

MANSOURA JOURNAL OF CHEMISTRY

Official Journal of Faculty of Science, Mansoura University, Egypt

ISSN: 2974-4938

E-mail: scimag@mans.edu.eg

Binuclear Co(II), Ni(II) and Cu(II) acetate complexes derived from a novel Thiosemicarbazide:Preparation, characterization, DFT and *In vitro* cytotoxicity activity

H.E.Elredane, E. Abdel-Latif, M. H. Abdel-Rhman, O.A.El-Gammal

Chemistry Department, Faculty of Science, Mansoura University, 35516 Mansoura, Egypt

* Correspondence to: E-mail: <u>olaelgammal@yahoo.com</u>; Tel.: <u>+20201093443558</u>; <u>Orcid</u> No: <u>0000-0002-</u> 5089-8395.; fax: +20202501063.)

Received:4/10/2025 Accepted:27/10/2025

Abstract: A new series of binuclear complexes, Co^{2+} , Ni^{2+} and Cu^{2+} derived from N, N'-(2,2' malonylbis(hydrazine-1-carbonothioyl)) dibenzamide (H₄MHTS) in 1:2 (L:M) ratio was prepared and characterized. The complexes adopted the molecular formulae; $[Co_2(H_2MHTS)(OAc)_2].2H_2O$, $[Ni_2(H_2MHTS)(EtOH)_4(H_2O)_2]$ [Cu₂(H₄MHTS)(OAc)₄(H₂O)₂].2H₂O, respectively.IR data showed that H₄MHTS ligand acts as either dibasic O₂N₂O₂ hexadentate in Co²⁺ and Ni²⁺ complexes or neutral O₂N₂S₂ hexadentate. An octahedral environment was suggested for all complexes according to spectral and magnetic susceptibility. The low magnetic moment value of Co^{2+} complex confirms strong M-M interaction $\mu_{\text{eff.}}$ (3.69). DFT method we used to confirm the geometries of title compounds and evaluate other energetic parameters such as HOMO, LUMO, hardness, softness and electronegativity. Also, the thermal stability was examined by TG and DTG and the associated thermodynamic parameters of activation were determined using Coats-Redfern and Horowitz-Metzger methods. The data indicated that the thermal degradation process is slow, endothermic and nonspontaneous one. The in vitro cytotoxicity against cell lines, Mammary gland breast cancer (MCF-7) using doxorubicin as standard was examined revealing the potent activity of the thiosemicarbazide.

keywords: hexadentate, octahedral geometry, endothermic, magnetic moment, Kinetic.

1.Introduction

Thiosemicarbazides are potent intermediates for the synthesis of pharmaceutical and bioactive materials and thus, they are used extensively in the field of medicinal chemistry. The diversity of heterocycles generated from thiosemicarbazides is associated primarily with the fact that these compounds can exhibit properties N(1),N(2)-,N(1),N(4)-,of N(1),S-, N(2),S- and N(4),S-N(2),N(4)-,dinucleophiles [1].Also, thiosemicarbazides have been extensively utilized commercially as dyes, photographic films, plastic and in textile industry[2]. Transition metal complexes derived from thiosemicarbazides have become of significant importance in industry and biology[3]. Such metal complexes have revealed obviously the central role played by sulfur these compounds and coordination in consequently their "soft by acid-soft base"

preference is [4]. The real impetus toward developing the coordination chemistry of these potential ligands was probably provided by the remarkable antitumor [5], antiviral [6], and antimalarial [7,8] activity observed for some of these derivatives, which has since been shown to be related to their metal-complexing ability The mechanism of action of bis (thiosemicarbazide) cytotoxicity, in contrast to mono-thiosemicarbazides and their complexes, was not to stop the production of reactive oxygen species (ROS) [6,11–15], but rather to target hypoxic tissue. Because of their high hypoxia selectivity, these drugs are used extensively as radiopharmaceuticals.[16-19] N'¹,N'³-dimethyl-N'¹,N'³-di Additionally, (phenylcarbon othioyl)malonohydrazide, anticancer medication chemically linked to elesclomol, demonstrated strong cytostatic [16]. Its Ni (II) and Pt (II) complexes exhibited significantly less activity than the Cu (II) complex against human leukemia K562 cells. The malonic acid dihydrazide derivatives possess greater flexibility than other dibasic acid dihydrazides like phthalic and oxalic This flexibility arises from the ability of free rotation around the CH2-CO bond.[21] dihydrazide's interaction with several carbonyl compounds, aldehydes, and ketones has been widely documented [21-23],although thiosemicarbazide derivatives have hardly ever been investigated.

