Online ISSN: 2537-0979

Pathogenic Bacteria Associated with Lucilia Sericata from Decomposing Carcasses: Forensic and Public Health Implications

¹Islam AMA Younis, ¹Tarek MY El-Sheikh, ¹Ahmed ZI Shehata, ²Ahmed M. Eid*

- ¹Department of Zoology, Faculty of Science (Boys), Al-Azhar University, Cairo, Egypt
- ²Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt

ABSTRACT

Key words:
Forensic entomology;
Lucilia sericata;
Pathogenic bacteria; Public
health; Postmortem
microbiome

*Corresponding Author:
Ahmed M. Eid
Department of Botany and
Microbiology, Faculty of
Science, Al-Azhar University,
Nasr City, Cairo 11884, Egypt.
Tel.: 01000154414
aeidmicrobiology@azhar.edu.eg

Background: Blowflies, especially Lucilia sericata, are key to forensic entomology and may act as vectors of pathogenic bacteria. Exploring their microbial associations enhances understanding of both forensic and public health contexts. Objective: This study examined bacterial communities from a decomposing rabbit carcass and adult L. sericata to assess their forensic and epidemiological significance. Methodology: Carcass and fly samples were analyzed using selective culturing, biochemical tests, DNA barcoding, and VITEK-2 profiling. Diversity and similarity were evaluated using Shannon, Simpson, and Bray-Curtis indices. Results: Sixty-five bacterial isolates were identified (32 from the carcass, 33 from flies). Bacillus spp. predominated, alongside clinically relevant taxa (E. coli, S. typhi, S. dysenteriae, S. aureus, S. warneri, P. aeruginosa). Diversity was higher in the carcass (H' = 1.42; 1-D = 0.70) than in flies (H' = 1.09; 1-D = 0.58), with a Bray-Curtis similarity of 0.74 indicating strong overlap. **Conclusion:** Blowflies both mirror and disseminate postmortem bacterial communities, confirming their dual role as forensic indicators and public health vectors. Despite being based on a single carcass, the study underscores the importance of integrating microbial and entomological data in forensic and epidemiological investigations.

INTRODUCTION

In recent years, the convergence of forensic entomology and forensic microbiology has provided complementary insights into postmortem processes. Necrophagous blowflies (*Diptera: Calliphoridae*), particularly *Lucilia sericata* (Meigen, 1826), are among the earliest colonizers of decomposing remains and serve as key indicators for postmortem interval (PMI) estimation through their developmental patterns. This species is globally recognized for its forensic, medical, and veterinary relevance ^{1,2}.

Microbial communities associated with decomposing remains, collectively termed the thanatomicrobiome, have also proven valuable for estimating decomposition stage and PMI. These communities undergo structured shifts influenced by intrinsic host factors and environmental conditions. At the insect-microbe interface, blowflies acquire, retain, and disseminate bacterial taxa, functioning both as "microbial mirrors" reflecting their larval substrates and as mechanical vectors transmitting pathogenic and antibiotic-resistant bacteria^{3, 4}.

L. sericata is known to harbor medically important bacteria such as Escherichia coli, Salmonella enterica, Staphylococcus aureus, and Pseudomonas aeruginosa, along with other taxa of forensic relevance including Bacillus spp., Salmonella typhi, and Shigella dysenteriae. These bacteria can be transmitted through

surface contact, regurgitation, or fecal deposition, and some taxa may persist across generations, suggesting transgenerational transmission and underscoring the epidemiological importance of blowflies in pathogen dissemination ^{5,6}.

Despite advances in culture-independent and sequencing approaches, integrated studies linking microbial and insect succession remain limited, particularly in the Middle East and North Africa, where climatic conditions may decomposition dynamics ⁷. The present study therefore aims to characterize and compare the culturable bacterial communities of decomposing (Oryctolagus cuniculus) carcass and adult L. sericata, evaluating diversity, overlap (as measured by the Bray-Curtis similarity coefficient), and their combined forensic and public health implications. This model was chosen as a decomposition model because small mammalian carcasses are widely used in forensic entomology owing to their manageable size, ethical accessibility, and decomposition patterns comparable to larger mammals8.

METHODOLOGY

Carcass preparation

A rabbit (Oryctolagus cuniculus), weighing about 1.5 kg, was humanely euthanized using CO₂ inhalation in accordance with the AVMA Guidelines for the

Euthanasia of Animals (2020)⁹. The specimen was acquired on September 20 from the Bani Haritha neighborhood in Al Madinah Al Munawwarah, Kingdom of Saudi Arabia (24°29'28.6"N, 39°38'01.7"E).

Environmental conditions

At the time of carcass placement, the ambient temperature and relative humidity were recorded as 31 °C and 54%, respectively. To facilitate decomposition, the carcass was left in a wire trap that was secured and exposed to the elements ⁸, allowing natural access of insects, air, and sunlight while preventing interference from scavenging animals.

Sampling procedure

Seven days postmortem, the rabbit carcass was swabbed at 9:00 a.m. using sterile cotton swabs from the external surface of the abdominal region. Each swab was immediately transferred into a sterile container and stored at 4 °C until further microbiological processing ¹⁰.

Insect collection

Adult blowflies (*Lucilia sericata*) visiting the cadaver during decomposition were collected using a standard hand net. Captured specimens were transferred into sterilized Falcon polypropylene tubes, which were maintained at 4 °C until identification and subsequent laboratory analysis ¹¹.

