

Mini Review

Recent Advances in Quinolone based Derivatives as Potential Anticancer Agents

Rania S.M. Ismail 1,*

¹Pharmaceutical Chemistry Department, Faculty of Pharmacy Egyptian Russian University, Badr City, Suez Road, Egypt

*Corresponding author(s): Rania S.M. Ismail, E-mail: rania-saied@eru.edu.eg, Tel: 01115438580

Received: 23rd February 2025, Revised: 15th July 2025, Accepted: 28th October 2025.

DOI: 10.21608/erurj.2025.363149.1228

ABSTRACT

As a result of the great annual increase in patients suffering from cancer, there is urgent need for designing new small molecule chemotherapeutic agents that selectively target cancer cells without or with minimal effect on normal cells. Quinolone derivatives are fused heterocyclic ring systems that are explored for their diverse biological activities with the potential for treatment of many diseases such as antimalarial, antibacterial, antifungal, antiviral, antibacterial, antioxidant and their role as broad spectrum anticancer agents. The present mini review is to represent the most recent pharmaceutical aspects and synthetic approaches of different substituted quinolones as anticancer agents reported to date.

Also, Displaying the recent quinolone derivatives recommended or present in preclinical and clinical studies. In addition to showing the importance of the structure activity relationship in designing new lead compounds with potential antitumor activity. Moreover, exploring the effect of different hybridizations with quinolone analogues for designing potent anticancer agents.

Keywords: Quinolone derivatives, Antitumor, Hybrids.

1. Introduction

Cancer can be identified as a disease that causes uncontrolled increase and abnormal cell proliferation. These cells tend to overcome their biological barriers to give rise to invasive or metastatic cancer. (1) According to the WHO, there were about 10 million deaths cases in 2020. (2) Quinolones and their derivatives showed potent anticancer activity against most of tumor cell lines with different mechanisms of action (3). Moreover, quinolone derivatives are proven to be an antiproliferative pharmacophores along with the ability to enhance their activity using various functional groups. Quinolone substitutions with electron-withdrawing groups as amino, nitro, choro, fluoro, and carbonyl groups revealed activity more potent than substitutions with electron-donating moieties as methoxy or methyl groups (4).

For example, induction of apoptosis through inhibition of topoisomerase type II (5), (6), cell cycle arrest (7), (8), disruption of mitochondrial membrane potential and inhibition of signal stimulated protein kinases that affect growth regulators and angiogenesis (9, 10).

Many quinolones, such as voreloxin 1 (the first-class anticancer quinolone derivative) (11), AT-3639, 2, and quarfloxin 3, are being used in clinics or clinical trials at the moment (12). A number of hybridization approaches of the quinolone scaffold with small anticancer molecules improved the affinity and the potency as well as overcoming the cross-resistance compared to the parent drug, for example, Ro 23-9424, 4 (13) and MCB3837, 5 (14).

Ro 23-9424, 5

2. Quinolone hybrids having potential as antiproliferative agents

The reported hybridizations include quinolone with nitrogen containing 5 and 6 membered rings hybrids such as **5**, **6** and **7** (15). Quinolone-chalcone hybrids as compound **8** (16, 17), Quinolone-thiazole/ pyrrole/furan/thiophene hybrids **9-12** (18-21), Quinolone-guanidine/oxime hybrids **13** and **14** (22-26), Quinolone-quinolone hybrids **15** (27-29).

3. Anticancer quinolone hybrids in preclinical and clinical studies

Compound (CX-5461, **16**) is drug under investigation for cancer treatment. It induces the DNA damage response through inhibition of RNA polymerase I. CX-5461 is in clinical trial phase I for treatment of solid tumors (30).

CX-5461, 16

Quinolone-benzoxazine hybrid (A-84441, 17) is a prodrug that showed remarkable inhibition activity (IC₅₀ = 0.03-0.49 μ M) against 7-9 human and murine cancer cell lines. Moreover, an *in vivo* investigation showed that compound 17 exhibited 10 times more potent anti-leukemic activity against cancer cells than normal bone marrow murine cells (31, 32).

Compound (C-1305, symadex, **18**) is a quinolone-azole hybrid that act as antitumor agent by inhibiting Topoisomerase II, it is subjected to Phase II clinical trials for treatment of metastatic Colorectal Cancer (33, 34).