This suggests that a redox active metal is necessary for elesclomol to have its cell growth inhibitory effect.[20] Alternatively, the malonic acid derivatives of malonic acid dihydrazide attracted a lot of attention than their thiosemicarbazides derivatives although their phenyl and ethyl derivatives domstrated in vitro cytotoxicity activity against Hela cell and WISH cell line lines [15, 19].

Thus, on continuation to our research program we aimed herein to focus on the synthesis, spectral characterization, and in vito cytotoxicity against breast cancer of new thiosemicarbazide and its corresponding Co^{2+} , Ni^{2+} and Cu^{2+} acetate complexes.

2. Materials and methods

2.1 Preparation of H₄MHTS

1.3 gm of malonohydrazide (5mmol) were added to 3 mL of benzoyl (10 mmol) in presence of 0.28 gm solid KOH (5mmol) and 15ml DMF. The reaction mixture was heated under reflux for 2 with stirring. Then, two drops of concentrated hydrochloric acid were added and a pale-yellow precipitate that formed was filtered off, washed several times with cold water and allowed to dry in a clean desiccator. over anhydrousCaCl₂. The product was tested by TLC, IR and ¹HNMR and the yield was %85 (1.98 gm); m.p.:200⁰C.

2.1.1.H₄MHTS

 $C_{19}H_{18}N_6O_4S_2$ (458.51): yield:85% yellow; m.p:200 %calc; C(49.77);H (3.96); N (18.33); Found C 50.15; .H 4.14; N 18.91;; FTIR (cm⁻¹);1690v(C=O)_{hy};1673 v(C=O)_{benz}; 3061v(N¹H); 3222 v(N²H);3330 v(N⁴H)1263 v(C=S); 792 δ (C=S).

2.2. Preparation of metal complexes

The corresponding metal acetate (1.0 mmol) was added to ethanolic solution of H₄MHTS (0.2751, 0.5mmol) in molar ratio (M:L=2:1) and heated under reflux for 2-3. The precipitates formed were filtered off, washed with ethanol followed by diethyl ether, dried in a vacuum desiccator over anhydrousCaCl₂ and checked by TLC, partial elemental analysis (C, H, N and S) as well as spectral tools (IR, UVvis.,). The complexes are stable in air, soluble in dimethylformamide (DMF) and sulfoxide (DMSO) and non-electrolytes (1-18) [16]. Many trials were performed to isolate a single crystal but failed.

2.2.1 Co complex

 $C_{23}H_{26}Co_2N_6O_{10}S_2(728.48);$ yield:73%;brown;m.p:>300; Elemental Anal. %calc; C(37.92); H(3.60); N(11.54); M(16.18); Found C 37.02; H 3.11;N 11.17 M 17.7 FTIR (cm⁻¹)1671v(C=O)_{benz.}; 512 v(M-O) ;449v(M-N); 1603v(C=N)*;1245v(C-O)*.

2.2.2 Ni complex

 $C_{27}H_{42}Ni_2N_6O_{10}S_2(792.17)$; yield:80% Brown; m.p:>300; Elemental Anal. % Calc; C(40.94); H(5.34); N(10.61); M (14.82); Found C 41.10H 4.63; N 10.10; M 15.02; FTIR (cm⁻¹) 1645v(C=O)_{benz}; 3177v(N²H); 3313v(N⁴H); 1286v(C=S); 7998(C=S); 524 v(M-O); 475 v(M-N); 1557v(C=N)*; 1245v(C-O)*.

2.2.3 Cu complex

 $C_{27}H_{38}Cu_2N_6O_{16}S_2(893.84);\\ yield:68\%\,brown;$

.p:285; Elemental Anal. % calc ;C(39.28);H (4.29) ;N(9.40) M (14.22); Found C 39.48H 4.01N9.66M14.43 FTIR (cm⁻¹) 1675ν (C=O) _{benz}; 1707ν (C=O)_{Hyd}; 3064ν (N¹H); 153ν (N²H); 3330ν (N⁴H) 1252ν (C=S); 796δ (C=S); 506ν (M-O); 475ν (M-N).