DNA barcoding for identification of *Lucilia sericata* DNA extraction

Total genomic DNA was extracted from individual adult flies using the DNeasy Blood & Tissue Kit (Qiagen, Germany) following the manufacturer's protocol with minor modifications to improve extraction efficiency from insect tissues. Specifically, samples were incubated with proteinase K for 3 h at 56 °C instead of 1–2 h, and the elution step was performed twice with 50 μL of AE buffer preheated to 70 °C to maximize DNA yield. To preserve voucher specimens, only a leg or thoracic muscle was used per sample. DNA quality and concentration were assessed using a NanoDrop spectrophotometer (Thermo Scientific, USA), with A260/A280 ratios ranging from 1.7 to 1.9, indicating acceptable DNA purity and confirmed by 1% agarose gel electrophoresis 12 .

PCR amplification

The mitochondrial cytochrome oxidase I (COI) gene, a standard DNA barcode for dipteran species 13, was amplified in a 25 μL reaction containing 12.5 μL of 2× PCR Master Mix (Thermo Scientific), 1 μL of each primer (10 µM), 2 µL of DNA (~50 ng), and nucleasefree water. Universal primers LCO1490 GGTCAACAAATCATAAAGATATTGG-3') and HCO2198 (5'-TAAACTTCAGGGTGACCAAAAATCA-3') were used. PCR cycling conditions were: initial denaturation at 94 °C for 3 min; 35 cycles of 94 °C for 30 s, 50 °C for 45 s, and 72 °C for 1 min; followed by a final extension at 72 °C for 10 min 14.

PCR product Aanalysis and sequencing

PCR products were separated on 1.5% agarose gels stained with ethidium bromide and visualized under UV illumination. Purified amplicons (~658 bp) obtained using the QIAquick PCR Purification Kit (Qiagen, Germany) were subjected to bidirectional Sanger sequencing (Macrogen Inc., Korea)

Molecular characterization and phylogenetic analysis

Raw chromatograms were edited and verified using BioEdit v7.2.5, and consensus sequences were aligned with related GenBank entries using ClustalW in MEGA v11 ¹⁵. Species identification was confirmed through BLASTn analysis against the NCBI database. Phylogenetic relationships were inferred using the Maximum Likelihood method with the best-fit substitution model determined by ModelFinder in IQTREE v2, with node support evaluated by SH-aLRT tests and 1000 ultrafast bootstrap replicates ¹⁶.

Bacterial isolation and heat treatment procedure

Each carcass swab and whole adult fly specimen was aseptically placed in 10 mL of saline solution containing 0.1% Tween 80 and incubated aerobically at 37 °C with shaking (150 rpm) for 4 h to promote bacterial release. Serial tenfold dilutions (10⁻¹–10⁻⁴) were then prepared using sterile physiological saline (0.85% NaCl) and 100 μL aliquots were spread on various culture media for bacterial isolation. For *Bacillus* spp. selection, 1 mL of the 10⁻⁴ dilution was heat-treated at 80 °C for 10 min, cooled, and plated onto Plate Count Agar (PCA) supplemented with 10 μg/mL Polymyxin B sulfate (HiMedia, USA), following the method described by Ranjan et al. (2022)¹⁷.

Enrichment, selective media, and preliminary characterization of bacteria

Various enrichment and selective media were used for bacterial isolation and enumeration, including Plate Count Agar (PCA; Merck, Germany) for total viable counts, Eosin Methylene Blue Agar (Condalab, Spain) for Enterobacteriaceae, Cetrimide Agar (Merck, Germany) for *Pseudomonas* spp., MacConkey Agar (Biolife, Italy) for Gram-negative enterics, *Salmonella–Shigella* Agar (NEOGEN, Canada) for enteric pathogens, and Mannitol Salt Agar (Biolife, Italy) for *Staphylococcus* spp. All inoculated plates were incubated aerobically at 37 °C for 24–48 h to allow optimal bacterial growth and colony development.

Preliminary identification was based on colony morphology, Gram staining, catalase reaction, and the 3% KOH string test to differentiate Gram-positive from Gram-negative bacteria , with all tests performed at room temperature $(25 \pm 2 \, ^{\circ}\text{C})^{18,19}$.

Automated identification

Representative isolates (one per bacterial species per source: carcass or fly), totaling 10 isolates, were subjected to confirmatory biochemical identification using the VITEK-2 Compact System (bioMérieux,

France). Identification was performed using GN, GP, and BCL identification cards according to the Gram reaction and microscopic morphology of the isolates, and results were accepted when the probability score was $\geq 95\%$ ²⁰.

Diversity and similarity analysis

Bacterial community data obtained from both the rabbit carcass and *Lucilia sericata* isolates were analyzed to evaluate within- and between-source diversity. The Shannon diversity index (H') was calculated for each source to quantify species richness and evenness. The index was computed as:

$$H' = -\sum p_i \ln(p_i) (1)$$

-Where pi represents the relative abundance of taxon i. To assess the similarity in bacterial composition between the carcass and flies, the Bray-Curtis similarity coefficient was computed using isolate abundance tables. The metric was expressed as:

$$BC = 1 - \sum |x_i - y_i| / \sum |x_i + y_i| \quad (2)$$

-Where xi and Yi denote the abundances of taxon i in the carcass and fly communities, respectively.

-Values of BC range from 0 (completely dissimilar) to 1 (identical) ²¹.