Symadex, C-1311, 18

Quinolone-pyrazine hybrid (CX-5461, Pidnarulex, **19**) showed inhibition activity against both Topoisomerase II and G-quadruplex, compound **19** exhibited *in vivo* tumor growth inhibition of 84% at intraperitoneal administration of 25 mg/kg dose (35). It was entered Phase I clinical trial in Canada for treatment of patients with ovarian and breast cancer (36).

CX-5461, 19

Quinolone derivative (C-1305, **20**) displayed potent anticancer activity against A549 lung cancer cells. Moreover, combination therapy with paclitaxel showed remarkable antitumor effect against HCT116 colon cancer cells with the improvement of blood perfusion in the tested tumor models (37, 38).

C-1305, 20

Also, clinically approved drug Tivozanib **21** which is FDA approved quinoline bi-aryl urea derivative for treatment of renal cancer and solid tumors. It is selective pan VEGFR (1,2,3) tyrosine kinase inhibitor (39), (40) with IC₅₀ values 30 nM, 6.5 nM and 15 nM, respectively. (41)

Tivozanib, 21

4. Recent developments in quinolone as antiproliferative agents

Hybridization between quinolone scaffold and hetero-tricyclic diazepine nucleus produced a potent GSK-3 β enzyme inhibitor 22 with 100 % inhibition and IC₅₀ 0.114 μ M, while it showed anti-proliferative activity with IC₅₀ value 37 μ M against U-87 glioma cell cell line (42).

A novel quinolone-based compound **23** was synthesized and evaluated for its antiproliferative activity. it demonstrated a potent irreversible covalent pan-FGFR inhibitory activity at a low nanomolar concentration as well as effective antiproliferative activity against Huh7 and Hep3B HCC cancer cell lines (43).

23

FGFR1 IC₅₀=9.9 nM FGFR4 IC₅₀= 1.8 nM Huh-7 IC₅₀= 12.6 nM FGFR3 IC₅₀= 16 nM HepB IC₅₀= 52.6 nM

Quinolone-3- carboxamide based VEGFR2 inhibitors were designed, synthesized and tested for their antiproliferative activity. Compound **24** displayed potent VEGFR2 inhibition with IC₅₀ 36 nM compared to reference compound sorafenib (45 nM), while it showed better cytotoxic effect (IC₅₀ =1.6 μ M) than sorafenib (IC₅₀=1.6 μ M) against HepG2 cancer cell line along with the induction of caspase mediated apoptosis of human hepatocarcinoma cell (44).

N-1 aryl substituted 4-quinolone compound **25** was designed, synthesized and evaluated for its antiproliferative activity. It showed 5-times more cytotoxic potency against A549, HL-60, and Hela cell lines compared to the reference compound irinotecan or cisplatin (IC₅₀ values =0.009, 0.008 and 0.010 μ M, respectively) (26).

N1 substituted-4-quinolone derivative **26** was synthesized and evaluated against MCF-7, K562, Hela and BHK-21 cell lines. it displayed potent cytotoxic activity with % inhibition 57.1, 97.4, 62.8 and 24.7 %, respectively, compared to carboplatin reference compound with inhibition

90.7, 82.8, 85.2 and 18.4% and IC₅₀ values 6.22, 7.91 and 7.65 μ M, respectively (carboplatin IC₅₀ values 3.91, 4.11 and 5.13 μ M, respectively) against MCF-7, K562, Hela, respectively (45).

Electron withdrawing group was attached to 4-quinolone scaffold at 6-position in compound **27** and evaluated for its activity as anticancer agent. It exhibited superior antiproliferative IC₅₀ values of 2.51, 1.90, 1.86, and 0.91 μM against A549, MCF-7, HT29 and HCT116, respectively), apoptosis induction as well as HDAC inhibition (than Entinostat reference compound (IC₅₀ 2.11, 2.52, 3.86 and 4.33 μM in HCT116, HT29, MCF7 and A549, respectively) (46).

$$\begin{array}{c|c}
O & O \\
N & H \\
N & O
\end{array}$$

Hybrdization with thiazolyl moiety proved to enhance the antiproliferative activity as tyrosine kinase inhibitor. (47, 48) Moreover, the quinolone-thiazole derivative **28** showed considerable anti-proliferative activities against NCIH460, HCT116 and U251 cell with IC₅₀ values of $2.43-2.9 \mu M$. (49)

5. Structure activity relationship of most quinolones' anticancer agents

Literature review revealed some important key point suggestions for quinolones SAR (structure activity relationship) as anticancer agents (9, 50), (32, 51-60). Nitrogen in position one is essential for avtivity, moreover, the introduction of a halogen, fluoro-substituted phenyl, or cyclo-propyl moieties at N-1 position of the quinolone scaffold give rise to a potent cytotoxic activity (53). That can be observed in compounds **25**, **28** which demonstrated cytotoxic activity with IC₅₀ values of 0.009 μ M against A549 cell line and 0.58 μ M against the UO-31 kidney cancer cell lines, respectively (26, 60).