2.3.DFT study

All calculations reported were computed using DMOL³ program [16] in Materials Studio 7.0 package using (DFT semi-core pseudopods (dspp)) computations with the double numerical basis sets plus polarization functional (DNP) which was suggested by Kessi et al and the revised Perdew-Burke-Ernzerh of functionals

(RPBE)[17-19] to be more accurate when comparison with Gaussian basis sets of the same size

2.4.In vitro cytotoxicity

The MTT assay was employed for examination the cytotoxic activity of isolated compounds against two cell lines, Epitheliod Carcinoma (Hela) and Human amnion (WISH). According to the reported earlier, the procedure that mitochondrial succinate dehydrogenase in viable cells converted the yellow tetrazolium bromide (MTT) into a purple formazan derivative where the cell lines were cultured in RPMI-1640 medium with 10% fetal bovine serum and the relative cell viability in percentage was calculated. Doxorubicin was used as a standard anticancer drug [20].

3. Results and Discussion

3.1.IR spectra

The significant IR bands of H₄MHTS and its complexes (KBR discs) (4000-500 Cm⁻¹) are in figure 1. The thiosemicarbazide can exist in three possible isomess viz keto- thione, enol-thione and ketothiol (Scheme 1). The bands of strong intensities in the spectrum of the primary ligand viz H₄MHTS (Structure 1) at 1690 cm⁻¹ and 1673 are attributable to stretching vibrations of (C=O) attached to benzene ring and that attached to N¹H group. The band at 1790 cm⁻ suffers a blue shift of ~15-19 cm upon involvement in coordination in Co(II) and Cu(II) complexes(Structures a & c). The band appeared at 1599 cm⁻¹ is assigned v(C=C)_{phenyl} [20]. molecule not involved in chelation while the other suffers a shift to lower wavenumber due to participation in coordination which will be further supported by ¹HNMR spectrum of the ligand. [20]. The medium bands located at 1524, 1330 and 938 cm⁻¹ assigned to thioamide I-IV vibrations have substantial contributions from v(C-N), $\delta(C-H)$ and $\delta(N-H)$ and vibrations [21]. The bands at 3061, 3222 and 3330 cm⁻¹ are due to $v(N^1H)$, $v(N^2H)$ and $v(N^4H)$ modes [22]. These bands undergo broadness In the IR spectra of metal complexes, that may arise from the overlap of the stretching vibrations of lattice water molecules with the v(NH)'s [17]. stretching and bending vibrations of C=S group

are observed as strong bands at 1263 and 792 cm⁻¹, respectively [18]. The intense band at 1072 cm^{-1} is characteristic for v(N-N). Also, the band at 3057 cm⁻¹ is due to aromatic CH vibration and no band was observed in the region (2500-2650 cm⁻¹) in the IR spectrum characteristic for SH group suggested the possibility of keto/thiol obscure of tautomerism in the solid state. Finally, weak bands in the region 2884-2997 cm⁻¹ is characteristic to aliphatic CH2 group. On comparing the spectrum of thiosemicarbazide and its metal complexes (Structures a-c) claryfied its coordinates as neutral or dibasic chelate. The following remarks can be drawn:

- Firstly, as a neutral $N_2O_2N_2$ hexadentate in $[Cu_2(H_4MHTS)(OAc)_4(H_2O)_2].2H_2O$ complex (Structures c) coordinating each Cu atom through N^2H and (C=S) groups which confirmed by the shift of their bands to lower wavenumber and (C=O)_{hydr} shift to higher wavenumber.
- Secondly, H₄MHTS binds as mononegative $O_2N_2O_2$ tridentate in $[Co_2(H_2MHTS)(OAc)_2].2H_2O$ complex in thione-enol form (Structure a) binding to each Co atom through (C-O)_{hydr} that formed on enolization followed deprotonation coordination to metal ion, N²H and (C=O)_{benzovl} [23]. This mode of chelation is supported by:
- i) The blue shift of the band due to $\nu(C=O)_{benz}$.
- ii) The disappearance of bands due to (C=O) and $\nu(N^1H)$ vibrations with simultaneous appearance of new bands at 1603 and 1245

cm⁻¹assignable to new v (C=N)*and v (C-O) bands support the suggested mode of chelation.