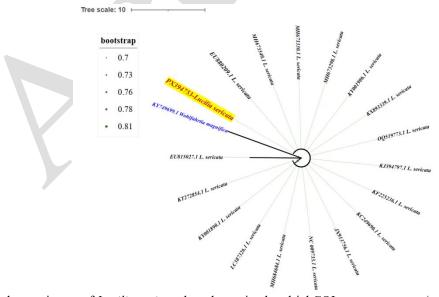
Statistical analysis

All statistical analyses and diversity metrics were conducted using PAST v4.12 22 and SPSS v25.0 (IBM Corp., Armonk, NY, USA). Descriptive statistics (mean \pm SD) were calculated where appropriate. Differences between carcass and fly bacterial communities were assessed using the Shannon diversity index (H') and Bray–Curtis similarity coefficient (BC), with statistical significance set at p < 0.05.

Ethical approval statement

All animal experiments were conducted in accordance with internationally accepted guidelines for the care and

use of laboratory animals. The experimental procedures involving rabbits were performed following ethical standards and approved protocols of the Department of Zoology, Faculty of science, Al-Azhar University, under approval number [AZU-ZOO-2024-01].


RESULTS

Genetic identification of Lucilia sericata

PCR amplification of the mitochondrial cytochrome oxidase subunit I (COI) gene from adult L. sericata yielded a \sim 610 bp fragment. The obtained sequence (GenBank accession no. PX394753) showed 99.33% similarity to a Korean reference strain (L. sericata, EU880209.1). Phylogenetic analysis based on the COI region (Figure 1) placed all L. sericata sequences in a strongly supported monophyletic clade (bootstrap \geq 70%), clearly separated from the outgroup Wohlfahrtia magnifica, confirming species-level resolution.

Bacterial isolation and preliminary characterization

A total of 65 bacterial isolates were obtained; 32 from the decomposing rabbit carcass and 33 from *Lucilia sericata* flies (**Tables 1–4**). Quantitative analysis showed bacterial loads of 161 × 10 ⁴ CFU/mL in the carcass and 185 × 10 ⁴ CFU/mL in flies. Preliminary tests (Gram staining, catalase, and KOH assays) differentiated isolates into Gram-positive and Gram-negative groups (**Figure 2**). Both sources were dominated by *Bacillus* spp., alongside clinically important taxa such as *Escherichia coli*, *Salmonella* spp., *Shigella* spp., *Staphylococcus aureus*, and *Pseudomonas aeruginosa* (**Table 3**). A comparative heatmap (**Figure 3**) confirmed the predominance and resilience of *Bacillus* spp. across samples.

Fig. 1: Phylogenetic tree of *Lucilia sericata* based on mitochondrial COI gene sequences (with bootstrap values ≥70% indicated; PX394753 highlighted as the focal sample; *Wohlfahrtia magnifica* used as outgroup).

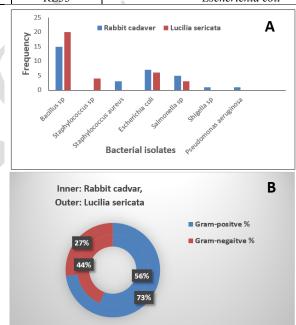
Table 1: Growth Characteristics and Preliminary Identification of Bacteria isolated from asphyxia-killed rabbit cadaver on selective media.

No	Code	EMB	CA	MC	SS	MS	PCAB	Gram stain	Catalase	КОН
1	RS1	-	-	-	-	-	+	+	+	-
2	RS2	+/GMS	-	+/RV	-	-	-	-	+	+
3	RS3	_	-	-	-	-	+	+	+	_
4	RS4	- /C	-	+/C	+/C, BC	-	-	-	+	+
5	RS5	+/GMS	-	+/RV	-	-	-	-	+	+
6	RS6	_	-	-	-	+	-	+	+	_
7	RS7	+/GMS	-	+/RV	-	-	-	-	+	+
8	RS8	_	-	-	-	-	+	+	+	-
9	RS9	-	-	-	_	-	+	+	+	-
10	RS10	- /C	-	+/C	+/C, BC	-	-	-	+	+
11	RS11	+/GMS	-	+/RV	_	-	-	-	+	+
12	RS12	-	-	-	_	-	+	+	+	-
13	RS13	+/GMS	-	+/RV	_	_	_	-	+	+
14	RS14	_	_	-	-	-	+	+	+	_
15	RS15	+/GMS	_	+/RV	-	-	\ - \		+	+
16	RS16	_	_	-	-	-	+	+	+	_
17	RS17	_	_	-	-	+	-	+	+	_
18	RS18	_	_	-	-	-	+	+	+	_
19	RS19	- /C	_	+/C	+/C, BC	-	-		+	+
20	RS20	_	_	-	_		+	+	+	_
21	RS21	+	-	+	+		-	_	+	+
22	RS22	-	-	-	- /	-	+	+	+	-
23	RS23	- /C	-	+/C	+/C, BC	-		_	+	+
24	RS24	+/C	+	+	-	4	-	+	+	-
25	RS25	-	_	-	_		+	+	+	-
26	RS26	_	-	-	_	+	-	+	+	-
27	RS27	+/GMS	-	+/RV	-	-	-	-	+	+
28	RS28	-	-	-	-	-	+	+	+	-
29	RS29	_	-	-	-	-	+	+	+	-
30	RS30	- /C	-	+/C	+/C, BC	-	-	-	+	+
31	RS31	-	-	-	-	ı	+	+	+	ı
32	RS32	-	-	-	-	_	+	+	+	_

EMB= Eosin Methylene Blue Agar, CA= Cetrimide Agar, MC= MacConkey Agar, SS= Salmonella-Shigella Agar, MS= Mannitol Salt Agar, PCAB= Plate Count Agar + $10 \mu g/mL$ Polymyxin B sulfate, C= colorless, GMS= green metallic shine, BC= black center, and RV= red violet.

