ATPase Natural Inhibitor, Purification And Its Interaction With Pesticide Effect.

M.Massoud, M.Abdei-Ghany and Nader Shaker.

Pesticide Chemistry Dept. College of Agriculture,
University of Alexandria, Alex. Egypt.

Abstract.

The natural ATPase inhibitor was extracted from both honey bee thorax and beef heart by exposing the purified ATPase enzyme to heat treatment followed by centrifugation and purification of the supernatant by using DEAE-Sephadex chromatography.

The molecular weight of honey bee ATPase natural inhibitor was calculated as 8000 dalton and appears in one protein band using sodium dodecylsulfate-slab polyacrylamide gel electrophoresis(SDS-PAGE).

The inhibitory effect of the extracted crude and purified natural ATPase inhibitors were studied against their F₁ or mitochondrial ATPase. The interaction of natural inhibitor with ATPase activity was compared kinetically with gossypol (natural botenical material) and dicofol (pesticide). Natural ATPase inhibitor showed uncompetitive interaction with ATP substrate which differed from the recorded noncompetitive effect of gossypol and dicofol on ATPase activity. The interaction between natural ATPase inhibitor in presence of gossypol or dicofol on ATPase activity was studied.

Introduction.

ATPase is the primary energy source for most biological processes. All biological systems have elaborated what appear to be natural peptide regulators of H⁺-ATPases. Its function was studied in beef heart (Horstman and Racker, 1970), in yeast (Satra et al, 1975), in bacteria (Lastras and Munoz, 1974) and in chloroplast (Nelson et al, 1972).

Mitochondria inhibitor protein plays a regulatory role in oxidative phosphorylation. It controls the backflow of energy from ATP to energy — linked processes but has a little effect on ATP synthesis. Natural inhibitor is an essential component of the system catalyzing oxidative phosphorylation.

This study is an approach to isolate ATPase natural inhibitor from insect source and to study its characteristic role to interact with other natural materials (gossypol) or pesticide (dicofol) on mitochondrial-soluble ATPase activity.

Materials & Methods.

Honey bee Apis mellifera workers were obtained from the experimental station of the Faculty of Agr culture, University of Alexandria. Bovine heart was obtained from Alexandria slaughter house within 1-2 hrs after butchered the animal.

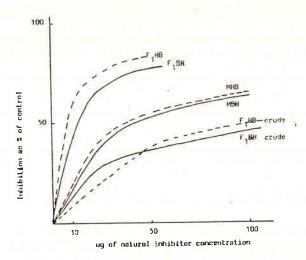
Preparation of F and mitochondrial-ATPase; Iwo hundred thoraxes of honey bee workers were collecte and placed in an ice coold 30 mM tris-HCl buffer pH 7.4 containing 0.25M sucrose. The tissue was homogenized and filtered through a double layer of cheese cloth. The filterate was centrifuged at 800xg for 1 min at 4 °C. The pellets were suspended in tris-sic buffer. The suspension was quick frozen and thawed several times and then stored at -20 °C as stock of

mitochondrial ATPase activity. Also the bovine heart mitochondrial ATPase was prepared(5).

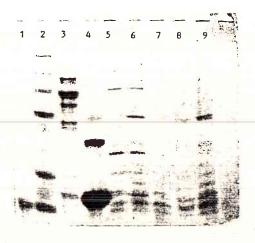
 F_1 -ATPase was extracted from insect mitochodrial fraction(6) and from bovine heart(7). Protein content for the extracted cissues was determined by the biorad method(8).

Extracti n of ATPase natural inhibitor by incubating 20 ml of insect or bovine heart mitochondria protein in a boiling water bath for 10 min. Then centrifuged at 12000xg for 5 min. The pellets were discarded and the sup rnatant was used as a crude natural inhibitor.

This endogenous inhibitor protein was purified by using a small column of DEAE-Sephadex ion exchange chromatography(4) with slightly modified technique(9).


Identification of natural inhibitor molecular weight was determined by using SDS-PAGE & cocmassie blue staining method(10).

Assessment of F_1 – and mitochondarial – ATPase activity and inhibition was carried out using the optimum condition(11).


Results and Discussions.

ATPase natural inhibitor extracted from honey bee or beef heart was heat stable, nondialyzable and soluble in water. The activity of the natural ATPase inhibitor is related to a type of active peptide protein. Its activity is completely destroyed by brief exposure to trypsin (Table,1) & ref.9,12,13.

The effect of extracted crude and purified natural inhibitor for honey bee and beef heart were tested against their sources of mitochondrial or soluble ATPase(Fig,1). The inhibitory effect of the pure form of the natural inhibitor was more potent to affect its source of soluble ATPase activity. This agree with which was found before by Dianoux et al(14). Also the experimental study shows that the natural

Fig(1); Effect of natural ATPase inhibitor protein on honey bee (--HB) and beef heart(--BH) soluble (F₁) and mitochondrial (M) ATPase activity.