• Finally, in the binuclear complex,

[Ni₂ (H₂MHTS)(EtOH)₄(H₂O)₂] (Structure b) H₄MHTS chelates as binegative $O_2N_2O_2$ hexadentate coordinating two Ni atoms *via* enolized C-O, N²H and new (C=N*) [23]. Also, the new bands that observed at 524 and

475 cm⁻¹ assigned to v(M-O) and v(M-N) vibrations were taken as additional evidence for existing of the ligand in enol form and its coordination to the metal ion in binegative hexadentate fashion, via the deprotonated

enolized carbonyl oxygen and nitrogen atoms. The acetate group in the titled complexes coordinated either as bidentate ligand [Co₂(H₂MHTS)(OAc)₂].2H₂O complex or in monodentate manner in $[Cu_2(H_4MHTS)(OAc)_4(H_2O)_2].2H_2Ocomplex$ revealed by the new bands appeared at (1644,1540 cm⁻¹) and (1671, 1480 cm⁻¹) attributed to the vas(OAc) and vs(OAc) vibrations, with (Δv difference $\approx 110 \& 191 \text{ cm}^{-1}$ 1) [24], respectively matching with the reported (Structure c). The two new bands assigned to the v(M-O) and v(M-N) at 506 and 475 [24], respectively, support the suggested mode of chelation.

3.2.NMR spectra

Figure 2 shows the ¹H NMR spectrum of the ligand, H₄MHTS in d6-DMSO where the peaks at 11.66, 11.18 and 10.00 ppm assignable to N⁴H, N²H and N¹H protons. These peaks disappear upon addition of D₂O (Figure 2b) suggesting they are easily exchangeable as they form hydrogen bonded with CO or CS, and so are shifted downfield. Thus, the appearance and disappearance of these signals confirms the existence of the ligand in keto form. In addition, the singlet signal observed at 3.57 are due to the protons malonyl CH₂ group. The peaks correspond to protons of benzene ring are observed as multiplet at δH:(7.49–7.96).

3.3. Electronic spectra

electronic absorption spectra of compounds under study were displayed in DMF (Fig.3). The bands that observed at 41667, 34483 and 30395 cm⁻¹ as broad ones in absorption spectrum of H₄MHTS presumably arising from transitions {an overlap of the transitions due to those of benzene ring, carbonyl and thione groups} [24]. These bands suffer a clear change upon complexation and appeared at 43290-40000 cm⁻¹, 34602-34013 cm⁻¹ and 30581-31250 cm⁻¹ indicating the chelation of central metal ion through the carbonyl and thione groups [24]. These three transitions bands of the ligand observed at (40816, 34602 and 31250 cm⁻¹), (43290, 34013 and 30581 cm⁻¹) and (40000, 34602 and 31250 cm⁻¹) for Co(II), Ni (II) and Cu(II) complexes, respectively

The spectrum of $[Co_2(H_2MHTS)(OAc)_2].2H_2O$, complex

recorded in DMSO exhibited; new band at 16340 referred to transition of the new formed (C=N*) group [24]. A new broad band observed, in DMSO and Nujol mull, at 20450 cm⁻¹, with a shoulder at 16340 cm⁻¹ and 15151 cm⁻¹ were attributed to LMCT. The complex exhibited magnetic moment value, B.M.The spectrum of[Ni₂ (H₂MHTS)(EtOH)₄(H₂O)₂], complex recorded in DMSO exhibited; new band at 34013 referred to transition of the new formed $(C=N^*)$ group [24]. and 16501 cm⁻¹ were attributed to LMCT magnetic moment value of The complex exhibited 2.98 B.M.The spectrum of $[Cu_2(H_4MHTS)(OAc)_4(H_2O)_2].2H_2O$, complex recorded in DMSO exhibited; new band at 16892 and 14749. The complex exhibited magnetic moment value, 1.79 which found in the normal range of Cu(II) complexes regardless of their stereochemistry, 1.75-2.20 [24].(Co&Ni)the ligand field parameters (10D_q, B, β)were calculated and found to be (7103,771.12,79)(12392,889.2..85)and respectively.

3.4. Thermogravimetric studies

TGA curves of H_4MHTS as well as its corresponding metal complexes are shown if figure 4 (a-d) and the data are recorded in table 1. Thermal degradation of H_4MHTS (Fig.4a) occurs through four steps. The first stage takes place in the temperature range(134-237 0 C) with elimination of the fragment namely $C_3H_4N_2O_2$ with wt loss; 21.07% (Calcd. 21.83%). In the second stage, the fragment $C_{13}H_{12}N_2O_2$ is removed at 238-384 0 C with wt loss; 49.82%

(Calcd. 49.78%) and in the third stage (385-684) the fragment N₂CS₂H₂ with wt loss; 23.71% (Calcd. 23.15%) was eliminated. The residual part that being left after complete degradation was 2C. On the other hand, the thermal degradation of [Co₂(H₂MHTS)(OAc)₂].2H₂O H₄MHTS as a representative example takes place through five steps. The first stage in the range (25-102 °C) is corresponding to wt loss; 5.09% (Calcd. 4.95%) is attributed to loss of two water lattice molecules.