Table 2: preliminary identification of Bacteria isolated from asphyxia-killed rabbit cadaver.

		of Bacteria isolated from asphyxia-killed rabbit cadave				
No	Code	Preliminary identification				
1	RS1	Bacillus sp				
2	RS2	Escherichia coli				
3	RS3	Bacillus sp				
4	RS4	Salmonella sp				
5	RS5	Escherichia coli				
6	RS6	Staphylococcus aureus				
7	RS7	Escherichia coli				
8	RS8	Bacillus sp				
9	RS9	Bacillus sp				
10	RS10	Salmonella sp				
11	RS11	Escherichia coli				
12	RS12	Bacillus sp				
13	RS13	Escherichia coli				
14	RS14	Bacillus sp				
15	RS15	Escherichia coli				
16	RS16	Bacillus sp				
17	RS17	Staphylococcus aureus				
18	RS18	Bacillus sp				
19	RS19	Salmonella sp				
20	RS20	Bacillus sp				
21	RS21	Shigella sp				
22	RS22	Bacillus sp				
23	RS23	Salmonella sp				
24	RS24	Pseudomonas aeruginosa				
25	RS25	Bacillus sp				
26	RS26	Staphylococcus aureus				
27	RS27	Escherichia coli				
28	RS28	Bacillus sp				
29	RS29	Bacillus sp				
30	RS30	Salmonella sp				
31	RS31	Bacillus sp				
32	RS32	Bacillus sp				


Table 3: Growth Characteristics and Preliminary Identification of Bacteria from *Lucilia sericata* Flies Associated with an Asphyxiated Rabbit Cadaver (Rab/A).

	with an Asphyxiated Rabbit Cadaver (Rab/A).									
No	Code	EMB	CA	MC	SS	MS	PCAB	Gram stain	Catalase	KOH
1	RL1	-	ı	-	ı	-	+	+	+	ı
2	RL2	_	ı	-	ı	-	+	+	+	ı
3	RL3	+/GMS	-	+/RV	ı	-	-	-	+	+
4	RL4	-	-	-	-	-	+	+	+	-
5	RL5	-	-	-	-	+/W	-	+	+	-
6	RL6	-	-	-	-	-	+	+	+	-
7	RL7	-	-	-	-	-	+	+	+	-
8	RL8	- /C	-	+/C	+/C, BC	-	-	-	+	+
9	RL9	- (63.56	-	-	-	-	+	+	+	-
10	RL10	+/GMS	-	+/RV	-	-	-	-	+	+
11	RL11	-	-	-	-	-	+	+	+	-
12	RL12	-	-	-	-	- /777	+	+	+	-
13	RL13	-	-	-	-	+/W	-	+	+	- /
14	RL15	-	-	-	_	-	+	+	+	-
16	RL15	-	-	-	-	- /337	+	+	+	
16	RL16	-	-	-	-	+/W	-	+	+	-
17	RL17	-	-	-	-	-	+	+	+	-
18	RL18	-	-	-	-	-	+	+	+	-
19	RL19	-	-	-	1	-	+	+	+	ı
20	RL20	+/GMS	-	+/RV	-	-	-	-	+	+
21	RL21	-	-	-	-	-	+	+	+	-
22	RL22	-	-	-	-	-	+	+	+	-
23	RL23	_	-	-	_	- /	+	+	+	-
24	RL24	- /C	-	+/C	+/C, BC	AV	-	-	+	+
25	RL25	_	-	-	-	-	+	+	+	1
26	RL26	_	1	-	-	+/W	-	+	+	ı
27	RL27	-	-	-	-	-	+	+	+	-
28	RL28	+/GMS	1	+/RV	-	-	-	-	+	+
29	RL29	_	ı	-	-	-	+	+	+	ı
30	RL30	+/GMS	1	+/RV	-	-	-	-	+	+
31	RL31	-	_	-	-	-	+	+	+	-
32	RL32	- /C	-	+/C	+/C, BC	-	-	-	+	+
33	RL33	+/GMS	-	+/RV		-	-	-	+	+

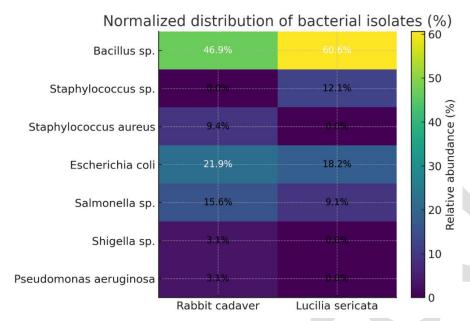

EMB= Eosin Methylene Blue Agar, CA= Cetrimide Agar, MC= MacConkey Agar, SS= Salmonella-Shigella Agar, MS= Mannitol Salt Agar, PCAB= Plate Count Agar + 10 µg/mL Polymyxin B sulfate, C= colorless, GMS= green metallic shine, BC= black center, W= weak growth, and RV= red violet.

