10.21608/avmj.2025.365998.1612

Assiut University web-site: www.aun.edu.eg

THERAPEUTIC POTENTIAL OF THYMOL-RICH THYMUS VULGARIS ESSENTIAL OIL IN MITIGATING HYPERTENSION AND ASSOCIATED ORGAN DAMAGE

NADA A. EL-GAMMAL¹; YAKOUT A. EL-SENOSI ¹; MOHAMED K. MAHFOUZ¹; AFAF D. ABD EL-MAGEID ¹; MONA A. MOHAMMED ²; KHALED FATHY ³; BASMA H. MARGHANI ^{4,5} AND AHMED A. SEDIK⁶

Received: 29 April 2025; Accepted: 21 June 2025

ABSTRACT

Hypertension is a significant global health issue that contributes to various cardiovascular and renal diseases. This study investigated the therapeutic potential of *Thymus vulgaris* essential oil, specifically its primary component, thymol, in mitigating hypertension and related complications. Thirty-two male Sprague-Dawley rats were divided into four groups: normal control, L-NAME-induced hypertension (40mg/kg), L-NAME + high-dose thymol oil (10 mg/kg), and L-NAME + low-dose thymol oil (5 mg/kg). Blood pressure, lipid profiles, renal function markers, inflammatory cytokines (TNF-α, IL-6), apoptosis markers (Annexin-V, Bcl-2), and histopathological changes were evaluated. GC-MS analysis of *Thymus vulgaris* essential oil confirmed thymol was the dominant compound (34.21%), suggesting its substantial pharmacological role. In hypertensive rats induced by L-NAME (40 mg/kg), the administration of high-dose thymol oil (10 mg/kg) significantly reduced the systolic and diastolic blood pressures, supporting its antihypertensive efficacy. Additionally, thymol improved lipid profiles by lowering triglyceride, total cholesterol, and LDL levels, while increasing HDL levels. Thymol oil also had protective effects on renal function, as evidenced by decreased levels of urea and creatinine, which are markers of renal dysfunction. Moreover, it reduced the levels of inflammatory markers such as tumor necrosis factor-alpha (TNF-α) and interleukin-6 (IL-6) in the heart, aorta, and kidneys, indicating its anti-inflammatory properties. Flow cytometry and histopathological analysis revealed that thymol oil significantly reduced apoptosis, as evidenced by decreased Annexin-V expression and increased levels of the anti-apoptotic protein Bcl-2. Tissue damage in the heart, aorta, and renal tissues was markedly restored after administration of high-dose thymol, highlighting its potential for reversing hypertension-induced organ damage. These findings suggest that thymol-rich Thymus vulgaris essential oil offers a multifaceted approach for managing hypertension and its complications, providing both cardiovascular and renal protection.

Keywords: Hypertension, L-NAME, Thymus vulgaris, Apoptosis, Annexin-V

Corresponding author: Nada A. El- Gammal E-mail address: nabed9864@gmail.com;

Present address: Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Benha

University, Benha, Egypt

¹ Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Benha University, Benha, Egypt

² Medicinal and Aromatic Plants Research Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, El- Buhouth St., Dokki, Giza, Egypt

³ Electron Microscopy Unit, Mansoura University, El Mansoura, Egypt 35516

⁴ Department of Physiology and Pharmacology, Faculty of Veterinary Medicine, King Salman International University, South of Sinai 46612, Egypt

Department of Physiology, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
 Pharmacology Department, Medical Research and Clinical Studies Institute, National Research Centre, El-Buhouth St., Dokki, Giza,, 12622, Egypt

INTRODUCTION

Cardiovascular diseases, particularly hypertension, remain a major factor impacting people's lives, despite considerable progress in diagnostic and therapeutic tools. Hypertension leads to damage in critical organs, eventually resulting in conditions such as heart failure, vascular injury, microvascular dysfunction, atherosclerosis, and renal impairment (Poznyak et al., 2022). suggests Evidence that vascular remodelling, ultrastructural damage, and apoptosis in the heart, kidneys, and aorta contribute significantly to end-organ damage and failure, making hypertension growing global health issue. Hypertensive vascular injury is strongly associated with the overexpression of modulators, inflammatory reactive oxygen species, while growth, inflammation. and fibrosis contribute to arterial remodelling. arterial Therefore. preventing remodelling should be a key target in antihypertensive therapy (Li et al., 2023).

The traditional use of medicinal plants has long been practiced worldwide for preventing and treating chronic conditions, including cardiovascular diseases, inflammatory diseases, arthritis, diabetes, and hypertension. The study aims to investigate the pharmacological of thymol, a bioactive properties compound in thyme that has shown promising effects in reducing blood pressure (Rahmani et al., 2014). Thymol, chemically identified as 2-isopropyl-5methylphenol, is a colourless crystalline monoterpene phenol (Pandey et al., 2014). Its beneficial effects are largely attributed to its antioxidant, free radicalantihyperlipidemic, scavenging, homeostasis-maintaining ionic properties. These pharmacological effects stem from the phenolic hydroxyl group in thymol's chemical structure,

allows it to neutralize free radicals and enhance endogenous antioxidant defenses (Lalhminghlui and Jagetia 2018).

Studies have demonstrated thymol's vasorelaxant activity in isolated rat aorta, showing that it induces endotheliumindependent relaxation by releasing Ca2+ from the sarcoplasmic reticulum. reducing the sensitivity of contractile elements to Ca²⁺, and preventing Ca²⁺ influx across the membrane (Peixoto-Neves et al., 2010). Thymol also exerts anti-inflammatory effects by inhibiting cytokine and chemokine recruitment. Previous studies have revealed that thymol (1 - 10 mg/kg) can significantly lower blood pressure and heart rate in Wistar rats and rabbits, while decreasing the atrial contraction force and rate of spontaneous beating atria Meeran et al., 2017). Its hypotensive and bradycardiac effects are linked to its Ca2+ channel-blocking properties.

This study investigated the therapeutic potential of *Thymus vulgaris* essential oil, specifically its primary component, thymol, in mitigating hypertension and related complications.

MATERIALS AND METHODS

Experimental animals

Thirty-two male adult Sprague–Dawley rats, aged 6–7 weeks and weighing between 200–220 g. The rats were housed individually in stainless steel cages under controlled conditions, maintaining a 12-hour light/dark cycle, a temperature of 24 \pm 1°C, and a relative humidity of 52 \pm 12%. Food and water were provided ad libitum, and the animals were acclimated for two weeks before the start of the experiment.

Ethics approval statement:

The experimental protocol adhered to the guidelines set by the Institutional Animal Care and Use Committee and was approved by the Research Ethics Committee (Approval no BUFVTM12-10-24).

