10.21608/avmj.2025.374394.1666

Assiut University web-site: www.aun.edu.eg

COMPARISON BETWEEN THE EFFECT OF MEBO AND ENDOFORM PATCHES TO REPAIR INDUCED SKIN WOUNDS IN DOGS

RADHWAN RYAD AL-AJELI¹; AHMED SAAD AL-QADHI¹; S.M. IBRAHIM^{1*} AND O. H. AL-HYANI¹

¹Department of Surgery and Theriogenology, College of Veterinary Medicine, University of Mosul, Mosul, Iraq.

Received: 28 April 2025; Accepted: 10 July 2025

ABSTRACT

This study aimed to compare the ability of mebo and endoform patches for restoring fullthickness cutaneous wounds in dogs. Twenty-seven local strain mature dogs were used. For all experimental animals, a 2x2 cm of square full-thickness skin defects were carried out on the lateral side of the radial area. Then, these animals were divided into three identical groups. In first group (control), these induced defects were left open to heal spontaneously without any kind of remedy, while for the 2nd and 3rd groups, mebo and endoform patches of the same defect dimensions were placed over the wounds and bandaged firmly. The evaluation of the outcome data was done at 7th, 14th and 21th days postoperatively according to the gross and histopathological examinations. The gross results exhibited that the start and progress of the healing process was much faster and better in both mebo and endoform groups since first week, compared to the control group, however, Endoform animals were even better. Furthermore, there was a gradual reduction in wound size of both treated groups, especially of Endoform, compared to the control group. Furthermore, the histopathological evaluation displayed extra and more mature granulation tissue formation with little or tiny inflammatory cell infiltration, good angiogenesis, re-epithelization and development of hair follicle and other skin appendage in both treated groups, compared to the control group. In conclusion, similarly mebo and endoform patches can be considered for hastening perfect healing of cutaneous full-thickness wounds in dogs, even though endoform is regraded the first top choice.

Keywords: Cutaneous Wounds, Mebo Patch, Endoform, Healing Process, Extracellular Matrix.

INTRODUCTION

Animal body consists of tremendous variety of cells, tissues and organs. Some of them are tiny while others, like skin, have the largest percentage to enable performing several vital tasks as being the first defense castle against any toxic, infectious, and harmful invaders and

Corresponding author: S.M. IBRAHIM

E-mail address: sahar1212@uomosul.edu.iq

Present address: Department of Surgery and
Theriogenology, College of Veterinary Medicine,
University of Mosul, Mosul, Iraq.

factors, besides other related duties including thermoregulatory, electrolytes and water controller (Dabrowska *et al.*, 2018). Skin has several layers including epidermis, dermis, and subcutaneous tissue. All these tissues have extracellular matrix (ECM) and different cell populations (Ingegneri & Romanelli, 2020). Being the biggest and the upper most position is not always the most desirable choice especially for the skin as it makes it being the first shield facing any traumatic injuries particularly hug extensive full-thickness

wounds which are still have impacts in both man and small animal veterinary therapies owing to their highly daily recurrence, prolonged healing time, need for excessive care and being more susceptible for various complications (Davidson, Cavanaugh, 2024). On the other hands, fullthickness skin injuries are still being the most driving factor for the innovation of new wound therapeutic alternatives that stimulate better and swifter healing process (Abd-El Azeem et al., 2022; Al-Sabaawy & Al-Hyani 2022; Allawi & Saeed, 2023) either through mimicking their normal structures or stimulating their potential repairing abilities (Lucich et al., 2018). Full-thickness wounds greatly are associated with damaging or missing of the matrix extracellular (ECM) represents a reconstructive challenge to find out the proper complementary substitutions or even the efficient dressing in order to produce an appropriate condition that facilitate repairing initiation, inspire the start of curing, decrease pain, offer biomechanical funding, and infection (Tan et al., 2022; Aisa & Parlier, 2022; Rajab et al., 2022; Mirani et al., 2023). Skin available alternatives for treatment of full-thickness wounds can be simply categorized according to their anatomical origin into epidermal and derma skin alternatives that could be either cellular or acellular (Zaki et al., 2024). Recently, numerous synthetic and viable epidermal and dermal renewing alternatives have been used (Nicholas & Yeung, 2017; Lucich et al., 2018). One of the most advanced alternatives for repairing full-thickness wounds is by replacing or rebuilding them exogenous sources especially bv decellularized ECM that could be gained from many biological sources including porcine, ovine, or bovine (Deng et al., 2022; Kaur et al., 2022; Motiea et al., 2025). These ECM scaffolds derived from exogenous sources act as tissue biosimulation that can properly functionate ECM bio roles within the healing events (Raizman al., 2020). The et