In the second stage, the fragment $2CH_3COOH$ is eliminated at $103-245^{\circ}C$ with wt loss; 16.31% (Calcd. 16.21%), in the third stage ($246-396^{\circ}C$) the fragment $C_{16}H_{12}N_2S_2$

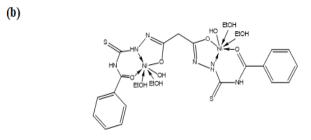
with wt loss: 40.73%

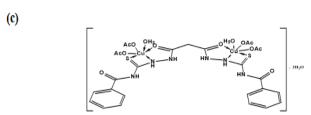
(Calcd.40.69%) is removed while in the four stage (397-555 0 C) fragment $C_{2}H_{4}N_{4}O_{2}$ with wt loss; 15.30% (Calcd.15.93%) is eliminated. The residual part was 2CoO+C.

3.5. Kinetic data

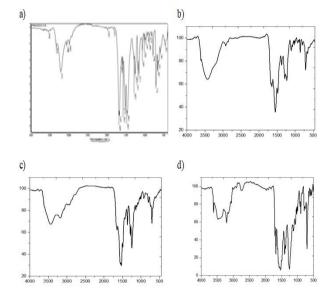
The kinetic and thermodynamic parameters of thermal degradation process using Coats-Redfern and Horowitz-Metzger models [25] have been evaluate and. The data obtained are represented graphically in figs. 5 &6. The high values of activation energy, E_a indicates the high stability of chelates because of their covalent bond character [25]. The sign of ΔG^* indicates all the decomposition steps are nonspontaneous and the positive values of enthalpy of activation, ΔH^* revealing the endothermic nature of the degradation process. Finally, ΔS^* has negative values indicating more ordered activated complex than the reactants or the reaction is slow [26].

3.5.In vitro cytotoxicity

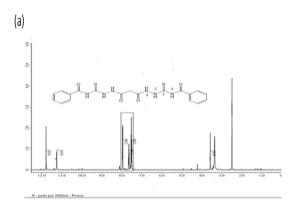

The well-known anti-cancer activity of bis(thiosemicarbazide)(H₄MHTS) complexes promoted us to examine the in vitro cytotoxic activities of the and its metal complexes against cell lines, Mammary gland breast cancer (MCF-7) using doxorubicin as standard. A glance at the data (Table 2) revealed that the potent activity of the ligand, IC₅₀ 15.39±1.30 compared to the standard drug (doxorubicin :4.17±0.20)and the order is: H₄MHTS)> Co(II) complex> Ni(II) complex > Cu(II) complex; respectively [27]. This indicate that chelation did not enhance the activity with the exception of Co(II) complex. These results are consistent with those reported [15, 16]. This activity of Co(II) complex may referred to due the unique electronic and structural properties of cobalt, which lead to a more potent induction of cell death mechanisms like apoptosis and pyroptosis. The cobalt complex's ability to effectively target breast cancer cells, while the Ni(II) and Cu(II) complexes may exhibit different levels of potency or be less selectivity which influences how the complexes interact with biological targets such as DNA and enzymes.

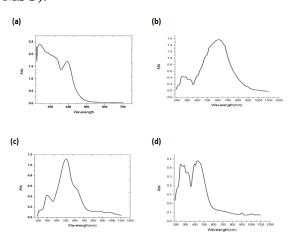

Therefore, further *in vivo* biological assessment and mechanisms of action research are required.

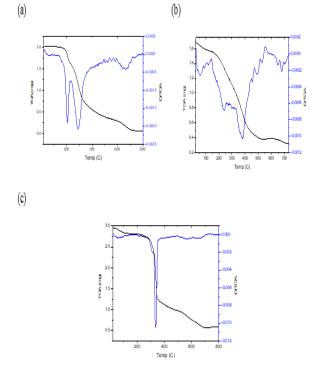
3.6. Geometry optimization

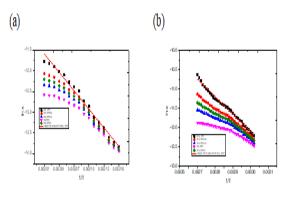

The molecular structures of all compounds are demonstrated in Figure 7.