Chemicals and natural agents

The chemicals and antioxidants used in this study include the following:

L-NAME (N(gamma)-nitro-L-arginine methyl ester hydrochloride, purity: 98%) was obtained from Sigma-Aldrich, USA. A freshly prepared L-NAME solution was administered orally at a dose of 40 mg/kg, three times per week, for six weeks (Altangerel et al., 2024). Other reagents included Folin-Ciocalteu reagent (FCR), Trolox. ABTS and DPPH were procured from Sigma-Aldrich, USA. Additionally, 98% gallic acid was purchased from Acros Organics, Belgium. All other chemicals solvents used were of high analytical grade and were supplied by Fisher Scientific UK (Bishop Meadow Road, Loughborough) (Mohammed et al., 2020). Thymus vulgaris L. was obtained from Al-Harraz Co. for Agriculture Seeds, Herbs, and Medicinal Plants, Cairo, Egypt.

Thymus vulgaris L. thymol oil extraction: This study focused on the extraction and analysis of thymol oil from Thymus vulgaris L., which was authenticated, followed by an estimation of its volatile content. A 50 g sample of dried leaves was subjected to water distillation for 4 hours via a Clevenger apparatus, as described previously (El-Gengaihi et al., 2013). The extracted thymol oil was dehydrated using anhydrous sodium sulfate and stored in a deep freezer until analysis. Each extraction was performed in triplicate, and the mean oil yield was recorded as 10.2 ± 0.9 ml.

Gas chromatography—mass spectrometry analysis (GC–MS) conditions:

The chemical composition of the thymol was determined oil via gas chromatography-mass-mass spectrometry (GC-MS). The analysis carried out via an Agilent was Technologies GC-MS system equipped with a gas chromatograph (7890B) and a mass spectrometer detector (5977A). The identification of individual components by comparing performed fragmentation patterns of the compounds with those in the Wiley and NIST mass spectral libraries (Apel et al., 2003).

Antioxidant activity of *Thymus vulgaris* thymol oil (In vitro study).

The antioxidant activity of Thymus vulgaris thymol oil was assessed via DPPH (1,1-diphenyl-2-picrylhydrazyl) (2,2'-azinobis-3and **ABTS** ethylbenzothiazoline-6-sulfonate) radical scavenging procedures. Various concentrations of thymol oil (10, 5, 2.5, 1.5, 1, 0.45, 0.3, 0.15, and 0.075 µg/mL) were tested, with ascorbic acid and Trolox serving as positive controls. The preparation of the DPPH and ABTS solutions followed the methods outlined by, with slight modifications. reduction in the absorbances of DPPH and ABTS, and the calculation of the percentage of antioxidant activity were used to determine the antioxidant activity (Baliyan et al., 2022).

Experimental design

Thirty-two rats were randomly and blindly assigned to four groups (8 rats per group) as follows:

- (Normal Control): Rats were provided a standard diet with no treatment for 28 days.
- (L-NAME): Rats were given daily oral doses of L-NAME (40 mg/kg) for 28 days (Altangerel et al., 2024).

(L-NAME + high-dose volatile oil):
Rats were received daily oral doses of
L-NAME (40 mg/kg) combined with
Thymus vulgaris thymol oil (10 mg/kg
body) for 28 days (Nagoor Meeran et
al., 2017).

(L-NAME + low-dose volatile oil): Rats were given daily oral administration of L-NAME (40 mg/kg body weight/day) along with *Thymus vulgaris* thymol oil (5 mg/kg) for 28 days (Elshopakey *et al.*, 2021).

Throughout the experiment, doses were adjusted weekly on the basis of changes in body weight to ensure consistent dosing per kilogram of body weight across the entire study period for all groups.

Hypertension measurement:

A BP-2010 AUL non-invasive blood pressure monitoring system was utilized to measure the blood pressure from different animal groups (Su-Hong et al., 2015). First, the airtightness of the instrument monitoring channel verified, and the incubator temperature was set to 37°C and maintained at room temperature. The rats were then placed in a monitoring environment for 15 minutes within a fixed bag. During this time, the BP monitoring sensors were positioned around the root of the rats' tails. Once the signal became stable, the systolic blood pressure (SBP) and diastolic blood pressure (DBP) data were recorded and collected, with the volume adjusted to 1 ml/100 g based on the weight of the rats.

Blood samples and tissue specimens

Blood samples were taken from the eyes of the rats' retro-orbital plexus following anaesthesia with ketamine (100 mg/kg) and xylazine (10 mg/kg) (Soliman et al., 2025). Sera were separated using centrifugation at 3000 rpm for 15 minutes at 4 °C (Labore-zentrifuger, cooling centrifuge, 2k15, Sigma,

Germany) and stored at -20°C for further lipid profile analysis. The rats were euthanized in accordance with the Animal Ethics Committee's guidelines following the collection of blood samples. The heart, aorta, and kidney tissues were dissected and cut into two initial portion sections. The homogenized after being washed with sterile physiological saline and stored at -80°C for analysis via flow cytometry and ELISA. The second portion of each tissue sample was fixed in 10% formalin for histopathological analysis.

Biochemical analysis

The manufacturer's instructions were followed to measure urea and creatinine levels via colorimetric assays from Bio Diagnostic Company (Dokki, Egypt) (Cat. NO. UR2110 for urea and Cat. No. CR1250 for creatinine). Triglycerides were evaluated via the lipase technique, whereas cholesterol determined were levels via cholesterol esterase method. Cholesterol was separated into HDL and LDL via phosphotungstic acid precipitation. (Apel et al., 2003).

Enzyme-Linked Immunosorbent Assay (ELISA)

IL-6 and TNF- α levels were quantified via ELISA kits from CUSABIO (Cat. No: CSB-E04640r and CSB-E11987r, China) in accordance with the manufacturer's protocols (Çetin *et al.*, 2018).

Flow cytometry analysis

Flow cytometry was employed to detect apoptotic markers via the FITC Annexin V Apoptosis Detection Kit I (catalogue no. 556547) according to the propidium iodide (PI) staining method. This methodology was implemented to ascertain the number of necrotic and apoptotic cells (Wuputra *et al.*, 2022). The tissue samples were processed via

incubation with appropriate amounts of diluted enzymes in PBS, followed by cell filtration and centrifugation to remove clumps and debris. The cells were then resuspended in staining buffer for viability and cell count analysis (Sedik *et al.*, 2023). For anti-apoptotic marker analysis, a Bcl-2 monoclonal antibody (Bcl-2-100, Catalogue No. 13-8800) was used at a concentration of 0.5 mg/mL, with the immunogen being a synthetic peptide corresponding to residues 41- 54 of the human Bcl-2 protein (Sedik A *et al.*, 2023).

Histopathological examination

Heart, aorta, and kidney tissue samples were preserved in 10% neutral buffered formalin and then serially sectioned at 5 µm. Hematoxylin and eosin (HE) staining was used, and the tissue samples were examined under a light microscope. (Afifi *et al.*, 2017) (Altangerel *et al.*, 2024).