Table 4: preliminary identification of Bacteria isolated from *Lucillia* sp Flies Associated with an Asphyxiated Rabbit Cadaver (Rab/A).

No	Code	Preliminary identification
1	RL1	Bacillus sp
2	RL2	Bacillus sp
3	RL3	Escherichia coli
4	RL4	Bacillus sp
5	RL5	Staphylococcus sp
6	RL6	Bacillus sp
7	RL7	Bacillus sp
8	RL8	Salmonella sp
9	RL9	Bacillus sp
10	RL10	Escherichia coli
11	RL11	Bacillus sp
12	RL12	Bacillus sp
13	RL13	Staphylococcus sp
14	RL14	Bacillus sp
15	RL15	Bacillus sp
16	RL16	Staphylococcus sp
17	RL17	Bacillus sp
18	RL18	Bacillus sp
19	RL19	Bacillus sp
20	RL20	Escherichia coli
21	RL21	Bacillus sp
22	RL22	Bacillus sp
23	RL23	Bacillus sp
24	RL24	Salmonella sp
25	RL25	Bacillus sp
26	RL26	Staphylococcus sp
27	RL27	Bacillus sp
28	RL28	Escherichia coli
29	RL29	Bacillus sp
30	RL30	Escherichia coli
31	RL31	Bacillus sp
32	RL32	Salmonella sp
33	RL33	Escherichia coli

Fig. 2: Comparative visualization of bacterial isolates recovered from the rabbit cadaver and *Lucilia sericata*. (A) Bar chart showing the frequency of individual bacterial taxa in both sources. (B) Proportional distribution of Gram-positive and Gramnegative isolates, with the inner ring representing the rabbit cadaver and the outer ring representing *L. sericata*.

Fig. 3: Heatmap visualization of bacterial isolates recovered from the rabbit cadaver and *Lucilia sericata*, showing both absolute and normalized relative abundances.

Automated identification of bacterial isolates

One representative isolate per bacterial species from each source (*L. sericata* or carcass) was analyzed using the VITEK-2 Compact System to minimize redundancy. Automated profiling confirmed a diverse assemblage of clinically relevant taxa. From the carcass, six species were identified: *Bacillus thuringiensis*, *Escherichia coli*, *Salmonella typhi*, *Staphylococcus aureus*, *Shigella dysenteriae*, and *Pseudomonas aeruginosa* (\geq 97% confidence). From flies, four species were detected:

Bacillus subtilis, Escherichia. coli, Salmonella typhi, and Staphylococcus warneri (Table 5, Figure 4).

Diversity indices indicated higher richness in the carcass (H' = 1.42; 1-D = 0.70) than in flies (H' = 1.09; 1-D = 0.58). Bray–Curtis similarity (0.74) revealed substantial community overlap, with *E. coli* and *S. typhi* shared between both sources, while *S. aureus* and *Shigella dysenteriae* were exclusive to the carcass, and *S. warneri* to the flies. Rarefaction curves (**Figure 5**) plateaued around 30 isolates, confirming adequate sampling coverage.

Table 5: Bacterial Identification of Isolates from Rabbit Carcass and *Lucilia sericata* using the VITEK-2 System

Source	Isolate code	Preliminary ID	Confirmed ID (VITEK-2)	Probability (%)
	RS1	Bacillus sp	Bacillus thuringiensis	97
	RS2	Escherichia coli	Escherichia coli	99
Rabbit	RS4	Salmonella sp	Salmonella typhi	99
carcass	RS6	Staphylococcus aureus	Staphylococcus aureus	99
	RS21	Shigella sp	Shigella dysentery	99
	RS24	Pseudomonas aeruginosa	Pseudomonas aeruginosa	99
	RL1	Bacillus sp	Bacillus subtilis	97
Lucilia	RL3	Escherichia coli	Escherichia coli	99
sericata	RL5	Staphylococcus sp	Staphylococcus warneri	97
	RL8	Salmonella sp	Salmonella typhi	99

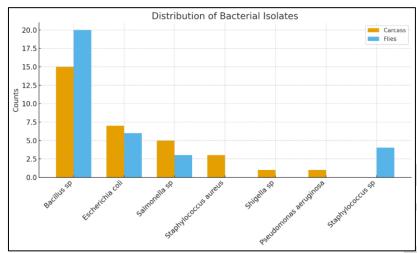
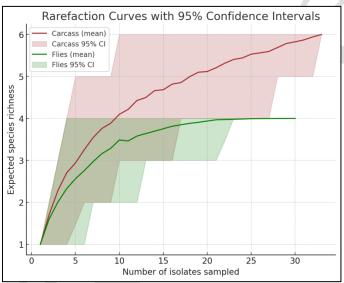



Fig. 4: Distribution of bacterial isolates recovered from the rabbit carcass and *Lucilia sericata* flies.

Fig. 5: Rarefaction curves with 95% confidence intervals for bacterial isolates from the rabbit carcass (brown) and *Lucilia sericata* adults (green), showing sufficient sampling to capture dominant taxa.

DISCUSSION

The present study provides new insights into the bacterial communities associated with *Lucilia sericata* and decomposing rabbit carcasses, highlighting their forensic and public health relevance. The findings are discussed below in the context of molecular identification, microbial diversity, and ecological interactions.