 IC_{50} =0.58 μM (UO-31 kidney cancer cell lines)

Substitution at C-2 is only permitted upon keeping the coplanar orientation of the quinolone core with substitution at C-3 (53). Remarkable cytotoxic activity is showed when the carboxylic acid group at C-3 position, that is present in most quinolone antibiotics, is substituted with a carboxamide moiety as in compound **29** which has a PI3K α inhibition activity against both the wild type (IC₅₀ = 1.1 μ M) and mutant-type PI3K α H1047R (IC₅₀ = 0.73 μ M) (54).

Another modification at C-3 through heterocyclic substitution with benzothiazole through linker (compound **30**) (9) or 1,3,4-thiadiazole substitution (compound **31**) (55) results in a potent activity with IC₅₀ values 2.22, 0.954 and 0.398 µM (MCF-7 at 24 h, 48 h and 72 h, respectively)

for compound **30** and IC₅₀ values 3.26 μ M (MCF-7), 10.53 μ M (A549) and 5.08 μ M (SKOV-3), respectively for compound **31** (9, 55).

$$\begin{array}{c} \text{OH} \quad \text{O} \quad \text{H} \\ \text{NO} \quad \text{NO} \quad \text{NO} \\ \text{30} \quad \text{CI} \\ \text{IC}_{50} = 2.22, \, 0.954 \, \, \text{and} \, \, 0.398 \, \, \mu\text{M} \\ \text{(MCF-7 at at 24 h, 48 h and 72 h, respectively)} \end{array}$$

Carbonyl group at C-4 increased the anticancer potency of quinolone compounds due to its ability to chelate metal ions or form H-bonding with the target macromolecules, while carbonyl group substitution diminished this activity (58).

Furthermore, the presence of a halogen atom as fluorine at C-6 enhanced the antiproliferative activity of quinolones (56). New reports have demonstrated the importance of fluoroquinolones as antiproliferative agents (61) via inhibition of DNA topoisomerase II as primary target as revealed in compound 32 that showed a significant cell growth inhibition activity against HCT-116 colon cancer cell line and showed more potent inhibitory activity against topoisomerase II at 100 μ M (84.3% inhibition) and 20 μ MQ49.6% inhibition) corresponding to reference compound etopolide (77.7% and 38.7% inhibition at 100 μ M and 20 μ M, respectively) (50).

84.3% inhibition of topo II at 100 μ M 49.6% inhibition of topo II at 20 μ M

Moreover, substitution at C-7 with a basic group or aromatic moieties improved the anticancer activity (50). Modification with a substituted heterocycles such as piperazine, or aminosubstitutions at C-7 was significant for the anticancer activity (compounds **25**, **28**) (50, 59, 62).

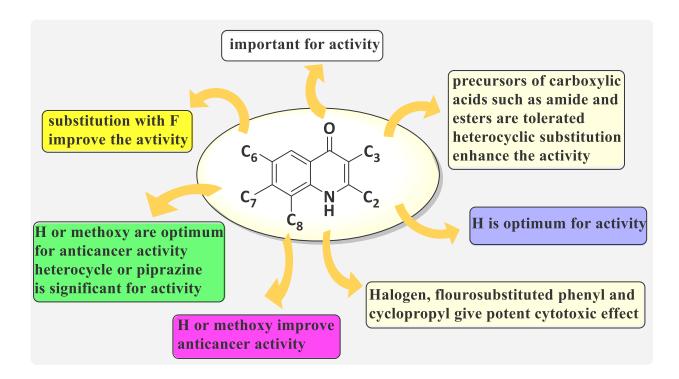


Figure 1. SAR of quinolones as anticancer agents

6. Conclusion

These results provide evidence that exploring the potential of quinolone hybrids could produce a promising lead for further development of potent antitumor agents by manipulating the characteristic chemical features of the attached groups and adjusting the key factors for their anticancer effects. In addition, highlighting the important role in revealing the different mechanisms of action related to the known compounds that help research programs in the future.