Statistical analysis

The statistical analysis was carried out using Two-way ANOVA using SPSS, ver. 27 (IBM Corp. Released 2013). Data were treated as a complete randomization design, according to Steel et al. (1997). Multiple comparisons were carried out applying the Duncan test. The significance level was set at P<0.05

RESULTS

GC-MS analysis

GC-MS analysis of the thymol oil from

Thymus vulgaris revealed 18 components, representing 100% of the total composition. The results revealed the presence of various monoterpenes and phenolic compounds, with thymol as the dominant constituent (34.21%). Other significant components included γ -terpinene, terpinen-4-ol, α -terpinene, and p-cymene. Fewer constituents include compounds such as α -pinene, β -myrcene, and caryophyllene.

The qualitative analysis highlights a rich bioactive profile of compounds, including both oxygenated and hydrocarbon monoterpenes, contributing to the characteristic aroma and potential therapeutic properties of the oil. The high content of thymol (34.21%) aligns with previous findings that thymol has principal bioactive and antioxidant properties. Its dominance suggests significant therapeutic potential for pharmaceutical and cosmetic applications. The presence of terpinene and p-cymene is noteworthy, as they are precursors in the biosynthetic pathway of thymol and carvacrol, indicating the biosynthetic efficiency of plant producing in phenolic compounds. Terpinen-4-ol and terpinene also contribute to the antimicrobial anti-inflammatory and activities of the oil, increasing its medicinal value. Identification of minor constituents, such as α-pinene and βmyrcene (Table 1).

Table 1: Chemical composition (%) of *Thymus vulgaris* thymol oil (GC–MS qualitative analysis)

Peak	RT	Name	Area %	
1	4.31	Thujene	2.52	
2	4.41	α-Pinene	0.74	
3	5.02	β-Sabinene	0.66	
4	5.29	β-Myrcene	1.26	
5	5.74	α-Terpinene	7.61	
6	5.88	p-Cymene	7.48	
7	5.93	D-Limonene	0.77	
8	5.95	p-Mentha-1	0.77	
9	6.44	γ-Terpinene	17.95	
10	6.58	trans-4-Thujanol	1.10	
11	6.79	α-Terpinolene	1.44	
12	7.09	cis-4-Thujanol	5.23	
13	7.39	4-Isopropyl-1-methylcyclohex-2-enol	0.46	
14	8.30	Terpinen-4-ol	8.3	
15	8.48	AlphaTerpineol	2.58	
16	9.98	Thymol	34.21	
17	10.06	2,5-Diethylphenol	5.38	
18	11.50	Caryophyllene	1.54	
Total Identification 100%				

GC-MS qualitative analysis was used to identify the chemical composition (%) of Thymus vulgaris thymol oil

Antioxidant activity DPPH and ABTS+ Radical Scavenging Activity

The in vitro DPPH and ABTS+ antioxidant activities of the standards (vitamin C and Trolox) and Thymus vulgaris thymol oil extracts were evaluated at various concentrations, as shown in. At higher concentrations, all samples exhibited 100% scavenging activity, indicating strong antioxidant potential. At lower concen-

trations, the activity varied significantly. At 0.45 µg/mL, vitamin C had the highest activity, outperforming Trolox and thymol oil. Interestingly, *Thymus vulgaris* thymol oil exhibited a better scavenging ability than did Trolox at 0.3 µg/mL and 0.15 µg/mL. The IC50 values, which reflect the concentration required to inhibit 50% of the radicals, revealed that *Thymus vulgaris* thymol oil outperformed Trolox and vitamin C (**Table 2**).

Table 2: In vitro DPPH and ABTS radical scavenging assays of Thymus vulgaris volatile oil

Sample DPPH	Vit C		trolox		Thymus vulgaris Volatile Oil	
and ABTS Conc μg/ml)	DPPH	ABTS	DPPH	ABTS	DPPH	ABTS
10	100 ± 0	100 ± 0	100 ± 0	100 ± 0	100 ± 0	100 ± 0
5	100 ± 0	100 ± 0	100 ± 0	100 ± 0	90.36 ± 2.1	96 ± 0.56
2.5	90.23 ± 1.25	90.23 ± 0.85	92.36 ± 0.36	83.55 ± 0.81	80.36 ± 3	85 ± 0.87
1.5	78.8 ± 0.56	83.63 ± 0.86	80.35 ± 0.52	80.77 ± 1.02	70.65 ± 0.26	80 ± 0.65
1	70.91 ± 0.89	70.03 ± 0.99	75.58 ± 0.75	73.42 ± 0.85	65.73 ± 0.56	73.82 ± 0.34
0.45	65.62 ± 0.94	56.19 ± 0.25	60.59 ± 0.85	45.21 ± 0.89	50.45 ± 0.11	49.33 ± 0.11
0.3	24.93 ± 0.33	20.52 ± 0.65	37.2 ± 0.42	30.55 ± 0.85	45.84 ± 0.45	43.48 ± 0.79
0.15	20.51 ± 0.52	20.51 ± 0.52	30.55 ± 0.96	24.2 ± 0.96	46.44 ± 6.51	45.96 ± 6.24
0.075					12.81 ± 0.78	25.62 ± 2.72
IC ₅₀	0.5186	0.4196	1.544	0.5468	1.630	0.7398

The data are presented as the means \pm SEM. The antioxidant activity of *thymol* oil was evaluated via DPPH and ABTS radical scavenging assays. The radical scavenging activity was expressed in terms of the IC₅₀ value.

Biochemical parameter

Compared with normal rats, L-NAMEinduced hypertensive rats presented elevated significantly systolic diastolic pressures. Thymol oil treatment (10 mg/kg) significantly reduced the systolic and diastolic pressures, which approached normal values. Thymol oil treatment (5 mg/kg) was less effective, improved the parameters, still compared with those of the L-NAME group. Hypertension was associated with dyslipidaemia, as evidenced by elevated triglyceride, total cholesterol, and LDL levels and reduced HDL levels in the L-

NAME group. Thymol oil treatment (10 pronounced resulted mg/kg) in improvement, normalizing triglyceride and total cholesterol levels. LDL was reduced, and HDL improved. Thymol oil treatment (5 mg/kg) also improved lipid parameters, but was less effective than the high dose. The hypertensive rats suffered from a significant renal impairment, as indicated by elevated urea and creatinine levels. High-dose thymol effectively reduced the urea and creatinine levels, indicating renal protection. Low-dose thvmol oil resulted moderate improvement (Figure 1) (Table 3).