decellularization technique represents a new innovative technology that preserve the extracellular e architecture of any tissue without its cellular components to eliminate its immunogenicity (Lun et al., 2010; Tan et al., 2021). Endoform represents one of the advanced exogenous decellularized ECM. It holds the intact extracellular matrix with a structure and architecture that faithfully resemble soft tissues obtained from forestomach of sheep. The idea behind using of endoform for wound dressing belong to its epithelium which is composed of keratinized-stratified squamous that closely identical to that of skin histology making it perfectly suitable for skin wounds. Furthermore, the forestomach is one of the chief ECM products because of its highly stretching abilities that can produce up to 40 × 40 cm of ECM size (Simcock & May, 2013; Tan et al., 2021). On the other hands, endoform has been noticed to hold the inherent ECM collagen construction that is entirely biodegradable into the regenerating soft tissue over time, with an open spongy construction to permit quick cell attachment. It has a huge number of materials and proteins like collagens, glycoproteins, growth factors and signaling molecules that arouses cellular distinction, immigration, and the swift progress of vasculature that are a significant regulator of any inflammatory response (Raizman et al., 2020). Endoform might also aid modify the tiny environment within wound area and encourage conversion to the perfect healing events through shift wound healing from a nonhealing phase to a healing one (Lucich et al., 2018). Furthermore, Endoform experiences swift angiogenesis that can, consequently transport seeding of autologous tissue. Undeniably, endoform upsurges blood vessel concentration, and angiogenic proves more possessions 2018). While other (Lucich et al., innovative approach to deal with fullthickness wounds is through using various preparations that have the ability to stimulate their potential repairing abilities. MEBO (Moist exposed burn ointment) is one of these most well-known traditional remedies for enhancing wound healing (Li et al., 2017; El Charif et al., 2021). It is kind of Chinese patent remedy inspired from the traditional Chinese medicine that can be used as topical ointment. It has an oilytexture nature consisting of sesame oil, beeswax, beberine, beta-sitosterol and small amounts of other herbal plants. These ingredient's formula has up to 18 amino acids, 4 critical fatty acids, polysaccharides and vitamins, however, the most important fatty acid is linoleic acid, which constitutes the cell membrane besides its crucial role as an essential fatty acid for proper cellular function (Zhan et al., 2021; Najim et al., 2022). The oils within MEBO formula dismiss pain, keep humidity, moistened the wounds. While beta-sitosterol exerts antiinflammatory impact and provokes epithelialization besides, berberine displays analgesic and antimicrobial properties. Additionally, MEBO encourages epithelial repair and upgrade scar tissue quality. As well as, it plays an overall significant task within wound tissue repair and healing (Tan et al., 2019; Mabvuure et al., 2020; Najim et al., 2022). The benefits of this easily applied traditional remedy for enhancing wound healing are countless such as promoting neovascularization fibroblasts within granulomatous tissue and improving propagation of angiogenic endothelial cells (Li et al., 2017; El Charif et al., 2021). Furthermore, MEBO is believed to be used in shield wounds from being infected that in turn speed up wound healing process without less or no complications (Jewo et al., 2009). Furthermore, many clinical and experimental researches have revealed that MEBO decreases water evaporation from the burned surface, encourages debridement and epithelial repair besides antimicrobial and analgesic (Moustafa, 2016; Alshehabat et al., 2020; Guanghuai et al., 2022). This article is a trial to evaluate the efficiency of using two approaches to hasten healing events of fullthickness cutaneous wounds in dogs, one

based on using of biodegradable xenograft materials derived from ovine forestomach to mimic their normal structures and other inspired from traditional Chinese remedy to stimulating their potential repairing abilities basing on macroscopical and histopathological investigations.