Reliability of COI barcoding for forensic blowfly identification

The findings confirm the reliability of the COI gene as a molecular marker for distinguishing forensically important blowflies ²³. Strong bootstrap support aligns with previous evidence of low intraspecific and high interspecific variation within Calliphoridae. The inclusion of *Wohlfahrtia magnifica* as an outgroup

strengthened tree topology, consistent with phylogenetic best practices 24 . High sequence similarity across distant populations indicates strong genetic conservation in L. sericata, supporting the broad applicability of COI barcoding in forensic and medical entomology for accurate and rapid species identification 25 , 26 . Collectively, these results provide robust molecular confirmation of L. sericata identity, reinforcing its value as a dependable forensic indicator

Significance of culture-based approaches and pathogen recovery

The recovery of 65 bacterial isolates from carcass tissues and *L. sericata* confirms the efficiency of culture-based methods as a primary tool in forensic microbiology. Selective and differential media (e.g., EMB, MacConkey, SS, MSA, and PCA with Polymyxin B) enabled targeted isolation of enteric pathogens, Gram-positive cocci, and spore-forming *Bacillus* spp.,

supporting previous findings on the reliability of conventional techniques in complex samples ^{27, 28}.

The slightly higher bacterial load in flies indicates that *L. sericata* not only reflects but also amplifies microbial communities, reinforcing its dual role as a microbial mirror and mechanical vector. The dominance of *Bacillus* spp. reflects their spore-forming resilience, while the detection of pathogens such as *E. coli*, *Salmonella*, *Shigella*, *S. aureus*, and *P. aeruginosa* underscores the public health relevance of blowfly activity ²⁹⁻³². Overall, these results highlight the importance of integrating traditional culture-based and molecular approaches for forensic and epidemiological investigations, especially in resource-limited contexts

Overlap and divergence between carcass and flyassociated bacteria

Automated identification revealed both shared and unique bacterial taxa between carcass and fly samples, emphasizing the dual function of blowflies as microbial mirrors and selective vectors. The presence of *E. coli* and *S. typhi* in both sources supports the established role of necrophagous flies as carriers of enteric pathogens ³². Conversely, the restriction of *S. aureus* and *Shigella dysenteriae* to the carcass suggests ecological filtering within the insect gut or cuticle, limiting the transfer of certain taxa ³¹.

Resilience of *Bacillus* and continuum of *Staphylococcus*

The detection of *Bacillus thuringiensis* and *B. subtilis* across both carcass and flies reflects the ecological resilience of spore-forming taxa, which persist under decomposition-associated stresses ³³⁻³⁶. Similarly, the concurrent detection of *S. aureus* (carcass) and *S. warneri* (flies) illustrates a continuum between virulent and opportunistic *staphylococci*. Coagulase-negative *staphylococci* (CoNS), long regarded as commensals, are now recognized as important opportunists capable of biofilm formation and harboring resistance genes ^{37,38}.

Community diversity and ecological filtering

Diversity indices showed higher richness and evenness in carcass communities than in flies, suggesting that flies represent a filtered subset of the thanatomicrobiome. This is consistent with selective retention: while some pathogens thrive in fly-associated microhabitats (e.g. *S. warneri*), others such as *S. aureus* may be poorly adapted to insect environments ^{39, 40}.

Forensic and public health significance

From a forensic standpoint, the findings indicate that blowflies do not uniformly transmit all carcass-associated bacteria; instead, their microbiota reflects selective acquisition and persistence, underscoring their utility in microbial succession studies while cautioning against overgeneralization ⁴¹. The persistence of *E. coli* and *Salmonella* within fly guts is likely supported by biofilm formation and stress tolerance, facilitating bacterial dissemination ⁴². Moreover, blowflies are

increasingly recognized as carriers of antimicrobial resistance genes (ARGs), including *bla*, *mecA*, and *qnr* determinants ⁴³. Future studies should incorporate ARG screening to connect forensic entomology with antimicrobial resistance surveillance. Integrating thanatomicrobiome data with insect-borne bacteria could enhance postmortem interval (PMI) estimation and position blowflies as sentinels for pathogen and ARG monitoring in both forensic and public health contexts ³⁴.

Limitations and future perspectives

Although this study provides valuable baseline data, it was limited to a single carcass model under specific environmental conditions. Expanding sampling across different seasons, carcass types, and geographical regions, coupled with metagenomic sequencing, would provide a more comprehensive understanding of microbial-insect interactions in forensic contexts.

CONCLUSIONS

This study demonstrates that *Lucilia sericata* associated with decomposing rabbit carcasses can harbor and transmit pathogenic bacteria of both forensic and public health significance. The detection of shared isolates such as *Escherichia coli* and *Salmonella typhi* underscores the role of blowflies as mechanical carriers and potential forensic indicators, whereas unique taxa highlight selective bacterial acquisition and associated epidemiological risks. These findings support the integration of microbiological and entomological evidence in forensic investigations. Further molecular and metagenomic studies are recommended to elucidate bacterial transfer dynamics and enhance the forensic value of insect-associated microbiota.

Declarations:

Consent for publication: Not applicable

Availability of data and material: Data are available upon request.

Competing interests: The author(s) declare no potential conflicts of interest with respect to the research, authorship and/or publication of this article. This manuscript has not been previously published and is not under consideration in another journal.

Funding: Authors did not receive any grants from funding agencies.