Table 3: Effect of administration of thymol oil on the lipid profile in hypertensive rats

Parameters Groups	Creatinine (mg/dL)	Urea (mg/dL)	Triglycerides (mg/dL)	Total cholesterol (mg/dL)	HDL (mg/dL)	LDL (mg/dL)
Normal control	0.35±0.027	39.20±0.99	88.67±2.03	115.30±2.91	46.67±1.45	8.33±0.88
L-NAME (40mg/kg)	0.86±0.02*	67.00±1.16*	154.10±2.01*	158.00±2.89*	24.33±1.76*	26.67±1.45*
L-NAME (40mg/kg) + Thymol oil (10)	0.81±0.01* #	42.00±1.16* #	97.00±3.22* #	99.33±3.18* #	32.00±1.16* #	13.67±0.33* #
L-NAME (40mg/kg) + Thymol oil (5)	0.64±0.03* #	54.33±0.67* #	136.30±2.33* #	140.30±2.03* #	40.00±0.58* #	18.33±0.67* #

Hypertension was induced by daily intake of L-NAME (40 mg/kg) for 28 days. Rats received two doses from thymol oil (high dose 10 mg/kg) low dose; 5 mg/kg) concurrently with L-NAME for 28 days. After the last doses of the drugs, levels of creatinine, urea, triglycerides, total cholesterol, HDL and LDL were measured in the serum samples from different experimental groups. Results are expressed as means \pm SEM (n=8). * Significant difference from normal group (P<0.05). # Significant difference from L-NAME group (P<0.05).

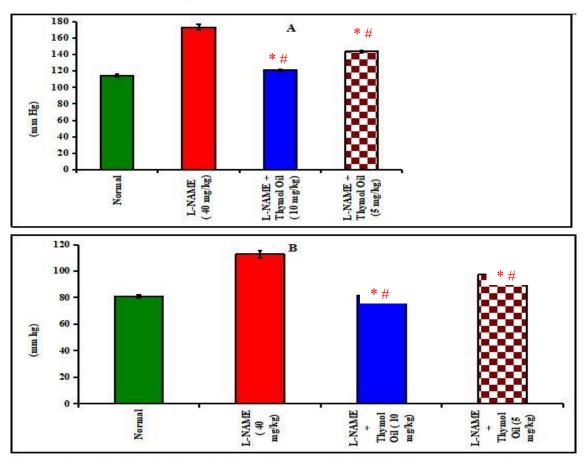


Figure 1: Effect of thymol oil administration on the Systolic and diastolic blood pressure changes in hypertensive rats. Hypertension was induced by daily intake of L-NAME (40 mg/kg) for 28 days. Rats received two doses from thymol oil (high dose 10 mg/kg) low dose; 5 mg/kg) concurrently with L-NAME for 28 days. After the last doses of the drugs, systolic and diastolic blood pressure (mm Hg) was measured from different animal groups. (A) Changes in systolic blood pressure (SBP). (B) Changes in diastolic blood pressure (DBP). Data are presented as means \pm SEM (n=8). * Significant difference from normal group (P<0.05). # Significant difference from L-NAME group (P<0.05).

ELISA findings

The administration of L-NAME (40 mg/kg) resulted in a significant increase (P< 0.05) in the levels of TNF- α and IL-6 in the heart, aorta, and kidney compared with those in normal rats. Additionally,

compared with L-NAME, thymol (10 mg/kg and 5 mg/kg) significantly (P< 0.05) reduced the levels of TNF- α and IL-6 in the heart, aorta, and kidney in a dose-dependent manner (**Table 4**).

Table 4: Effect of administration of thymol oil on TNF-α and IL-6: Cardiac, Aorta and kidney levels in hypertensive rats.

Organ	Normal	L-NAME (4/kg)	L-NAME (40 mg/kg) + Thymol oil (10 mg/kg)	L-NAME (40 mg/kg) + Thymol oil (5 mg/kg)
		TNF-α (Pg	/mg)	
Heart	85.32±1.453	1076±30.69*	436±4.359* #	755.7±2.963* #
Aorta	47.29±3.182	434.7±2.333*	133.7±2.028* #	173.3±1.453* #
Kidney	98±2.309	984.7±2.333*	330.7±1.453* #	390.7±4.055* #
		IL-6 (Pg /	mg)	
Heart	62.33 ± 2.963	1324±2.333*	394.7±2.404* #	694.7±2,333* #
Aorta	24±1.732	394.3±2.333*	99.67±2.333* #	197.3±2.028* #
Kidney	76.67±1.764	1111±2.333*	282 ±2.646* #	355±2.887* #

Hypertension was induced by daily intake of L-NAME (40 mg/kg) for 28 days. Rats received two doses from thymol oil (high dose 10 mg/kg) low dose; 5 mg/kg) concurrently with L-NAME for 28 days. After the last doses of the drugs, TNF- α and IL-6 were evaluated in the heart, aorta and kidneys from different experimental groups. Results are expressed as means \pm SEM (n=8). * Significant difference from normal group (P<0.05). # Significant Difference from L-Name group (P<0.05).

Flow cytometry

Apoptosis Analysis: L-NAME treatment led to a marked increase in apoptotic cell populations in cardiac, aortic, and renal tissues, indicating significant cellular damage. The treatment with thymol oil (10 mg/kg and 5 mg/kg) led to a significant reduction (P<0.05) in Annexin V expression compared with that in the L-NAME control rats. The high dose of thymol oil resulted in values close to normal, indicating its anti-apoptotic The reduction in apoptosis suggests that thymol oil helped mitigate stress inflammatoryoxidative and mediated cell death (Figure 2, Table 5).

Anti-Apoptotic Effects: L-NAME treatment was associated with a decrease in BCL-2 expression, an essential anti-apoptotic protein, indicating increased susceptibility to apoptosis. Thymol oil treatment restored BCL-2 levels, with the higher dose providing stronger protection.

These findings suggest thymol oil enhances cell survival signaling, which may contribute to its overall protective effects (Figure 3) (Table 6).

Histopathological findings

Heart Tissue Histology, the control group revealed intact and normal myocardial fibers (M) with normal staining properties and structure. Moreover, the cardiac tissue of L-NAME-exposed rats exhibited loss of cellular normal morphology, a small cluster of inflammatory cells (black arrow), and widening of myofibrils. The L-NAME and Thymol oil at 10 mg/kg group exhibited improvements in cardiac tissue histoarchitecture, with fine waviness of few myofibers and no separation of myocardial fibers. The L-NAME and thymol oil (5 mg/kg) groups presented mildly wavy myocardial fibers, high separation, and loss of cellular constituents (Mag 40X). The findings suggest that thymol oil mitigates L-NAME-induced

cardiac damage, with a higher dose showing better preservation of tissue integrity. (Figure 4) highlights the impact of L-NAME and thymol oil on cardiac tissue structure.

Table 5: Effect of administration of thymol oil on Annexin-V values: Cardiac, Aorta and kidney levels in hypertensive rats

Groups	Heart tissue	Aorta	Kidney
Normal	0.02 ± 0.02	0.35 ± 0.05	0±0
L-NAME (40 mg/kg)	71.83±1.27*	84.42±1.25*	55.27±1.56*
L-NAME (40 mg/kg) + Thymol oil (10 mg/kg)	13.50±0.78* #	13.55±0.68* #	14.52±0.56* #
L-NAME (40 mg/kg) + Thymol oil (5 mg/kg)	23.65±0.98* #	22.53±1.06* #	23.70±1.55* #

Hypertension was induced by daily intake of L-NAME (40 mg/kg) for 28 days. Rats received two doses from thymol oil (high dose 10 mg/kg) low dose; 5 mg/kg) concurrently with L-NAME for 28 days. After the last doses of the drugs, rats were sacrificed and their heart, aorta and kidneys were excised to evaluate Annexin-V values in different experimental groups. Results are expressed as means \pm SEM (n=8). * Significant difference from normal group (P<0.05). # Significant Difference from L-Name group (P<0.05).