MATERIALS AND METHODS

Ethical Approve

The whole adapted procedures associated with this work gained the institutional consent of the animal care and use commission ethics of Mosul University/ College of Veterinary Medicine. UM.VET.2024.067.

Animals and Experimental Design

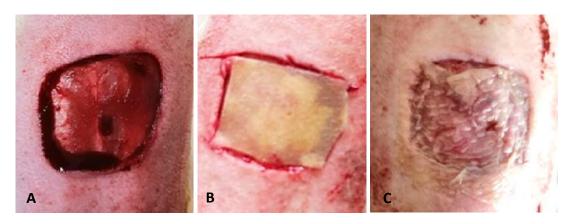
A total of twenty-seven (N=27), 1-3 years old with an average weight of 12-20 kg local breed dogs, were acclimatized for seven days before the start of this experiment. All handling and operational protocols utilized for this experimental design were obeyed the standard morals of animal care and use commission.

A square of 2x2 cm of full-thickness cutaneous wounds were induced at the lateral aspect of radial region in all dogs. Then animals were grouped randomly into 3 equal sets of nine dogs for each. In the 1st group (control group), the induced wounds were left to heal spontaneously without applying any patch. While, for the 2nd (mebo) and 3rd (endoform) groups a patch of the same wound size of mebo and endoform were applied to cover the induced wounds.

Then, a piece of sterile plastic was applied over the dressed wounded area then bandaged. The induced wounds were examined grossly and subjected to histological examination on days 7, 14 and 21 following inductions.

Supplying of Mebo and Endoform Patches

Both Mebo and Endoform patches were purchased from the local pharmacy. While mebo is a dressing material made from nonwoven fabric with an adhesive pad soaked with an ointment composed of betasitosterol 0.25%, sesame oil, beeswax, and nutritional elements (Gulf Pharmaceutical industries, Ras Al-Khaimah, UAE). On the other hands, EndoformTM antimicrobial restorative bioscaffold is a bio scaffold patch that has a unique extracellular matrix (ECM) products contains 0.3% ionic silver, manufactured by Aroa Biosurgery, Auckland, New Zealand.


Anesthetic Protocol

The dogs were fastened for 12 hours before surgery. All surgical procedures were accomplished with general anaesthesia using atropine sulfate of a dose 0.044mg/kg (Atropina Santisa Injetável. Santisa Pharmaceutical Laboratory. Bauru, SP) as a premedication, then followed by intramuscular injection of premixed blend of ten mg/kg of Ketamine Hydrochloride

drug (Narketan®-10, Troy Laboratories PTY Limited, Australia) and five mg/kg of Xylazine drug (ILium Xylazil-100, Troy Laboratories PTY Limitd, Australia) (AL-Qadhi *et al.*, 2022; Mohamed *et al.*, 2024).

Surgical Procedure for Creation of the Full-Thickness Defects

The ordinary preparative aseptic technique for skin surgery was applied on the lateral radial region. A full-thickness square skin wounds of 2x2cm2 were made at the lateral aspect within radial region in all dogs. Then animals were grouped randomly into 3 experimental groups. In the 1st control group, the induced wounds were left to heal spontaneously without applying any patch (Fig. 1A). While in the 2nd experimental group a patch of the same wound size of Mebo was applied to cover the induced wounds (Fig. 1B). Whereas Endoform patch was used to cover the induced wounds in 3rd group (Fig. 1C). A piece of sterile plastic was applied over the dressed wounded area to fix the dressing patches in situ, then bandaged firmly for the three experimental groups.

Figure 1: Photographic picture after creation of full-thickness cutaneous wounds. (A) 1st control group left to heal spontaneously. (B), 2nd group covered with Mebo patch and (C) 3rd group covered with Endoform patches.

Post-Operative Care

The dressing bandages of wounded area was exchanged every 48 hours during the whole period of study starting from the first 48 hours post operation, besides inspection of the skin wounds was done for any gross signs of wound complications or

dehiscence. All animals received intramuscular injection of penicillinstreptomycin (kanavet, Canadian), in a dose of 1ml/10kg and metalgen in a dose of 1ml/day as a prophylactic and analgesic, respectively for five days (Al-Saiegh *et al.*, 2024; Khudhur *et al.*, 2024).