REFERENCES

 Salem AM, Shaurub ESH, Almadiy AA, et al. Biological aspects and molecular identification of forensically relevant blow flies under seasonal temperature and humidity variations in Egypt. J Basic Appl Zool. 2025;86:49. doi:10.1186/s41936-025-00468-z

- Maleki-Ravasan N, Ahmadi N, Soroushzadeh Z, Raz AA, Zakeri S, Dinparast Djadid N. New insights into culturable and unculturable bacteria across the life history of medicinal maggots *Lucilia* sericata (Diptera: Calliphoridae). Front Microbiol. 2020;11:505. doi:10.3389/fmicb.2020.00505
- Singh B, Crippen TL, Zheng L, Fields AT, Yu Z, Ma Q, et al. A metagenomic assessment of the bacteria associated with *Lucilia sericata* and Lucilia cuprina. Appl Microbiol Biotechnol. 2015;99(2):869–83. doi:10.1007/s00253-014-6115-7
- Sharif S, Wunder C, Amendt J, Qamar A. Deciphering the impact of microenvironmental factors on cuticular hydrocarbon degradation in *Lucilia sericata* empty puparia using machine learning models. Sci Total Environ. 2024;913:169719.
 doi:10.1016/j.scitotenv.2023.169719
- Gwenzi W, Chaukura N, Muisa-Zikali N, Teta C, Musvuugwa T, Rzymski P, et al. Insects, rodents, and pets as reservoirs, vectors, and sentinels of antimicrobial resistance. Antibiotics. 2021;10:68. doi:10.3390/antibiotics10010068
- Iancu L, Junkins EN, Necula-Petrareanu G, et al. Characterizing forensically important insect and microbial community colonization patterns in buried remains. Sci Rep. 2018;8:15513. doi:10.1038/s41598-018-33794-0
- 7. Gbenonsi AF, Higley L. Maggot mass effect on the development and survival of forensically important blow flies. Insects. 2025;16:660. doi:10.3390/insects16070660
- Dutra DR, Villegas-Cayllahua EA, Baptista GG, Ferreira LE, Castilha LD, Borba H. Characterization of post-mortem pH evolution and rigor mortis process in Botucatu rabbit carcasses of different categories. Animals. 2024;14:2502. doi:10.3390/ani14172502
- American Veterinary Medical Association (AVMA). AVMA Guidelines for the Euthanasia of Animals: 2020 Edition. Schaumburg, IL: American Veterinary Medical Association; 2020. Available from: https://www.avma.org/euthanasia
- Khalil AMA, Hassan SE-D, Alsharif SM, Eid AM, Ewais EE-D, Azab E, Gobouri AA, Elkelish A, Fouda A. Isolation and Characterization of Fungal Endophytes Isolated from Medicinal Plant Ephedra pachyclada as Plant Growth-Promoting. Biomolecules 2021, 11, 140. https://doi.org/10.3390/biom11020140
- 11. Bugelli V, Campobasso CP, Verhoff MA, Amendt J. Effects of different storage and measuring methods on larval length values for blow flies

- *Lucilia sericata* and Calliphora vicina. Sci Justice. 2017;57(2):95–9. doi:10.1016/j.scijus.2016.10.008
- 12. Harvey ML, Dadour IR, Gaudieri S. Mitochondrial DNA cytochrome oxidase I gene: Potential for distinction between immature stages of some forensically important fly species. Forensic Sci Int. 2003;131(2–3):134–9. doi:10.1016/S0379-0738(02)00445-9
- 13. Hebert PDN, Cywinska A, Ball SL, deWaard JR. Biological identifications through DNA barcodes. Proc Biol Sci. 2003;270(1512):313–21. doi:10.1098/rspb.2002.2218
- 14. Folmer O, Black M, Hoeh W, Lutz R, Vrijenhoek R. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol Mar Biol Biotechnol. 1994;3(5):294–9. PMID: 7881515
- 15. Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol. 2018;35(6):1547–9. doi:10.1093/molbev/msy096
- 16. Minh BQ, Schmidt HA, Chernomor O, Schrempf D, Woodhams MD, von Haeseler A, et al. IQ-TREE 2: New models and efficient methods for phylogenetic inference in the genomic era. Mol Biol Evol. 2020;37(5):1530–4. doi:10.1093/molbev/msaa015
- 17. Ranjan R, Das S, Singh V. Isolation and characterization of Bacillus species from soil and their industrial applications. Microbial Research Journal. 2022;15(3):145–153
- 18. Said A, El-Gamal MS, Abu-Elghait M, Salem SS. Isolation, identification and antibiotic susceptibility pattern of urinary tract infection bacterial isolates. Lett Appl NanoBioSci. 2021;10:2820–30.
- Zaher AH, Kabadaia MM, Hammad KM, Mekky AE, Salem SS. Forensic flies as carriers of pathogenic bacteria associated with a pig carcass in Egypt. Al-Azhar Bull Sci. 2023;34(3):5.
- 20. Elsharkawy MM, Eid AM, Attia NM, Fouda A. Bacterial coinfections and antibiogram profiles among ICU COVID-19 patients. Al-Azhar Bull Sci. 2023;3(3):4. doi:10.58675/2636-3305.1656
- 21. Legendre P, Legendre L. Numerical Ecology. Developments in Environmental Modelling. 3rd ed. Amsterdam: Elsevier; 2012.
- 22. Hammer Ø, Harper DAT, Ryan PD. PAST: Paleontological Statistics Software Package for Education and Data Analysis. Palaeontol Electronica. 2001;4:9 p. Available from: http://palaeo-electronica.org/2001 1/past/issue1 01.htm
- 23. Kar O, Mukherjee A, Mukherjee K, Pramanik D, Naskar A, Banerjee D. Molecular identification and