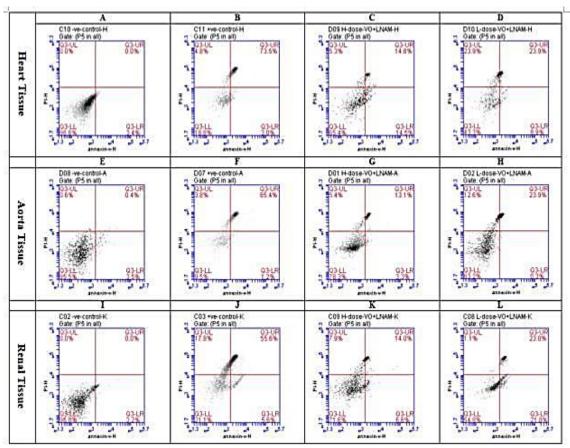


Figure 2: Effect of thymol oil administration on Annexin-V expression in cardiac, aortic, and renal tissues in hypertensive rats. Flow cytometry charts showing the effect of administration of thymol oil on Annexin-V expression. Hypertension was induced in rats by daily intake of L-NAME (40 mg/kg) for 28 days. The rats were then administered two doses of thymol oil (10 or 5 mg/kg) concurrently with L-NAME for 28 days. After the final doses, the heart, aorta, and kidney tissues were dissected for flow cytometry analysis of Annexin-V expression. Results are expressed as means \pm SEM (n=8). * Significant difference from normal group (P<0.05). # Significant Difference from L-Name group (P<0.05).

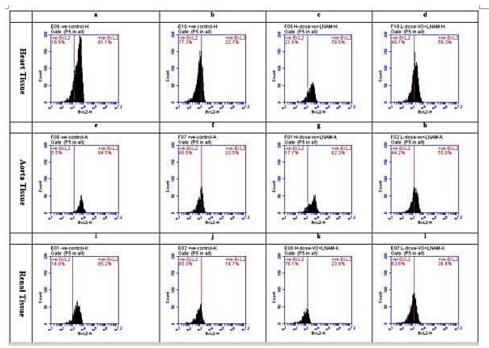
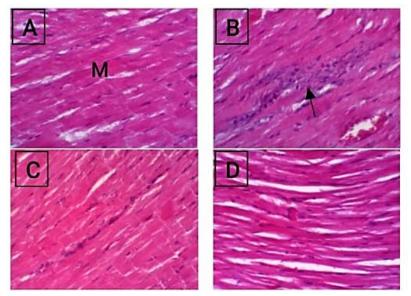


Figure 3: Effect of thymol oil administration on Bcl-2 levels in heart, aorta, and kidney tissues in hypertensive rats. Flow cytometry charts showing the effect of thymol oil on BCL-2 expression. Hypertension was induced in rats by daily intake of L-NAME (40 mg/kg) for 28 days. The rats were then administered two doses of thymol oil (10 or 5 mg/kg) concurrently with L-NAME for 28 days. After the final doses, the heart, aorta, and kidney tissues were dissected for flow cytometry analysis of BCL-2 expression. Results are expressed as means \pm SEM (n=8). * Significant difference from normal group (P<0.05). # Significant Difference from L-Name group (P<0.05).

Table 6: Effect of administration of thymol oil on BcL-2: Cardiac and Renal levels in hypertensive rats

Groups	Aorta	Heart	Kidney
Normal	94.27±0.44	80.35±1.24	86.83±1.02
L-NAME (40 mg/kg)	34.52±0.80*	23.23±0.63*	15.47±0.34*
L-NAME (40 mg/kg) + Thymol oil (10 mg/kg)	83.82±1.97* #	77.83±1.56* #	23.93±0.23* #
L-NAME (40 mg/kg) + Thymol oil (5 mg/kg)	55.33±0.89* #	59.05±0.62* #	37.90±0.85* #


Hypertension was induced by daily intake of L-NAME (40 mg/kg) for 28 days. Rats received two doses from thymol oil (high dose 10 mg/kg) low dose; 5 mg/kg) concurrently with L-NAME for 28 days. After the last doses of the drugs, rats were sacrificed and their heart, aorta and kidneys were excised to evaluate BcL-2 values in different experimental groups. Results are expressed as means \pm SEM (n=8). * Significant difference from normal group (P<0.05). # Significant Difference from L-Name group (P<0.05).

Aorta Tissue Histology The control group revealed normal tunica adventitia TA with normal fibroblasts F, normal tunica intima TI, and tunica media TM, which contain normal smooth muscle cells Sc. Meanwhile, the Aorta of L-NAME-exposed rats showed thickening of the tunica media (TM) with increased numbers of smooth muscle cells

(S) and alterations in the tunica intima (TI). The L-NAME and thymol oil (10 mg/kg) groups presented improvements in the aorta, and the layers appeared more or less normal in the control group. Comparable to the group of rats treated with L-NAME. Moreover, the L-NAME and thymol oil (5 mg/kg) groups presented minimal to mild

thicknesses of the TM layer with increasing amounts of smooth muscle Sc cells. Mag. 40X This indicates a dose-dependent

protective effect of thymol oil against vascular remodeling. (Figure 5) illustrates structural changes in the aorta.

Figure 4: Effect of thymol oil administration on the histopathological changes in the heart tissue of hypertensive rats. The control group (A) exhibits intact myocardial fibers, while L-NAME treatment (B) shows morphological loss, inflammatory cell infiltration, and widening of myofibrils. The thymol group (10 mg/kg) (C) demonstrates a notable improvement in histoarchitecture, while the thymol group (5mg/kg) (D) shows mild improvement but with some fiber separation. The findings suggest that thymol oil mitigates L-NAME-induced cardiac damage, with a higher dose showing better preservation of tissue integrity.

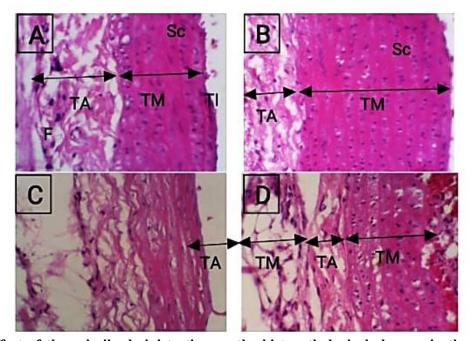


Figure 5: Effect of thymol oil administration on the histopathological changes in the aorta of hypertensive rats. The control group (A) has normal tunica layers, while L-NAME treatment (B) results in tunica media thickening and tunica intima alteration. The thymol group (10 mg/kg) (C) restores near-normal structure, whereas the thymol group (5mg/kg) (D) reduces thickening but still shows an increase in smooth muscle cells. This indicates a dose-dependent protective effect of thymol oil against vascular remodeling.