Assessment of Healing Macroscopic Assessment

Microscopic examination was performed on 7th, 14th and 21th days following procedures. They were judged by gross physical check for the progress of the cutaneous wound healing, the decrease in size of wounded area.

Histopathological Assessment

At the end of days 7, 14 and 21 after wound initiation, experiment samples collection was achieved, the implanted tissues were

kept for 24 h for fixation in containers filled with neutral-buffered formalin of ten percent. Then, the samples were fixed using paraffin wax, sectioned, and finally stained with hematoxylin—eosin. The examination was done using light microscope. Each histological section was evaluated microscopically to assess the intensity of the healing features including granulation tissue, angiogenesis, inflammatory reaction and re-epithelization (Sultana *et al.*, 2009; Tsioli *et al.*, 2016) as shown in Table (1).

Table 1: Showing the histopathological parameters scoring

Criteria	1	2	3	4
Granulation tissue	Nil	Few	Moderate	Strong
Angiogenesis	Nil	Few	Moderate	Strong
intensity of	Nil	Few	Moderate	Strong
inflammation				
Re-epithelialization	Nil	Few	Moderate	Strong

Statistical Analysis

The obtained histopathological descriptive scores outcomes for the microscopic features were achieved by a blind pathologist and analyzed statistically by Kruskal-Wallis test and used Pairwise Multiple Comparison Procedures (Tukey Test) at p≤0.05. The Sigma Plot (version 12.5) software program analyzed the data for statistical analysis.

RESULTS

Macroscopic Results

All experimental dogs were survived the procedures and well recovered uneventfully. Firstly, there was good adhesion between both patches of Mebo and Endoform to the underling wound beds, then a well biodegradation of these patches was also observed. Furthermore, the macroscopic assessment of full-thickness wound healing on day 7 following operation showed that speed of healing process was much better in both Endoform

and Mebo groups as compared to control group however, Endoform animals group exhibited even better healing process than Mebo especially with the progress of healing tile day 14 (Fig. 2). In both treated groups, healing process was started earlier on day four after dressing and was more obvious after seven days with significant difference comparable to untreated wounds until the end of the experiment. Besides, the induced wounds of the three experimental groups had almost the same size at day seven (Fig. 2) but after one week, the Endoform and Mebo groups showed smaller sized wounds in comparison to control group although that size was even smaller for Endoform group along the whole duration of the study particularly on days 14 (Fig. 2) and 21 (Fig. 2) compared to those in mebo and control groups. The degree of wound contraction, reepithelization and total wound healing process progressed faster in both patched groups than in control group during the whole period of study.

Figure 2: Photographic picture of the gross appearance of the treated full-thickness wounds of the three experimental groups. The size of wounds at day 7 in 1st, 2nd and 3rd groups respectively (A, D and G). The size of wounds at day 14 in 1st, 2nd and 3rd groups respectively (B, E and H). The size of wounds at day 21 in 1st, 2nd and 3rd groups respectively (C, F and I).

Histopathological Findings

The microscopic manifestation of control group wound on day 7 post induction exhibited presence of severe inflammatory reaction that was composed of fibrinous exudate, intense presence of inflammatory cells, existence of granulation tissue and edema. While in both treated groups i.e.

Mebo and Endoform, their associated inflammatory reaction was characterized by less extent of fibrinous exudate with less infiltration of inflammatory cells, good established granulation tissue and presence of high newly blood vessels and reepithelialization especially with Endoform patched group (Fig. 3).