Fig(2): photographic copy of electrophoretic pattern of natural inhibitor protein extracted from honey bee and beef heart by using SDS-PAG method.

inhibitor which was isolated from insect mitochondria had no effect on beef heart mitochondrial ATPase activity and vice versa.

Table(1): Trypsin effect on the natural crude inhibitor activity.

Reaction tube content	Natural crude inhibitor						
		y bee %I		heart %I			
Mitochondrial ATPase activity	1.6	0.0	1.9	0.0			
ATPase + Trypsin + Trypsin inhibitor	1.58	1.3	1.8	5.2			
ATPase + Natural inhibi- tor + Trypsin + Trypsin inhibitor	1.6	0.0	1.9	0.0			
ATPase + Trypsin + Tryp- sin inhibitor + Natural inhibitor	0.9	44.0	0.9	50.0			
ATPase + Natural inhibi- tor	0.93	42.0	0.9	50.0			

Trypsin used in experiment is Sigma brand type 1 extracted from bovine pancreas contain 10000 units BAEE per mg protein.

Identification of the extracted natural inhibitor was carried out by passing the crude extract through DEAE-Sephadex ion exchange column chromatography. Using the eluted purified protein for molecular weight determination by SDS-PAGE method. The honey bee natural inhibitor appeared as one clear band No,1 with 8000 dalton molecular weight estimated by using the mobility of the standard molecular weight proteins. Also the photograph of the gel electrophoresis shows the mobility of the crude natural ATPase inhibitor before passing through the ion exchange purification column No,2. Also honey

bee F_1 -ATPase was illustrated in column No3. Honey bee natural ATPase inhibitor was compared with bee heart crude natural inhibitor column No 5,6,8 & 9 and after ion exchange chromatography purification column No 7.

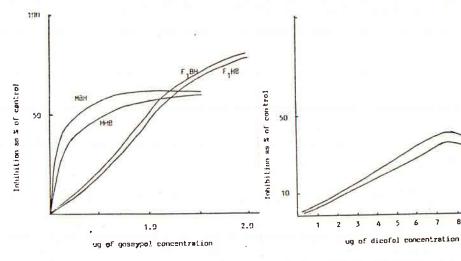
The beef heart mitochondrial ATPase protein has been isolated and characterized with regard to physical and chemical properties to five subunits (15). The 5th subunit was identified as ATPase inhibitor peptide. This peptide is basic protein removed from the ATPase molecule in the form of monomer(5700) and dimer(1 350) molecular weights. The conversion of the dimer to monomer or trimer was dependent on the presence of agents capable of reducing disulfide bonds. This agrees with data illustrated in Fig(2) which shows that the purifie honey bee natural inhibitor gave one band.

Comparative study was made between the purification at the proof of th

Gossypol affected honey bee and beef heart F ATPase in a range from (0.0-4.0 uM=0.0-2.0 c) Fig(3) which is 10 times lower than the effective concentrations of the natural inhibitor. This data can clear the natural inhibitor which affect ATPas activity under controlled condition can couses other effect on the cell under uncontrolled condition looks like gossypol which affect ATPase activity and couses other effects on the cell activity(17&1)

Dicofol inhibitory effect was in between both natural compounds. It reached its maximum effect a

7.4 ug(4 uM), then started to decrease Fig(4). This agree with which was found before by Balba(19).

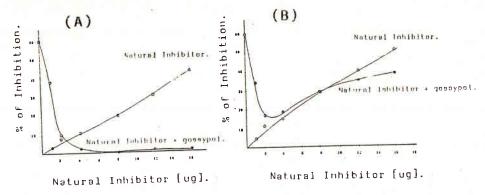

Kinetics of either the natural inhibitor, or gossypol or dicofol interaction with honey bee and beef heart F_1 -ATPase activity was studied. Natural inhibitor decreased the value of Vmax and Km giving a parallel lines with F_1 -ATPase activity in honey bee and beef heart. The type of inhibition was classified as uncompetitive inhibition in which the inhibitor was able to bind to the enzyme substrate complex but not to the free enzyme. The substrate, enzyme, inhibitor combination can only dissociate to yeild the inhibitor(I) and enzyme substrate complex with an equilibrium constant Ki (Table 2).

The kinetics of gossypol interaction with honey bee and beef heart F_1 -ATPase and dicofol interaction with honey bee and beef heart mitochondrial-ATPase were studied. It was clear that gossypol & dicofol decreases the value of the maximum F_1 or mitochondrial ATPase activity without altering the Km value (Table 2). This type of inhibition is known as noncompatitive inhibition in which inhibitor has no effect on substrate binding and vice versa(19 & 20).