N,N'-(2,2'-malonylbis(hydrazine-1-carbonothioyl))dibenzamide (H₄MHTS). **Scheme 1.** Possible isomerism of H₄MHTS:(a) Keto-Thione, (b) Enol-Thione and (c) Keto-Thiol.




Scheme 2: Structures of metal complexes: (a) Co(II) complex; (b) Ni complex(II) and (c) Cu(II) complex.


Figure 1.IR spectra of: a) H_4MHTS , b) $[Co_2(H_2MHTS)(OAc)_2].2H_2O$, c) $[Ni_2 (H_2MHTS)(EtOH)_4(H_2O)_2]$ and $[Cu_2(H_4MHTS)(OAc)_4(H_2O)_2].2H_2O$.


Figure 2. ¹HNMR spectrum of H₄MHTS (in d₆ DMSO).

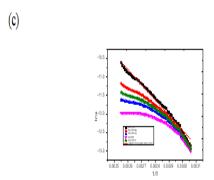
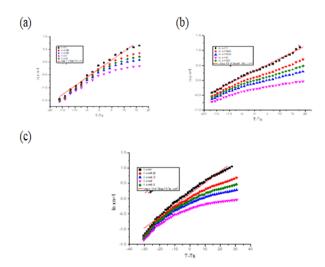


Fig 3. Electronic spectra of : a) H_4MHTS , b) $[Co_2(H_2MHTS)(OAc)_2].2H_2O$, c) $[Ni_2(H_2MHTS)(EtOH)_4(H_2O)_2]$ and $[Cu_2(H_4MHTS)(OAc)_4(H_2O)_2].2H_2O$.

Fig. 4. TGA, and DrTG thermal analysis curves of : a) H₄MHTS, b) [Co₂(H₂MHTS)(OAc)₂].2H₂O, and c) [Cu₂(H₄MHTS)(OAc)₄(H₂O)₂].2H₂O.



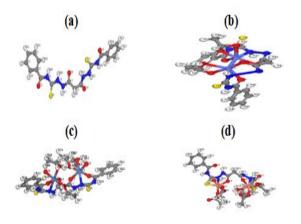

Figure 5: Coats-Redfern plots of the first degradation step for a) H₄MHTS, b) [Co₂(H₂MHTS)(OAc)₂].2H₂O,and c) [Cu₂(H₄MHTS)(OAc)₄(H₂O)₂].2H₂O.

Table 1: The temperature range and weight loss of each decomposition steps for H_4MHTS , $[Co_2(H_2MHTS)(OAc)_2].2H_2O$, and $[Cu_2(H_4MHTS)(OAc)_4(H_2O)_2].2H_2O$.

Complex		T 0.C	B 1 .	Wt. Loss	Wt. Loss (%)	
_	Step	Temp.Range,°C	Removed species	emoved species Found	Calcd	
H₄MHTS	1 st	134-237	$-C_3H_4N_2O_2$	21.07	21.83	
	2 nd	238-384	$-C_{13}H_{12}N_2O_2$	49.82	49.78	
	3 rd	385-684	$-N_2CS_2H_2$	23.71	23.15	
	Residue	685-800	2C	5.69	5.24	
[Co ₂ (H ₂ MHTS)(O Ac) ₂].2H ₂ O	1 st	25-102	-2H ₂ O	5.09	4.95	
	2 nd	103-245	-2(HOAc)	16.31	16.21	
	3 rd	246-396	$-C_{16}H_{12}N_2S_2$	40.73	40.69	
	4 th	397-555	$-C_2H_4N_4O_2$	15.30	15.93	
	Residue	556-800	2CoO+C	22.22	22.45	
[Cu ₂ (H ₄ MHTS)(O Ac) ₄ (H ₂ O) ₂].2H ₂ O	1 st	23-124	-2H ₂ O	4.33	4.03	
	2 nd	125-327	-2H ₂ O+2(HOAc)	18.27	17.24	
	3 rd	328-365	-2(HOAc)+C ₁₂ H ₁₀ +2CO	36.81	36.73	
	4 th	443-655	$-C_3H_8N_6S_2$	20.36	21.51	
	Residue	656-800	2CuO+2C	21.62	20.48	

Figure 6: Horowitz-Metzger equation plots of the first degradation step for for a) H₄MHTS, b) [Co₂(H₂MHTS)(OAc)₂].2H₂O,and c) [Cu₂(H₄MHTS)(OAc)₄(H₂O)₂].2H₂O.