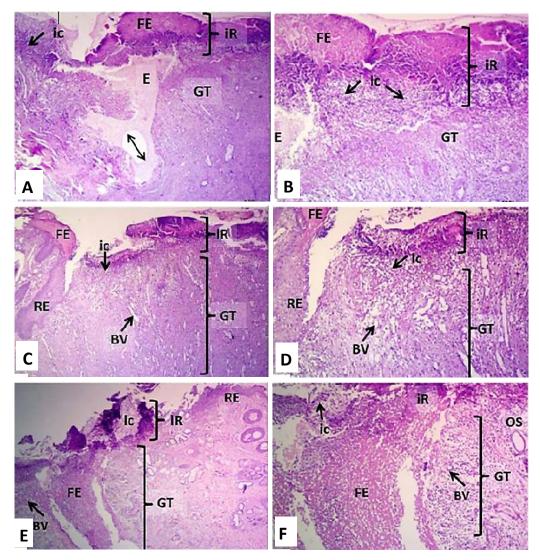


Figure 3: Histological sections of dogs' skin wound at 7th days. [A&B]: Control group demonstrates the site of wound with severe inflammatory reaction (iR) composed of fibrinous exudate (FE) and intense presence of inflammatory cells (ic), granulation tissue (GT) and edema (E). [C&D]: Mebo group demonstrates the site of wound with inflammatory reaction (iR) composed of fibrinous exudate (FE) and spread of inflammatory cells (ic), good established granulation tissue (GT) with high new blood vessels (BV) and re-epithelialization (RE). [E&F]: Endoform group demonstrates the site of wound with low inflammatory reaction (iR) composed of fibrinous exudate (FE) and presence of inflammatory cells (ic), good established granulation tissue (GT) with huge newly blood vessels (BV) and re-epithelialization (RE), old skin (OS). [A, C & E: 40X] [B, D & F: 100X]. H&E stain.

While the histopathology of the control group on day 14, exhibited the continues presence of fibrinous inflammatory exudate that was infiltrated with inflammatory cells, besides presence of granulation tissue, new blood vessels and re-epithelialization. On the other hands, the Mebo group showed low infiltration of inflammatory cells, good

established granulation tissue with hug newly blood vessels and reepithelialization. While the Endoform group showed so low infiltration of inflammatory cells, good established granulation tissue with very high newly blood vessels and well-developed reepithelialization (Fig. 4).

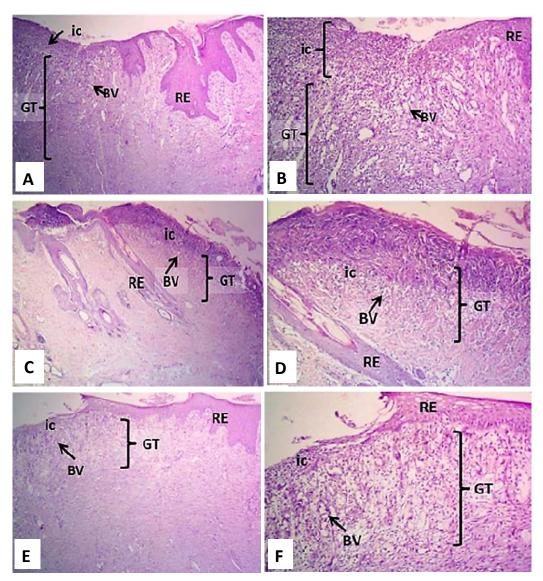


Figure 4: Histological sections of dogs' skin wound on 14th days. [A&B]: Control group demonstrates the site of wounds with inflammatory reaction (iR) composed of fibrinous exudate (FE) and presence of inflammatory cells (ic), granulation tissue (GT) with new blood vessels (BV) and re-epithelialization (RE). [C&D]: Mebo group demonstrates the area of wound with low spread of inflammatory cells (ic), granulation tissue (GT) with high new blood vessels (BV) and re-epithelialization (RE). [E&F]: Endoform group demonstrate the site of wound with very low and presence of inflammatory cells (ic), good established granulation tissue (GT) with very high new blood vessels (BV) and well-developed re-epithelialization (RE), and old skin (OS). [A, C & E: 40X] [B, D & F: 100X]. H&E stain.

Finally, on day 21 for control group, it exhibited the persistence of fibrinous inflammatory exudate associated with existence of inflammatory cells, granulation tissue and newly blood vessels and well-developed re-epithelialization. While in Mebo group displayed low spread of inflammatory cells, high recently blood

vessels, complete re-epithelialization with developed hair follicles, sweat gland and sebaceous gland. Furthermore, Endoform animals revealed absent of any inflammatory infiltration, high newly blood vessels, complete re-epithelialization and well-developed of hair follicles, sweat and sebaceous glands (Fig. 5).