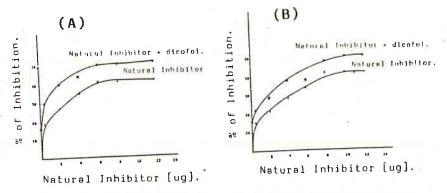
Table(2); Kinetic study for natural inhibitor, gossypol and dicofol interaction with honey bee and beef heart soluble and mitochondrial ATPase activity.

ATPase activity		∕max Protein/min	/ Km mM		Ki mg prot	type of ./min inhibition
Honey bee	8.0	2 5.00*	,66	.40	0.00	
+natural inhi	ibitor 4.3	4	. 357		0.82	uncompatitive
+gossypol	4.34	4	.66		1.50	noncompatitive
*dicofol		0.285		.40	2.5	noncompatitive
Becf heart	2.B	6 2.63	.31	.66	0.00	
+natural inh	ibitor 1.6	6	.20		1.20	uncompatitive
-qossypol	4.7	6	.66		1.50	noncompatitive
dicofol		2.08		.66	1.50	noncompatitive

Kineric of dicofol studied on mitochondrial ATPase.



Fig(3); Effect of gossypol on honey bee (IIB) and beef heart (BH) soluble (F_1) and mitochondrial (M) AlPase activity.


Fig(4); Effect of dicofol on ho (NB) and beef heart (BH) solut and mitochondrial (M) ATPase

Interaction of gossypol with natural inhibited affected by honey bee and beef heart F₁-ATPase at showed in Fig(5) that gossypol-natural inhibitor combination interact each other effect on honey be F₁-ATPase with antagonistic manner. While with been theart F₁-ATPase, gossypol antagonise the inhibitor effect of natural inhibitor at lower concentration however, gossypol effect is negligable at higher concentration of the natural inhibitor. This effect may be due to the different changes coused by natural inhibitor on proteins which changes its interaction with gossypol(21).

Interaction of dicofol with natural inhibitor affect honey bee and beef heart mitochondrial-ATP ase activity. Fig(6). Dicofol effect seems to be additive effect. This result shows that both inhibitors can affect different sites of action(22). This indicates that during the steady state of phyphorylation only limited numbertof ATPase molecul

Fig(5); Inhibition of honey bee(A) and beef heart(B) f₁-ATPase activity in presence of 2uM gossypol at different concentration of purified natural inhibitors.

Fig(6); Inhibition of honey bee(A) and beef heart(B) mitochondrial ATPase activity in the presence of 2uM dicofol at different concentrations of purified natural inhibitors.

are in the active catalytic state, and that only during active hydrolysis of the inhibitor protein interacts with its inhibitory site, rather than interacting with an intermediate state of the enzyme that appears either during the synthetic or hydrolytic reactions. This can clear the interaction of gossypol and dicofol with natural inhibitor affect ATPases active sites.

References.

- 1- Horstman, L.L., and E.Racker(1970), Partaial resolution of the enzymes catalyzing oxidative phosphorylation. XXII interaction between mitochondrial adenosine triphosphatase. J.Biol.Chem. 245: 1336-1344.
- 2- Satre, M., M.B.Dejerphanion, J.Huet and P.V.Vignais (1975), ATPase inhibitor from yeast mitochondria purification and properties.Biochem.Biophs.Acta. 387:241-255.
- 3- Lastras, M., and E. Munoz (1974), Membrane adenosine triphosphatase of Micrococcus lysodeikticus: Effect of millimolar Mg in modulating the properties of the membrane bound enzyme. J. Bacteriol. 119: 593-601.
- 4- Nelson,N., H.Nelson and E.Racker(1972),Partial resolution of the enzymes catalyzing photophosphorylation.Purification and properties of an inhibitor isolated from chloroplast coupling factor 1. J.Biol.Chem.247:7657-7662.
- 5- Crane, F.L., J.L.Glenn and D.E.Green (1956), Procedure for the preparation of beef heart mitochondria Biochem. Biophys. Acta. 22:475-487.
- 6- Younis, H.M., J.N.Telford and R.B.Koch(1978), Adenosine tri phosphatase from cockroach coxal muscle mitochondria, isolation, proparties and response to DDT.Pestic.Biochem.Phys.8:271-277.
- 7- Beechey, R.B., S.A. Hubbard, P.E. Linnett, A.D. Mitche and E.A. Munn(1975), A simple and rapid method for the preparation of adenosine triphosphatase from submitochondrial particles. Biochem. J. 148:533-539.
- 8- Bradford, M.M. (1976), A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding. Anal. Biochem. 72:248-254.
- 9- Pullman, M.E., and G.C. Monroy (1963), A naturally occ ring inhibitor of mitochondrial adenosine triphos phatase. J. Biol. Chem. 238: 2762-2769.