Figure 7. Molecular modelling provided with the atoms number of (a) H_4MHTS , (b) Co(II) complex, (c) Ni(II) complex and (d) [Cu(II) complex.

**: Standard.

Table 2: Cytotoxic activity of H₄MHTS and its metal complexes against *Epitheliod Carcinoma*) using MTT assay.

No.	Compound.	In vitro Cytotoxicity IC ₅₀ (μM)* MTT
**	DOX	4.17±0.20
1	H ₄ MHTS	15.39±1.30
2	Co (II) complex	25.78 ± 2.00
3	Ni (II) complex	40.60±2.9
4	Cu(II) complex	46.21±3.2

References

- G.A.Gazieva, A.N.Kravchenko (2012)"
 Thiosemicarbazides in the synthesis of five- and six-membered heterocyclic compounds" G A Gazieva, A N Kravchenk; Russ. Chem. Rev., 81 (6) 494 523
- 2. X. Zhang , P.lei, T. Sun, X. Jin, X. Yang , Y. Ling (2017)" Design, Synthesis, and Fungicidal Activity of Novel Thiosemicarbazide Derivatives Containing Piperidine Fragments "Molecules 22, 1-13.
- 3. P.Meena, V.Nemaysh, M.Khatri, A.Manral, P.M.Luthra, M. Tiwari, (2015) "Synthesis, biological evaluation and molecular docking study of novel piperidine and piperazine derivatives as multi-targeted agents to treat Alzheimer's disease" Bioorg. Med. Chem. 23,1135–1148.
- 4. B. M. Ismael, M. A. El-Nawawy, H. A. Gomaa, Ola A. El-Gammal (2022), Divalent transition metal complexes of multidentate nitrogen, oxygen and sulfur

- containing ligand: Design, spectroscopic, theoretical molecular modeling and antioxidant like activity" Bassam M. Ismael, Mohamed A. El-Nawawy, Hosni A. Gomaa, Ola A. El-Gammal, Egypt. *J. Chem.* **65(9)**;639-655.
- 5. C. Q. Debra, A. K. Kathy, R. K. Earl, (2006)" In vitro and in vivo evaluation of isatin-β-thiosemicarbazone and marboran against vaccinia and cowpox virus infections", Antiviral Res., 71, 24.
- 6. P. Tarasconi, S. Capacchi, G.Pelosi, M. Cornia, R. Albertini, A. Bonati, P. P. Dall'Aglio, P. Lunghi, S. Pinelli (2000)

 "Synthesis, Spectroscopic Characterization and BiologicalProperties of New Natural Aldehydes Thiosemicarbazones" Bioorg. & Med. Chem. 8 157-162.
- 7. A.Tahghighi,F.B.Thiadiazoles(2017); The appropriate pharmacological scaffolds with leishmanicidal andantimalarial activities: A review; Iran J Basic Med Sci. 20(6): 613–622.
- 8. [8] R. Pingaew , S. Prachayasittikul , and S.Ruchirawat (2010)"Synthesis, Cytotoxic and Antimalarial Activities of Benzoyl Thiosemicarbazone Analogs of Isoquinoline and Related Compounds" Molecules, 15.
- 9. D. Gambino, L. Otero, M. Vieites, M. Boiani, M. Gonzalez, E.J.Baran and H. Cerecetto, (2008) "ESR, electrochemical and reactivity studies of antitrypanosomal palladium thiosemicarbazone complexes"Spectrochim. Acta part A, 70, 519–523.
- 10. O. A. Al-Gammal, A. A. El-Asmy, (2008)" Synthesis and spectral characterization of 1-(aminoformyl- N-phenylform)-4-ethylthiosemicarbazide and its metal complexes'. Coord. Chem., 61, 2296.
- 11. O.A. El-Gammal , G.M. Abu El-Reash and M.M. El-Gamil (2012), "Binuclear copper(II), cobalt(II) and Nickel(II) complexes of N1-ethyl-N2-(pyridin-2-yl) hydrazine-1,2-bis(carbothioamide): Structural, spectral, pH-metric and biological studies" Spectrochim. Acta Part A: 96, 444–455
- 12. O. A. El-Gammal, G. M. Abu El-Reash,