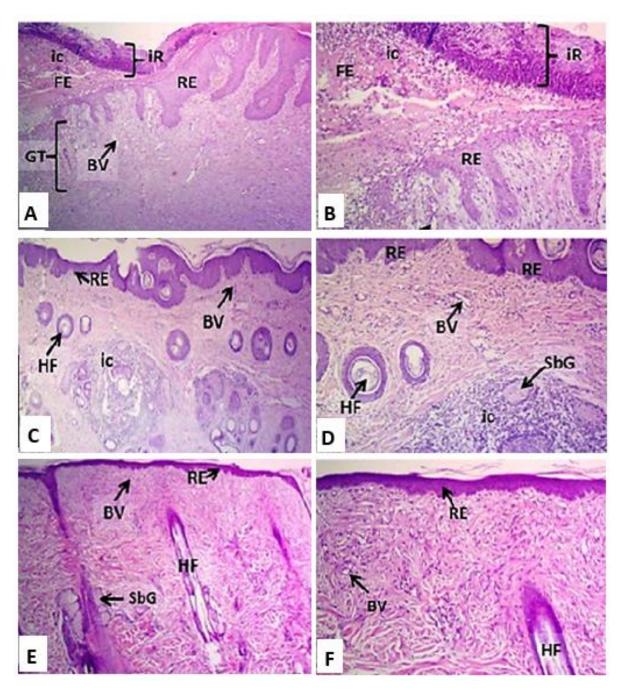


Figure 5: Histological sections of dogs' skin wound at 21th days. [A&B]: Control group demonstrate the site of wound with inflammatory reaction (iR) composed of fibrinous exudate (FE) and presence of inflammatory cells (ic), granulation tissue (GT) with newly blood vessels (BV) and well-developed re-epithelialization (RE). [C&D]: Mebo group demonstrate the area of wound with low presence of inflammatory cells (ic), high newly blood vessels (BV), complete re-epithelialization (RE) with developed hair follicles (HF), sweat gland (SG) and sebaceous gland (SbG). [E&F]: Endoform group demonstrate the area of wound without existence of inflammatory cells, high newly blood vessels (BV) complete re-epithelialization (RE), with developed hair follicles (HF), sweat gland (SG) and sebecious glands (SbG). [A, C & E: 40X] [B, D & F: 100X]. H&E stain.

Furthermore, the statistical analysis of the most noticeable histopathological features among the three experimental groups indicated presence of significant differences (Tables 2-5).

Table 2: Histopathological Scores of the of Granulation Tissue GT

Scores of GT	7 th D (N=3) Median (IQR)		14 th D		21st D		<i>P</i> -value
			(N:	=3)	(N=3) Median (IQR)		
Groups			Mediar	ı (IQR)			
G1	2 (2(1) 2(1)		4 (4(1)		
Control group	В	b	В	ab	В	a	
G2	3 (1)		3 (1)		1(1)		0.050*
Mebo group	AB	ab	AB	a	A	b	
G3	4 (1)		4 (0)		0(1)		0.050*
Endoform group	A	a	A	a	A	b	
<i>P</i> -value	0.050*		0.050*		0.048*		

Table 3: Histopathological Scores of the Angiogenesis (newly blood vessels)

1 (9		00	(_	,	
Scores of angiogenesis	7 th D (N=3) Median (IQR)		14 th D. (N=3) Median (IQR)		21st D (N=3) Median (IQR)		<i>P</i> -value
Groups							
G1	1 (1)		2(1)		4(1)		0.025*
Control group	В	b	В	ab	A	a	
G2	4 (1)		4(1)		1(1)		0.050*
Mebo group	A	a	A	ab	AB	a	
G3	3	3 (1)		4 (1)		1(1)	
Endoform group	A	ab	A	a	В	a	
<i>P</i> -value	0.050*		0.050*		0.025*		

Table 4: Histopathological Scores of the of Inflammation

Scores of inflammations	7 th D (N=3) Median (IQR)		14 th D (N=3) Median (IQR)		21st D (N=3) Median (IQR)		<i>P</i> -value
G1							
Control group	В	a	В	ab	В	b	
G2	1 (1)		1(1)		0(1)		0.296
Mebo group	AB	ab	AB	a	A	b	
G3	1 (0)		1(1)		0 (0)		0.139
Endoform group	A	a	A	a	A	b	
<i>P</i> -value	0.034*		0.050*		0.034*		