10-Laemmli, U.K. (1970), Cleavage of structural proteins during the assembly of the head of bacteriophage T. Nature 227:680-685.

11-Tauseky,H.H.and E.Shorr(1953),A micro colorimetric method for the determination of inorganic phospho-

rus.J.Biol.Chem.202:675-685.

12-Racker, E. (1962), Studies of factors involves in oxidative phosphorylation. Proc. Nat. Acad. Sci. USA 48:1659-1663.

13-Younis, H.M., and N.A.Morjana(1982), Resolution of the chloroform released CF₁ into ATPase complexes differing in their ATPase activity. Identification of one subunit as a putative natural inhibitor of the ATPase.FEBS Lett.140:317-319.

14-Dianoux, A., A,T.Tsugita, G.Klein and P.V.Vignais (1982), Effect of proteolytic fragmentation on the activity of the mitochondrial natural ATPase

inhibitor.FEBS.Lett.140:223-228.

15-Knowles, A.F., and H.S.Penefsky(1972), The subunit structure of beef heart mitochondrial adenosine triphosphatase. Physical and chemical properties isolated subunits. J.Biol.Chem. 247:6624-6630.

16-Brooks, J.C., and A.E. Senior (1971), Studies on the mitochondrial oligomycin insensitive ATPase. The relationship of the specific protein inhibitor to the ATPase. Arch. Biochem. & Biophys. 147:467-470.

17-Wong, R.C., Y. Nakagawa and G.E. Perlmann(1972), Studies on the nature of the inhibition by gossypol of the transformation of pepsinogen to pepsin. J. Biol. Chem. 247:1625-1631.

18-Nordenskjold, M., B.Lambert(1984), Gossypol induces DNA strand breaks in human fibroblasta and sister chromatid exchanges in human lymphocytes in-vitro.

J.Med.Genet.21:129-132.

19-Balba, M.E. (1985), Biological assesment of certain pesticide residues in the environment. Development of a new method for determination of certain chloronated hydrocharbon compounds. M.Sc. Thesis. Fac. of Agric, Alex. Univ. Egypt.

20-Pedersen, P.L., K. Schwerzmann and N. Cintron (1981), Regulation of the synthesis and hydrolysis ATP in biological system. Role of peptide inhibitors of H⁺-ATPases. Curr. Top. Bioen. 11:149-199.

21-Brooks, J.C. and A.E. Senior (1971), Studies on the mitochendrial eligemycin insensitive ATPase. The relationship of the specific protein inhibitor to the ATPase. Arch. Biochem. & Biophys. 147:467-470.

22-Cross,R.L. and W.E.Kohlbrenner(1978), The mode of inhibition of oxidative phosphorylation by Efrapeptin (A23871). J.Biol. Chem. 253:4865-4837.

الملخص العربي

تم استخلاص و تنقیه البروتین المثبط الطبیعی لا نزیم الادینوزین ثلاثی الغوسفاتیز مصد رالطاقه فی النظم الحیویهز گذالک التعرف علی وزنه الجزیئی و ذلک باستخدام التحلیل الکروما توجرا فی بالهجره الکهربائیه حیث ظهر فی صوره بروتین منفرد ذات وزن جزیئی ۸۰۰۰ دالتون و ذلک بالنسبه للبروتین المستخلص من صد ور نحل العسل و تمت مقارنته بمثله المعزول من قلب البقر،

اظهرت النتائج قدره هذا المثبط الطبيعي المستخلص من صدور نحل العسل أو قلب البقر على تثبيط نشاط كل من انزيم الادينوزين ثلاثي الفوسفاتيز الذاب عشره امثال قدرته على تثبيط الانزيم المرتبط.

عند استعمال تركيزات منخفضه من الجوسيبول وجد انبها تفاد اشر المستخلص البروتيني على تثبيط انزيم الاد ينوزين ثلاثي الغوسف اتيز الدائب المستخلص من كل من نحل العسل أو قلب البقر بينما عند زياده تركيز المثبط البروتيني الطبيعي تبدأ في ظهر وراثرها مره اخرى .

يتداخل مبيد الدايكوفول مع المثبط البروتيني الطبيعي على تثبيط انزيم الادينوزين ثلاثي الفوسفاتيز المرتبط بقدره ثابته تبعا للتركيز المستخدم من المسيد .

د رست ميكانيكيه التثبيط لتفاعل البروتين المثبط الطبيعي على مصدره من انزيم الادينوزين ثلاثي الفوسفاتيز الذائب حيث اظهرت اثرها مسن النوع التنافسي بينها يتداخل الدايكوفول مع الانزيم المرتبط بطريقسه لاتنافسيه لهاده التفاعل وكذلك الجوسيبول يتداخل بطريقه لاتنافسيه مع ماده التفاعل على الانزيم الذائب