• Conflict of Interest

The author confirms that there are no conflicts of interest.

7. References

1. Coller HA. Is cancer a metabolic disease? The American journal of pathology. 2014;184(1):4-17.

- 2. Organization WH. WHO report on cancer: setting priorities, investing wisely and providing care for all. 2020.
- 3. Samir M, Ramadan M, Hamed M, Osman M. Recent strategies in design of antitumor and antibacterial fluoroquinolones. Journal of advanced Biomedical and Pharmaceutical Sciences. 2021;4(3):134-51.
- 4. Beker HK, Yıldırım I. Anticancer Activity–Structure Relationship of Quinolinone-Core Compounds: An Overall Review. Pharmaceutical Chemistry Journal. 2023;56(10):1333-43.
- 5. Wentland MP, Lesher GY, Reuman M, Gruett MD, Singh B, Aldous SC, et al. Mammalian topoisomerase II inhibitory activity of 1-cyclopropyl-6, 8-difluoro-1, 4-dihydro-7-(2, 6-dimethyl-4-pyridinyl)-4-oxo-3-quinolinecarboxylic acid and related derivatives. Journal of medicinal chemistry. 1993;36(19):2801-9.
- 6. Arakawa H, Mano E, Hakoda N, Yoshinari T, Nakagawa S, Okura A. Potent antitumor activity of quinolone compounds with an unsaturated aminoazabicyclo group at the C-7 position of the quinolone ring. Anti-cancer drug design. 1996;11(3):221-9.
- 7. Mohammed HH, Abbas SH, Hayallah AM, Abuo-Rahma GE-DA, Mostafa YA. Novel urea linked ciprofloxacin-chalcone hybrids having antiproliferative topoisomerases I/II inhibitory activities and caspases-mediated apoptosis. Bioorganic Chemistry. 2021;106:104422.
- 8. Sun J-p, Shi Z-y, Liu S-m, Kang Y-h, Hu G-q, Huangfu C-s, et al. Trimethoxy-benzaldehyde levofloxacin hydrazone inducing the growth arrest and apoptosis of human hepatocarcinoma cells. Cancer Cell International. 2013;13:1-10.
- 9. Bolakatti G, Palkar M, Katagi M, Hampannavar G, Karpoormath RV, Ninganagouda S, Badiger A. Novel series of benzo [d] thiazolyl substituted-2-quinolone hybrids: Design, synthesis, biological evaluation and in-silico insights. Journal of Molecular Structure. 2021;1227:129413.
- 10. Tang Q, Zhai X, Tu Y, Wang P, Wang L, Wu C, et al. Synthesis and antiproliferative activity of 6, 7-disubstituted-4-phenoxyquinoline derivatives bearing the 2-oxo-4-chloro-1, 2-dihydroquinoline-3-carboxamide moiety. Bioorganic & Medicinal Chemistry Letters. 2016;26(7):1794-8.
- 11. Advani RH, Hurwitz HI, Gordon MS, Ebbinghaus SW, Mendelson DS, Wakelee HA, et al. Voreloxin, a first-in-class anticancer quinolone derivative, in relapsed/refractory solid tumors: a report on two dosing schedules. Clinical Cancer Research. 2010;16(7):2167-75.
- 12. Yang M, Liu H, Zhang Y, Wang X, Xu Z. Moxifloxacin-isatin Hybrids Tethered by 1, 2, 3-triazole and their Anticancer Activities. Current topics in medicinal chemistry. 2020;20(16):1461-7.
- 13. Xu JH, Fan YL, Zhou J. Quinolone–triazole hybrids and their biological activities. Journal of heterocyclic chemistry. 2018;55(8):1854-62.