Kidney Tissue Histology The control group showed normal structure of the kidney with normal glomerulus (G) surround by its glomerular capsule (c) and capsular space (S) with its vascular pole (P), normal proximal convoluted tubule (PCT) and normal distal convoluted (DCT). Meanwhile, Kidney of L- NAME exposed rats Note marked hypertrophy and glomerular collapse $(G^*),$ inflammatory infiltrate (white arrow), tubulointerstitial fibrosis (#) with blood cells infiltration (black arrow). The L-NAME and Thymol oil (10 mg/kg) group appears nearly normal with fine blood

infiltration (white arrow). In the meantime, the kidneys of the rats in the L-NAME and Thymol oil (5 mg/kg) group showed swelling and shrinking of glomeruli. Renal injury appears as prominent renal tubules, interstitial expansion where renal tubules appear collapsed, and some are normal (Mag. 40 X). These observations indicate that thymol oil, particularly at the higher dose, preserves kidney integrity against L-NAME-induced damage (Figure 6). demonstrates kidney structural alterations due to L-NAME and the potential protective role of thymol oil.

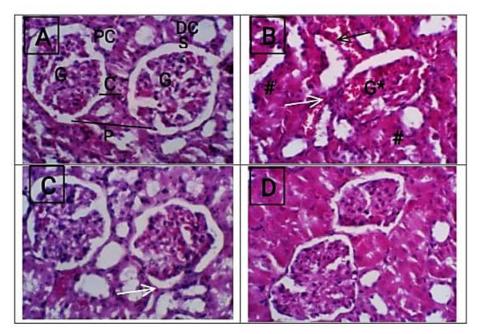


Figure 6: Effect of thymol oil administration on the histopathological changes in the kidney tissue of hypertensive rats. The control (A) has normal kidney architecture, while L-NAME treatment (B) causes glomerular hypertrophy, collapse, inflammation, and tubulointerstitial fibrosis. The thymol group (10mg/kg) (C) shows a near-normal kidney structure with mild blood infiltration, whereas, the thymol group (5mg/kg) (D) presents renal injury signs, including glomerular swelling and tubule collapse. These observations indicate that thymol oil, particularly at the higher dose, preserves kidney integrity against L-NAME-induced damage.

DISCUSSION

This study revealed that the activity of thymol oil can be attributed to its phytochemical composition, particularly the presence of flavonoids, tannins, and other phenolic compounds, which are known for their free radical scavenging properties. (Mohammed *et al.*, 2021, Rhimi *et al.*, 2022). Both the DPPH and ABTS+ assays demonstrated that the antioxidant potential of thymol oil extract suggests potential synergistic effects with major components, enhancing the overall bioactivity of the oil (Piasecka *et al.*, 2015).

In our study, hypertensive rats induced by L-NAME presented significant elevations in systolic and diastolic blood pressures (Li et al., 2023), which were reduced following treatment with thymol oil (10, 5 mg/kg). This antihypertensive effect was accompanied by improved lipid profiles (Kohlert et al., 2002), significantly reduced triglyceride and cholesterol levels, increased HDL, and significant decreases in urea and creatinine levels, aligning with its effectiveness as an agent for managing lipid metabolism and hypertension, and has renal protective effects (Bacova et al., 2020). Compared with L-NAME, thymol significantly decreased the release of the inflammatory markers, TNF- α and IL-6, in hypertensive rats, and previous studies supported the antiinflammatory properties of thymol (Escobar et al., 2020, Horváth et al., 2021).

This reduction in inflammation was accompanied by a significant antiapoptotic effect, as evidenced by decreased Annexin-V and increased Bcl-2 levels. Our results revealed that Annexin V levels were elevated in the L-NAME group, which is consistent with previous findings documenting apoptosis in cardiac, aortic, and renal tissues. In contrast, the dose-dependent effects of thymol oil were associated with a significant reduction in Annexin V levels (Henry *et al.*, 2013, Tanaka *et al.*, 2016).

The expression of Bcl-2 plays a crucial role in regulating apoptosis, with its overexpression promoting cell survival both in vitro and in vivo (Huang *et al.*, 2012). Our results indicated that the expression of the anti-apoptotic protein

Bcl-2 was substantially elevated in the thymol group compared with the L-NAME group. These findings suggest that thymol may offer protection against cardiac hypertrophy by increasing the expression of anti-apoptotic factors (Safari *et al.*, 2021).

Histopathological examinations provided further support for the biochemical results and validated the current findings. Microscopic analysis revealed that the L-NAME group presented widespread inflammatory damage and a loss of normal cellular morphology. However, treatment with thymol oil helps restore nearly normal tissue structure in the heart, aorta, and kidney (Kensara et al., 2013).

CONCLUSION

Thymol oil effectively reduces L-NAME-induced hypertension, blood demonstrated by pressure normalization, enhancing lipid profiles, and decreasing inflammatory markers. It protects against apoptosis enhances cell survival, as shown by Annexin-V and BCL-2 analyses. Histological analysis confirms protective effects on the heart, aorta, kidneys, with higher doses providing superior protection.

Clinical Implications and Future Directions

These findings suggest that thymol oil has a potential therapeutic value in managing hypertension and its complications. Future research should explore its mechanistic pathways, pharmacokinetics, and long-term efficacy in clinical settings. The dose-dependent effects highlight the importance of optimal dosing strategies

for therapeutic applications. In conclusion, thymol oil demonstrates promising antihypertensive and organ-protective properties, warranting further investigation as a natural therapeutic agent against hypertension-induced cardiovascular and renal damage.

Funding: There is no funding.

Acknowledgement: None

REFERENCES

- Afifi, N.A.; Ramadan, A.; Erian, E.Y.; Saleh, D.O.; Sedik, A.A.; Badawi, M. and El Hotaby, W. (2017): "Trigonelline attenuates hepatic complications molecular and alterations in high-fat highdiet-induced fructose insulin resistance in rats." Can J Physiol Pharmacol 95 (4): 427-436.
- Altangerel, A.; Chimedtseren, C.; Urtnasan, M.; Buyantogtokh, D.; Begzsuren, D. and Dandii, Z. (2024): "The Antihypertensive Effect of Marchin-13 Tang on L-NAME-induced Hypertension in Rats." Biomedical and Pharmacology Journal 17(2): 1203-1212.
- Apel, E.; Hills, A.; Lueb, R.; Zindel, S.; Eisele S. and Riemer, D. (2003):

 "A fast-GC/MS system to measure C2 to C4 carbonyls and methanol aboard aircraft." Journal of Geophysical Research: Atmospheres 108(D20).
- Bacova, K.; Zitterl-Eglseer, K.; Chrastinova, L.; Laukova, A.; Madarova, M.; Gancarcikova, S.; Sopkova, D.; Andrejcakova, Z. and Placha, I. (2020): "Effect of Thymol Addition and Withdrawal on Some Blood Parameters,