- genetic variations of forensically significant blow flies (Diptera: Calliphoridae) from Eastern India using DNA barcoding. PLoS One. 2025;20(7):e0327039. doi:10.1371/journal.pone.0327039
- 24. Kapoor S, Young ND, Yang YT, Batterham P, Gasser RB, Bowles VM, et al. Mitochondrial genomic investigation reveals a clear association between species and genotypes of Lucilia and geographic origin in Australia. Parasit Vectors. 2023;16:279. doi:10.1186/s13071-023-05902-1
- 25. Godfrey H, Smith JA. IdentiFLY: The development and validation of a 15-plex SNP assay for forensic identification of UK blowfly species (Calliphoridae). Taxonomy. 2024;4:680–95. doi:10.3390/taxonomy4040035
- Parmar DR, Johnston NP, Wallman JF, Szpila K. Blowfly genomics: Current insights, knowledge gaps, and future perspectives. Curr Opin Insect Sci. 2025;68:101305. doi:10.1016/j.cois.2024.101305
- 27. Badiee P, Nejabat M, Alborzi A, Keshavarz F, Shakiba E. Comparative study of Gram stain, potassium hydroxide smear, culture and nested PCR in the diagnosis of fungal keratitis. Ophthalmic Res. 2010; 44(4):251–6. doi:10.1159/000313988
- 28. Markey BK, Leonard FC, Archambault M, Cullinane A, Maguire D. Clinical Veterinary Microbiology. 2nd ed. Edinburgh: Elsevier; 2013.
- 29. Timofte D, Jepson RE. PRO: Environmental microbiological surveillance does support infection control in veterinary hospitals. JAC Antimicrob Resist. 2024;6(4):dlae113. doi:10.1093/jacamr/dlae113
- Vidyarthi A, Das A, Gupta A. Revisiting conventional microbiology techniques in the era of molecular testing. Curr Med Res Pract. 2022;12(6):274–9. doi:10.4103/cmrp.cmrp_60_22
- 31. Liu R, Zhang K, Li H, et al. Dissecting the microbial community structure of internal organs during the early postmortem period in a murine corpse model. BMC Microbiol. 2023;23:38. doi:10.1186/s12866-023-02786-0
- 32. Kim S, Yoo SJ, Chang J. Importance of susceptibility rate of 'the first' isolate: Evidence of real-world data. Medicina (Kaunas). 2020;56(10):507. doi:10.3390/medicina56100507
- 33. Tomberlin JG, Crippen TL, Tarone AM, Chaudhury MFB, Singh B, Cammack JA, et al. A 44.

- review of bacterial interactions with blow flies (Diptera: Calliphoridae) of medical, veterinary, and forensic importance. Ann Entomol Soc Am. 2017;110(1):19–36. doi:10.1093/aesa/saw086
- 34. Iancu L, Angelescu IR, Paun VI, et al. Microbiome pattern of *Lucilia sericata* and feeding substrate in the presence of the foodborne pathogen Salmonella enterica. Sci Rep. 2021;11:15296. doi:10.1038/s41598-021-94761-w
- 35. Javan GT, Finley SJ, Smith T, Miller J, Wilkinson JE. Cadaver thanatomicrobiome signatures: The ubiquitous nature of Clostridium species in human decomposition. Front Microbiol. 2017;8:2096. doi:10.3389/fmicb.2017.02096
- 36. Mahgoub HAM, Ewais EE, Eid AM. Biotechnological application for bacterial endophytes isolated from halophyte plant. Egypt J Biotechnol. 2018;56:1–15.
- 37. Sued-Karam B, Pereira-Ribeiro P. Staphylococcus warneri: Brief literature review. Braz J Health Rev. 2022;5(2):4358–64. doi:10.34119/bjhrv5n2-043
- 38. Touaitia R, Mairi A, Ibrahim NA, Basher NS, Idres T, Touati A. Staphylococcus aureus: A review of the pathogenesis and virulence mechanisms. Antibiotics. 2025;14:470. doi:10.3390/antibiotics14050470
- 39. Salama N, Mahfouz Y, Hammad K, Kabadaia M, Moselhy WA. Isolation and identification of virulent bacteria from forensic flies as mechanical vectors associated with a rabbit carcass. Int J Theor Appl Res. 2024;3(1):343–54. doi:10.21608/ijtar.2024.218572.1065
- 40. Yin JH, Kelly PJ, Wang C. Flies as vectors and potential sentinels for bacterial pathogens and antimicrobial resistance: A review. Vet Sci. 2022;9:300. doi:10.3390/vetsci9060300
- 41. Stoffolano JG. Fly foregut and transmission of microbes. Adv Insect Physiol. 2019;57:27–95. doi:10.1016/bs.aiip.2019.10.001
- 42. Gan D, Lin Z, Zeng L, Deng H, Walsh TR, Zhou S, et al. Housefly gut microbiomes as a reservoir and facilitator for the spread of antibiotic resistance. ISME J. 2024;18(1):128–40. doi:10.1093/ismejo/wrae128
- 43. Karam BRS, Ribeiro PMAP. *Staphylococcus warneri*: Brief literature review. Braz J Health Rev. 2022;5(2):4358–64. doi:10.34119/bjhrv5n2-043