- 14. Bradbury BJ, Pucci MJ. Recent advances in bacterial topoisomerase inhibitors. Current opinion in pharmacology. 2008;8(5):574-81.
- 15. Dileep K, Polepalli S, Jain N, Buddana SK, Prakasham R, Murty M. Synthesis of novel tetrazole containing hybrid ciprofloxacin and pipemidic acid analogues and preliminary biological evaluation of their antibacterial and antiproliferative activity. Molecular Diversity. 2018;22:83-93.
- 16. Abonia R, Insuasty D, Castillo J, Insuasty B, Quiroga J, Nogueras M, Cobo J. Synthesis of novel quinoline-2-one based chalcones of potential anti-tumor activity. European journal of medicinal chemistry. 2012;57:29-40.
- 17. Lindamulage IK, Vu H-Y, Karthikeyan C, Knockleby J, Lee Y-F, Trivedi P, Lee H. Novel quinolone chalcones targeting colchicine-binding pocket kill multidrug-resistant cancer cells by inhibiting tubulin activity and MRP1 function. Scientific reports. 2017;7(1):10298.
- 18. Barraja P, Diana P, Lauria A, Montalbano A, Almerico AM, Dattolo G, et al. Pyrrolo [2, 3-h] quinolinones: synthesis and photochemotherapic activity. Bioorganic & medicinal chemistry letters. 2003;13(16):2809-11.
- 19. Chilin A, Dodoni G, Frezza C, Guiotto A, Barbieri V, Di Lisa F, Canton M. 4-Hydroxymethyllo, 6, 8-trimethylfuro [2, 3-h] quinolin-2 (1 H)-one induces mitochondrial dysfunction and apoptosis upon its intracellular oxidation. Journal of medicinal chemistry. 2005;48(1):192-9.
- 20. Foroumadi A, Emami S, Rajabalian S, Badinloo M, Mohammadhosseini N, Shafiee A. N-Substituted piperazinyl quinolones as potential cytotoxic agents: Structure–activity relationships study. Biomedicine & pharmacotherapy. 2009;63(3):216-20.
- 21. Pardakhty A, Foroumadi A, Hashemi M, Rajabalian S, Heidari MR. In vitro cytotoxicity and phototoxicity of N-piperazinyl quinolone derivatives with a 2-thienyl group. Toxicology in Vitro. 2007;21(6):1031-8.
- 22. LI J. Design, synthesis and antitumor activity of quinolone derivatives. Chinese Pharmaceutical Journal. 2014:2055-60.
- 23. LI J. synthesis, antitumor activity and molecular docking of quinolone derivatives. Chinese Pharmaceutical Journal. 2016:1913-7.
- 24. Chen I-L, Chang K-M, Miaw C-L, Liao C-H, Chen J-J, Wang T-C. Synthesis, antiproliferative, and antiplatelet activities of oxime-and amide-containing quinolin-2 (1H)-one derivatives. Bioorganic & medicinal chemistry. 2007;15(20):6527-34.
- 25. Jia X-D, Wang S, Wang M-H, Liu M-L, Xia G-M, Liu X-J, et al. Synthesis and in vitro antitumor activity of novel naphthyridinone derivatives. Chinese Chemical Letters. 2017;28(2):235-9.