- Antioxidative Defence System and Fatty Acid Profile in Rabbit Muscle." Animals (Basel) 10(8).
- Baliyan, S.; Mukherjee, R.; Priyadarshini, A.; Vibhuti, A.; Gupta, A.; Pandey, R.P. and Chang, C.M. (2022): "Determination of Antioxidants by DPPH Radical Scavenging Activity and Quantitative Phytochemical Analysis of Ficus religiosa." Molecules 27(4).
- Çetin, A.; Şen, A.; Çetin, I.; Çimen, B.; Cimen, L.; Savas, G.; Öztürk, A. and Koker, M.Y. (2018): "Comparison of ELISA and flow cytometry for measurement of interleukin-1 beta, interleukin-6 and tumor necrosis factor-α." Turkish Journal of Biochemistry 43(5): 540-548.
- El-Gengaihi, S.E.; Hamed, M.A.; Khalaf-Allah Ael, R. and Mohammed, M.A. (2013): "Golden berry juice attenuates the severity of hepatorenal injury." J Diet Suppl 10(4): 357-369.
- Elshopakey, G.E.; Risha, E.F.; El-Boshy, M.E.; Abdalla, O.A. and Hamed, M.F. (2021): "Protective effects of thymus vulgaris oil against ccl4-mediated hepatotoxicity, oxidative stress and immunosuppression in male albino rats." Adv. Anim. Vet. Sci 9(7): 1053-1063.
- Escobar, A.; Pérez, M.; Romanelli, G. and Blustein, G. (2020): "Thymol bioactivity: A review focusing on practical applications." Arabian Journal of Chemistry 13(12): 9243-9269.
- Henry, C.M.; Hollville, E. and Martin, S.J. (2013): "Measuring apoptosis by microscopy and flow cytometry." Methods 61(2): 90-97.

- Horváth, G.; Horváth, A.; Reichert, G.; Böszörményi, A.; Sipos, K. and Pandur, E. (2021): "Three chemotypes of thyme (Thymus vulgaris L.) essential oil and their main compounds affect differently the IL-6 and TNFα cytokine secretions of BV-2 microglia by modulating the NF-κB and C/EBPβ signalling pathways." BMC Complement Med Ther 21(1): 148.
- Huang, C.Y.; Yang, A.L.; Lin, Y.M.; Wu, F.N.; Lin, J.A.; Chan, Y.S.; Tsai, F.J.; Tsai, C.H.; Kuo, C.H. and Lee, S.D. (1985) (2012): "Anti-apoptotic and pro-survival effects of exercise training on hypertensive hearts." J Appl Physiol 112(5): 883-891.
- Kensara, O.A., ElSawy, N.A.; El-Shemi, A.G. and Header, E.A. (2013):

 "Thymus vulgaris supplementation attenuates blood pressure and aorta damage in hypertensive rats." Journal of Medicinal Plants Research 7(11): 669-676.
- Kohlert, C.; G.; Schindler, R.W.; März, G.; Abel, B.; Brinkhaus, H.; Derendorf, E.U. Gräfe, and M. Veit, (2002): "Systemic availability and pharmacokinetics of thymol in humans." J Clin Pharmacol 42(7): 731-737.
- Lalhminghlui, K. and Jagetia, G.C. (2018): "Evaluation of the free-radical scavenging and antioxidant activities of Chilauni, Schima wallichii Korth in vitro." Future Sci OA 4(2): Fso272.
- Li, Y.; Liu, Y.; Liu, S.; Gao, M.; Wang, W.; Chen, K.; Huang, L. and Liu, Y. (2023): "Diabetic vascular diseases: molecular mechanisms and therapeutic strategies." Signal

- Transduction and Targeted Therapy 8(1): 152.
- Li, Y.; Liu, Y.; Liu, S.; Gao, M.; Wang, W.; Chen, K.; Huang, L. and Liu, Y. (2023): "Diabetic vascular diseases: molecular mechanisms and therapeutic strategies. "Signal Transduct Target Ther 8(1): 152.
- Mohammed, M.; Hamed, M.A.; El-Gengaihi, S.; Enein, A.; Ahmed, O. and Hassan, E. (2020): "In vitro screening of Annona cherimola leaves and bark for their antioxidant activity and in vivo assessment as protective agents against gastric ulcer in rats." Plant Archives 20(1): 2658-2668.
- Mohammed, M.A.; Attia, H.N.; El-Gengaihi, S.E.; Maklad, Y.A.; Ahmed, K.A. and Kachlicki, P. (2021): "Comprehensive metabolomic, lipidomic and pathological profiles of baobab (Adansonia digitata) fruit pulp extracts in diabetic rats." J Pharm Biomed Anal 201: 114139.
- Nagoor Meeran, M.F.; Javed, H.; Al Taee, H.; Azimullah, S. and Ojha, S.K.(2017): "Pharmacological Properties Molecular and Mechanisms Thymol: of Its Therapeutic Prospects for Potential Pharmaceutical and Development." Front Pharmacol 8: 380.
- Nagoor Meeran, M.F.; Javed, H.; Al Taee, H.; Azimullah, S. and Ojha, "Pharmacological S.K. (2017): Properties Molecular and Mechanisms of Thymol: Prospects for Its Therapeutic Pharmaceutical Potential and Development." **Frontiers** in Pharmacology 8.
- Pandey, A.K.; Singh, P. and Tripathi, N.N. (2014): "Chemistry and

- bioactivities of essential oils of some Ocimum species: an overview." Asian Pacific Journal of Tropical Biomedicine 4(9): 682-694.
- Peixoto-Neves, D.; Silva-Alves, K.S.; Gomes, M.D.; Lima, F.C.; Lahlou, S.; Magalhães, P.J.; Ceccatto, V.M. Coelho-de-Souza, A.N. and Leal-Cardoso, J.H. (2010): "Vasorelaxant effects of the monoterpenic phenol isomers, carvacrol and thymol, on rat isolated aorta." Fundam Clin Pharmacol 24(3): 341-350.
- A.; Sawikowska, Piasecka, A.; Krajewski, P. and Kachlicki, P. (2015):"Combined mass spectrometric and chromatographic methods for inanalysis phenolic of secondary metabolites in barley leaves." J Mass Spectrom 50(3): 513-532.
- A.V.; Poznyak, Sadykhov, *N.K.*; Kartuesov, A.G.; Borisov, E.E.; Melnichenko, A.A.; Grechko, A.V. (2022): and Orekhov. A.N."Hypertension as a risk factor for atherosclerosis: Cardiovascular risk assessment." Front Cardiovasc Med 9: 959285.
- Rahmani, A.H.; Al Zohairy, M.A.; Aly, S.M. and Khan, M.A. (2014): "Curcumin: a potential candidate in prevention of cancer via modulation of molecular pathways." Biomed Res Int 2014: 761608.
- Rhimi, W.; M.A.; Mohammed, A.A.K.; Zarea, G.; Greco, M.; Tempesta, Otranto, D. and Cafarchia, C. (2022): "Antifungal, Antioxidant and Antibiofilm Activities of Essential Oils of Cymbopogon spp." Antibiotics (Basel) 11(6).