- and M. M. El-Gamil (2013) "Binuclear copper(II), cobalt(II) and Nickel(II) complexes of N1-ethyl-N2-(pyridin-2-yl) hydrazine-1,2-bis(carbothioamide): Structural,spectral, pH-metric and biological studies" Spectrochim. Acta Part A:,59 -70.
- 13. O. A. El-Gammal, G. M. Abu El-Reash, and M. M. El-Gamil (2013) "Novel Mercury (II), Cadmium(II) and Binuclear Zinc (II) complexes of N1-ethyl-N2-(pyridine-2-yl) hydrazine-1, 2-bis (carbothioamide): structural, spectral, pHmetric andbiological studies" Spectrochimica Acta Part A:,59-70.
- 4. O. A. El-Gammal, Mohamed A. El-Nawawy, Hosni A. Gomaa, Bassam M. Ismael (2024);Novel vanadyl (IV)²⁺ complexes of a flexidentate chelates: Preparation, spectral, theoretical modeling study, intrinsic constant of DNA binding and superoxide free radical scavenging activity"; *J. Mol. Struct.*, (2024)1284(5):135335
- 15. Ola A. El-Gammal, Ehab Abdel-Latif, Mona G. Farag, Mohamed H. Abdel-Rhman ;(2021); Synthesis, characterization, and anticancer activity of new binuclear complexes of 2,20 malonylbis(N-phenylhydrazine-1-carbothioamide"; J. App. Organomet. Chem. 35:e6194.
- 16. A Yadav, D. Patel, X. Wu, B. B Hasinoff; (2013), Molecular mechanisms of the biological activity of the anticancer drug elesclomol and its complexes with Cu(II), Ni(II) and Pt(II); *J Inorg Biochem*, **126**:1-6.
- 17. Modeling and Simulation Solutions for Chemicals and Materials Research. Materials Studio, Version 7.0, Accelryssoftware Inc., San Diego, USA, (2011).
- 18. O. A. El-Gammal, M. A. El-Nawawy, H. A. Gomaa, B. M. Ismael, "Synthesis, spectral, DFT, intrinsic constant of DNA binding and antioxidant activity of vanadyl (IV)2+ complexes of a symmetrical bisthiosemicarbazides" *J. of Mol. Struct.*, 1284, 135335, (2023).
- 19. B. Delley, "From molecules to solids with the DMol³ approach. *J. Chem. Phys* **113**,

- 7756-7764, (2000).
- El-Gammal, 20. O. A Ashraf El-Bindary'A.M.Eldesoky, Ibtesam Al-Gader Characterization. (2025): Synthesis, Molecular Docking and Vitro in Antibacterial Assessments of AnthraceneBis(Hydrazine)Thiosemicarba zide Complexes with Co(Ii), Ni(Ii) and Cu(Ii) Ions; J. Mol.Struct. 1322, Part 1, 140339
- 21. K. Nakamoto (1978)., Infrared and Raman spectra of inorganic and coordination compounds, Wiley Online Library.
- 22. O.A. El-Gammal and M.M. Mostafa(2014), "Synthesis, characterization and molecular modeling of Girard'T thiosemicarbazide and its complexes with some transition metal ions", Spectrochimica Acta. Part A: 530-542.
- 23. Ö. Tayfuroğlu, F.A. Kılıçarslan, G.Y. Atmaca, A. Erdoğmuş, (2018) "Synthesis, characterization of new phthalocyanines and investigation of photophysical, photochemical properties and theoretical studies", *Journal of Porphyrins and Phthalocyanines*, **22**,250-265.
- 24. O.A.El-Gammal, (2010)" Synthesis,

- characterization, molecular modeling and antimicrobial activityf 2-(2-(ethylcarbamothioyl) hydrazinyl)-2-oxo-N-phenylacetamide copper complexes", Spectrochim. Acta Part A: Molecular and Biomolecular Spectroscopy, **75**,533-542.
- 25. O. A. El-Gammal, (2015) ."Mononuclear and binuclear complexes derived from
- 26. hydrazone Schiff base NON donor ligand: Synthesis, structure, theoretical and biological studies" Inorg. Chim. Acta, 435, 73–81.
- 27. [26] A. Broido, (1969) "A simple, sensitive graphical method of treating thermogravimetric analysis data", Journal of Polymer Science Part A-2: Poly. Phys., 7,1761-1773.
- 28. Ola A. El-Gammal, Ehab Abdel-Latif, Samir A. Abdel-Latif, H. M. El-Sayed (2025)' Synthesis, characterization, antioxidant, and molecular docking studies on COVID-19 and breast cancer of novel Cr³⁺, Mn²⁺, and VO²⁺ complexes derived from new Schiff base hydrazone ligand" *Journal of Molecular Structure*, *J.Mol. Struct.* **1331(1)**:141531.