ERURJ 2025, 4, 4, 3270-3285

- 26. Li J, Zheng T-c, Jin Y, Xu J-g, Yu J-g, Lv Y-w. Synthesis, molecular docking and biological evaluation of quinolone derivatives as novel anticancer agents. Chemical and Pharmaceutical Bulletin. 2018;66(1):55-60.
- 27. Hu G-q, Yang Y, Yi L, Wang G-q, Duan N-n, Wen X-y, et al. Design, synthesis and antitumor activity of C3/C3 bis-fluoroquonolones cross-linked with [1, 2, 4] triazolo [3, 4-b][1, 3, 4] thiadiazole. Acta Pharmaceutica Sinica B. 2011;1(3):172-7.
- 28. Hu GQ, Zhang ZQ, Xie SQ, Huang WL. Synthesis and antitumor evaluation of C3/C3 fluoroquinolone dimers (I): Tethered with a fused heterocyclic s-triazolo [2, 1-b][1, 3, 4] thiadiazole. Chinese Chemical Letters. 2010;21(6):661-3.
- 29. Wang Y, Zhou Q, Wang L, Ma J-J. QSAR analysis of 6-Fluoro-3-(4H-1, 2, 4-triazol-3-yl) quinolin-4 (1H)-ones as antileukemic agents using physicochemical and alignment independent topological based descriptors. Letters in Organic Chemistry. 2018;15(7):551-8.
- 30. Sanij E, Hannan KM, Xuan J, Yan S, Ahern JE, Trigos AS, et al. CX-5461 activates the DNA damage response and demonstrates therapeutic efficacy in high-grade serous ovarian cancer. Nature communications. 2020;11(1):2641.
- 31. Menger FM, Rourk MJ. Synthesis and reactivity of 5-fluorouracil/cytarabine mutual prodrugs. The Journal of Organic Chemistry. 1997;62(26):9083-8.
- 32. Gao F, Zhang X, Wang T, Xiao J. Quinolone hybrids and their anti-cancer activities: An overview. European journal of medicinal chemistry. 2019;165:59-79.
- 33. Wilson RH. Novel therapeutic developments other than EGFR and VEGF inhibition in colorectal cancer. The Oncologist. 2006;11(9):1018-24.
- 34. Capizzi R, Roman L, Tjulandin S, Smirnova I, Manikhas A, Paterson J, et al. Phase II trial of C1311, a novel inhibitor of topoisomerase II in advanced breast cancer. Journal of Clinical Oncology. 2008;26(15_suppl):1055-.
- 35. Azzman N, Gill MSA, Hassan SS, Ahemad N. Exploring the potential of Designed Multiple Ligands (DML) strategy with quinolones as anticancer. Current Trends in Biotechnology and Pharmacy. 2023;17(4A (Supplement)):8-14.
- 36. Xu H, Hurley LH. A first-in-class clinical G-quadruplex-targeting drug. The bench-to-bedside translation of the fluoroquinolone QQ58 to CX-5461 (Pidnarulex). Bioorganic & Medicinal Chemistry Letters. 2022;77:129016.
- 37. Pawłowska M, Kwaśniewska A, Mazerska Z, Augustin E. Enhanced activity of P4503A4 and UGT1A10 induced by acridinone derivatives c-1305 and c-1311 in MCF-7 and HCT116 cancer cells: Consequences for the drugs' cytotoxicity, metabolism and cellular response. International Journal of Molecular Sciences. 2020;21(11):3954.
- 38. Świtalska M, Filip-Psurska B, Milczarek M, Psurski M, Moszyńska A, Dąbrowska AM, et al. Combined anticancer therapy with imidazoacridinone analogue C-1305 and paclitaxel in

ERURJ 2025, 4, 4, 3270-3285

- human lung and colon cancer xenografts—Modulation of tumour angiogenesis. Journal of Cellular and Molecular Medicine. 2022;26(14):3950-64.
- 39. De Luca A, Normanno N. Tivozanib, a pan-VEGFR tyrosine kinase inhibitor for the potential treatment of solid tumors. IDrugs: the investigational drugs journal. 2010;13(9):636-45.
- 40. Jacob A, Shook J, Hutson TE. Tivozanib, a highly potent and selective inhibitor of VEGF receptor tyrosine kinases, for the treatment of metastatic renal cell carcinoma. Future Oncology. 2020;16(28):2147-64.
- 41. Hepgur M, Sadeghi S, Dorff TB, Quinn DI. Tivozanib in the treatment of renal cell carcinoma. Biologics: Targets and Therapy. 2013:139-48.
- 42. Swellmeen L, Basheer HA, Uzrail A, Sallam H, Al-Hiari Y, Alkilani A. Targeting GSK-3β enzyme by diazepino-quinolone derivatives. Tropical Journal of Pharmaceutical Research. 2022;21(10):2147-51.
- 43. Hu S, Liu Y, Ma J, Ding W, Chen H, Jiang H, et al. Discovery and structural optimization of novel quinolone derivatives as potent irreversible pan-fibroblast growth factor receptor inhibitors for treating solid tumors. Journal of Medicinal Chemistry. 2023;66(13):8858-75.
- 44. El-Fakharany ZS, Nissan YM, Sedky NK, Arafa RK, Abou-Seri SM. New proapoptotic chemotherapeutic agents based on the quinolone-3-carboxamide scaffold acting by VEGFR-2 inhibition. Scientific Reports. 2023;13(1):11346.
- 45. Iqbal J, Ejaz SA, Khan I, Ausekle E, Miliutina M, Langer P. Exploration of quinolone and quinoline derivatives as potential anticancer agents. DARU Journal of Pharmaceutical Sciences. 2019;27:613-26.
- 46. Eskandarpour V, Hadizadeh F, Abnous K, Tayarani-Najaran Z, Ghodsi R. Design, synthesis, biological evaluation and molecular docking study of novel quinolone derivatives as potent HDAC1 (Histone Deacetylase) inhibitors and anticancer agents. Journal of Molecular Structure. 2025;1325:141011.
- 47. Raghu M, Swarup H, Shamala T, Prathibha B, Kumar KY, Alharethy F, et al. Design, synthesis, anticancer activity and docking studies of novel quinazoline-based thiazole derivatives as EGFR kinase inhibitors. Heliyon. 2023;9(9).
- 48. George RF, Samir EM, Abdelhamed MN, Abdel-Aziz HA, Abbas SE. Synthesis and anti-proliferative activity of some new quinoline based 4, 5-dihydropyrazoles and their thiazole hybrids as EGFR inhibitors. Bioorganic chemistry. 2019;83:186-97.
- 49. Balasubramanian G, Kilambi N, Rathinasamy S, Rajendran P, Narayanan S, Rajagopal S. Quinolone-based HDAC inhibitors. Journal of Enzyme Inhibition and Medicinal Chemistry. 2014;29(4):555-62.
- 50. Sissi C, Palumbo M. The quinolone family: from antibacterial to anticancer agents. Current Medicinal Chemistry-Anti-Cancer Agents. 2003;3(6):439-50.

