدام تسلسل الحمض النووي الريبوسومي ١٦٥. علاوة على ذلك، أجريت تجربة التحدي لتقييم مسببات الأمراض للايروموناس المعزولة. تميزت النتائج المعملية للأسماك المصابة طبيعياً بعلامات التسمم الدموى والتقرحات النزفية والاستسقاء وجحوظ العين. بناءً على التوصيف المورفولوجي والكيميائي الحيوي والجزيئي، تم تحديد 30 عينة (انتشار 60٪) من الايروموناس في الأعضاء الداخلية. أكد تسلسل جين الريبوسومي ١٦٥ والتحليل التطوري أن هوية الايروموناس المعزولة هي الايروموناس فيروني تطابقًا بنسبة ٩٩،٩٢ و المعاولة عين النووي الريبوسومي ١٩٥٤ لأنواع الايروموناس فيروني المتوفرة في قاعدة بيانات \$٩٩،٩٢ والمسجلة بارقام ٢٥٥عدة هنا مع غيرها من أنواع الايروموناس فيروني التي تصيب الأسماك. كشفت نتائج تجربة النيوكليوتيدات المحددة هنا مع غيرها من أنواع الايروموناس فيروني التي تصيب الأسماك. كشفت نتائج تجربة التحدي المنقولة بالمياه أن عزل الايروموناس فيروني هو مرض سائد في تربية أسماك البلطي في محافظة نفوق بلغ ٢٥٠٠٪. خلصت النتائج إلى أن الايروموناس فيروني هو مرض سائد في تربية أسماك البلطي في محافظة الخوق بلغ ١٥٠٪. خلصت النتائج إلى أن الايروموناس فيروني هو مرض سائد في تربية أسماك البلطي في محافظة الحاجة إلى اتخاذ تدابير مراقبة وسيطرة مستهدفة ضد عدوى الأيروموناس في هذا القطاع الحيوي اقتصاديًا.