- Safari, F.; Atarodi, R.and Jamshidi, H.R. (2021): "Effect of Thymol on the Level of Bcl-2 Family Transcript in the Hypertrophied Heart of Rats." International Journal of Medical Laboratory.
- Sedik, A.A.; Salama, M.; Fathy, K. and Salama, A. (2023): "Cold plasma approach fortifies the topical application of thymoquinone intended for wound healing via up-regulating the levels of TGF-β, VEGF, and α-SMA in rats." Int Immunopharmacol 122: 110634.
- Sedik, A.A.; Hassan, S.A.; Shafey, H.I.; Khalil, W.K. and Mowaad, N.A. (2023): Febuxostat attenuates aluminum chloride-induced hepatorenal injury in rats with the impact of Nrf2, Crat, Car3, and MNK-mediated apoptosis. Environmental Science and Pollution Research, 30(35), 83356-83375.
- Soliman, S.S.; Suliman, A.A.; Fathy, K. and Sedik, A.A. (2025): "Ovarioprotective effect of Moringa oleifera leaf extract against cyclophosphamide-induced oxidative ovarian damage and reproductive dysfunction in female rats." Scientific Reports 15(1): 1054.
- Steel, R.G.; Torrie, J.H. and Dickey, (1997): Principles and procedures of statistics: a biometrical approach.
- Su-Hong, C.; Qi, C.; Bo, L.; Jian-Li, G.; Jie, S. and Gui-Yuan, L. (2015): "Antihypertensive effect of radix paeoniae alba in spontaneously hypertensive rats and excessive alcohol intake and high fat diet induced hypertensive rats." Evid Based Complement Alternat Med 2015: 731237.

- Tanaka, S.; Hikita, H.; Tatsumi, T.; Sakamori, R.; Nozaki, Y.; Sakane, S.: Shiode, Y.: Nakabori, T.: Saito, Y.: Hiramatsu, N.: Tabata, K.; Kawabata, T.; Hamasaki, M.; Eguchi, Н.; Nagano, Yoshimori, T. and Takehara, T. "Rubicon inhibits (2016): autophagy accelerates and hepatocyte apoptosis and lipid accumulation in nonalcoholic fatty liver disease in mice." Hepatology 64(6): 1994-2014.
- Wuputra, K., Tsai, M.H.; Kato, K.; Yang, Y.H.; Pan, J.B.; Ku, C.C.; Noguchi, M.; Kishikawa, S.; Nakade, K.; Chen, H.L.; Liu, C.J.; Nakamura, Y.; Kuo, K.K.; Lin, Y.C.; Chan, T.F.; Wu, D.C.; M.F.; Hou, D.C.; Huang, S.K.; Lin, C.S. and Yokoyama, K.K. (2022): "Dimethyl sulfoxide stimulates the AhR-Jdp2 axis to control ROS accumulation in mouse embryonic fibroblasts." Cell Biol Toxicol 38(2): 203-222.
- Sedik, A. and A Hassan, S. (2023):
 Attenuation of sodium fluorideinduced hepatic injury by
 Lactobacillus casei through
 inhibition of NF-κβ signalling
 pathway with decreased
 expression of caspase-3 in rats.
 Egyptian Journal of Chemistry,
 66(9), 107-123.
- Sedik, A.A.; Hussein, D.T.; Fathy, K. and Mowaad, N.A. (2024):

 Neuroprotective and cognitive enhancing effects of herbecetin against thioacetamide induced hepatic encephalopathy in rats via upregulation of AMPK and SIRT1 signaling pathways. Scientific Reports., 14(1), 11396.
- Sedik, A. (2022): Modulation activity of vildagliptin on hepatic complications and lipoprotein abnormalities associated with insulin resistance in rats. Egyptian Journal of Chemistry., 65(8), 541-547.

إمكانيات زيت الزعتر الأساسي الغني بالثيمول في التخفيف من ارتفاع ضغط الدم والأضرار المرتبطة بالأعضاء

ندى عابد الجمال ، ياقوت عبدالفتاح السنوسي ، محمد خالد محفوظ ، عفاف دسوقي عبدالمجيد ، منى عرفة ، خالد فتحي ، بسمة المير غني، أحمد عبدالفتاح صديق

Email: aa.sedik@gmail.com; nabed9864@gmail.com Assiut University web-site: www.aun.edu.eg

يعتبر ارتفاع ضغط الدم قضية صحية عالمية هامة تسهم في الإصابة بالعديد من الأمراض القلبية الوعائية والكلوية. استهدفت هذه الدراسة استكشاف الإمكانيات العلاجية لزيت الزعتر (Thymus vulgaris) الأساسي، وخاصة مكونه الرئيسي، الثيمول، في التخفيف من ارتفاع ضغط الدم والمضاعفات المرتبطة به أظهرت تحليلات GC-MS لزيت الزعتر الأساسي أن الثيمول هو المركب الرئيسي (٣٤,٢١٪)، مما يشير إلى دوره الصيدلاني الكبير. في الفئران المصابة بارتفاع ضغط الدم بواسطة (L-NAME 40 مُلغُ/كغ)، أدت الجرعة العالية من زيت الثيمول (١٠ ملغ/كغ) إلى انخفاض كبير في ضغط الدم الأنقباضي والانبساطي، مما يدعم فعاليته في خفض ضغط الدم. بالإضافة إلى ذلك، حسن الثيمول مستويات الدهون من خلال خفض مستويات الدهون الثلاثية والكوليسترول الكلى وLDL، بينما زادت مستويات HDL. كما أن زيت الثيمول له تأثيرات واقية على وظائف الكلى، والذي اتضح من انخفاض مستويات اليوريا والكرياتينين، وهما علامتان لفشل الكلي. علاوة على ذلك، خفض الزيت مستويات المؤشرات الالتهابية مثل عامل نخر الورم-ألفا (TNF-α) والإنترلوكين-٦ (L-6) في القلب والأبهر والكلي، مما يشير إلى خصائصه المضادة للالتهابات. أظهرت تحليلات التدفق الخلوي والفحص النسيجي أن زيت الثيمول قلل بشكل كبير من موت الخلايا المبرمج ، كما يتضح من انخفاض تعبير Annexin-V وزيادة مستويات البروتين المضاد لموت الخلايا المبرمج Bcl-2. تم استعادة الأنسجة في القلب والأبهر والأنسجة الكلوية بشكل ملحوظ بواسطة زيت الثيمول عالى الجرعة، مما يبرز إمكانياته في عكس التلف العضوي الناتج عن ارتفاع ضغط الدم تشير هذه النتائج إلى أن زيت الزعتر الأساسي الغني بالثيمول يقدم نهجًا متعدد الجوانب لإدارة ارتفاع ضغط الدم ومضاعفاته، مما يوفر حماية لكل من الجهازين القلبي الوعائي والكلي.