ERURJ 2025, 4, 4, 3270-3285

- 51. Kumar M, Kumar G, Mogha NK, Jain R, Hussain F, Masram DT. Structure, DNA/proteins binding, docking and cytotoxicity studies of copper (II) complexes with the first quinolone drug nalidixic acid and 2, 2'-dipyridylamine. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2019;212:94-104.
- 52. Jaswal S, Nehra B, Kumar S, Monga V. Recent advancements in the medicinal chemistry of bacterial type II topoisomerase inhibitors. Bioorganic Chemistry. 2020;104:104266.
- 53. Jain S, Chandra V, Jain PK, Pathak K, Pathak D. et A. Vaidya, «Comprehensive review on current developments of quinoline-based anticancer agents», Arab. J Chem. 2019;12(8):4920-46.
- 54. Sabbah DA, Hasan SE, Abu Khalaf R, Bardaweel SK, Hajjo R, Alqaisi KM, et al. Molecular modeling, synthesis and biological evaluation of N-phenyl-4-hydroxy-6-methyl-2-quinolone-3-carboxamides as Anticancer Agents. Molecules. 2020;25(22):5348.
- 55. Ahadi H, Shokrzadeh M, Hosseini-Khah Z, Ghasemian M, Emadi E, Zargari M, et al. Synthesis and biological assessment of ciprofloxacin-derived 1, 3, 4-thiadiazoles as anticancer agents. Bioorganic Chemistry. 2020;105:104383.
- 56. Mohammed HH, Abuo-Rahma GE-DA, Abbas SH, Abdelhafez E-S. Current trends and future directions of fluoroquinolones. Current Medicinal Chemistry. 2019;26(17):3132-49.
- 57. Freudenreich CH, Kreuzer KN. Localization of an aminoacridine antitumor agent in a type II topoisomerase-DNA complex. Proceedings of the National Academy of Sciences. 1994;91(23):11007-11.
- 58. Daneshtalab M, Ahmed A. Nonclassical biological activities of quinolone derivatives. Journal of Pharmacy & Pharmaceutical Sciences. 2012;15(1):52-72.
- 59. Yogeeswari P, Sriram D, Kavya R, Tiwari S. Synthesis and in-vitro cytotoxicity evaluation of gatifloxacin Mannich bases. Biomedicine & pharmacotherapy. 2005;59(9):501-10.
- 60. Kassab AE, Gedawy EM. Novel ciprofloxacin hybrids using biology oriented drug synthesis (BIODS) approach: Anticancer activity, effects on cell cycle profile, caspase-3 mediated apoptosis, topoisomerase II inhibition, and antibacterial activity. European journal of medicinal chemistry. 2018;150:403-18.
- 61. Abdel-Aziz M, Park S-E, Abuo-Rahma GE-DA, Sayed MA, Kwon Y. Novel N-4-piperazinyl-ciprofloxacin-chalcone hybrids: synthesis, physicochemical properties, anticancer and topoisomerase I and II inhibitory activity. European journal of medicinal chemistry. 2013;69:427-38.
- 62. Gootz T, McGuirk P, Moynihan M, Haskell S. Placement of alkyl substituents on the C-7 piperazine ring of fluoroquinolones: dramatic differential effects on mammalian topoisomerase II and DNA gyrase. Antimicrobial agents and chemotherapy. 1994;38(1):130-3.