Table 5: Histopathological Scores of the Re-epithelialization RE

Scores of re- epithelialization	7 th .D 14 th D (N=3) (N=3) Median (IQR) Median (IQR)		(N=3)		21st D (N=3) Median (IQR)		<i>P</i> -value
Groups							
G1			3 (0.045*			
Control group	В	b	Α	ab	В	a	
G2	2(1)		3 (2)		4 (0)		0.050*
Mebo group	AB	a	A	ab	A	a	
G3	2 (2)		3 (1)		4 (0)		0.050*
Endoform group	A	ab	A	ab	A	a	
<i>P</i> -value	0.050*		0.100		0.021*		

Data expressed as Median & IQR ((Inter-Quartile-Range) (N= 3 animals) (Kruskal-Wallis test) The different capital letters indicate presence of significant differences among groups at $P \le 0.05$. The different small letters indicate presence of significant differences among periods at $P \le 0.05$.

DISCUSSION

essential requirements for successful healing process especially for that of full-thickness wounds necessitate the partnership and harmonization of three elementary foundations including extracellular matrix (ECM), growth factors and cells (Rodrigues et al., 2019; Nikahval et al., 2020; Al-Mutheffer et al., 2024). Several strategies had been adapted to deal with full-thickness cutaneous wounds, some based on using of various kinds of traditional therapeutic preparations procedures that can promote wound healing (Guanghuai et al., 2022; Shihab et al., 2023; Madyan et al., 2024). While others tried using many synthetic and biologic dermal and epidermal regenerative alternative options (Capella et al., 2020; Raizman et al., 2020; El-Shaer et al., 2023). In this research we applied two different approaches to deal with full-thickness wound in dogs, one of them designed to accelerating, benefit from the inflammatory, anti-infection properties of mebo patches (Jiang et al., 2021; Guanghuai et al., 2022). While the second approach used the Endoform patches to profit from its dimensional architecture and its richness with more than one thousand various protein molecules that govern tissue homeostasis and maintenance (Raizman et al., 2020).

The gross observation following using of mebo and endoform showed existence of a good adhesion between these two patches and wound beds since the 1st week following surgery that agreed with other results (Magin *et al.*, 2016; Lucich *et al.*, 2018). On the other hands, the healing process within both treated groups started earlier since day four after induction and was more evident after seven days. Moreover, the progress and speed of that healing events were much better in both treated groups especially Endoform group as comparable to control group during the whole period of study. These amazing

observed results of Endoform could be due to the presence of a good extracellular matrix construction that provided the fullthickness wounds with the needed structural support that supplied the host cell with the required scaffold to invade and grow because it holds abundant ratio of intact native collagen that considered as the perfect requirement for any ideal progress of wound healing (Rosenbaum et al., 2018). Besides, its extracellular matrix structure facilitated that swift healing through its open porous architecture that permitted the swift attachment of cell (Sizeland et al., 2017). Furthermore, these remarkable gross data of Endoform scaffold could be highly associated with its ability to supply the wounded area with many essential factors collagens. laminin. fibronectin. glycoproteins, signaling particles, growth factors that are responsible for the essential regenerative cellular events like growth, migration, and differentiation (Hynes, 2009; Schultz & Wysocki, 2009; Raizman et al., 2020). Furthermore, the ECM itself is the significant controller of the inflammatory response because of its components that modify tissue proteases associated with wound healing (Raizman et al., 2020). All these possible explanations could clarify the speedy early beginning and amazing progress of healing events associated with Endoform group that was also observed with other researchers work who noticed the beneficial impact of using Endoform forestomach matrix in shortening the time needed for wound closer during their surgical management of various kinds of soft-tissue wounds (Capella et al., 2020; Bosque et al., 2023; Melnychuk et al., 2023). On the other hands, the Mebo groups healing was also better and faster than control group, this could be to its included ingredients especially its important linoleic fatty acid, which is essential for building of cellular membrane (Zhan et al., 2021; Najim et al., 2022). Furthermore, the oily formula of Mebo patches retained moisture and softened the bed area that speed up the wound healing process, while berberine displayed analgesic and antimicrobial properties that furtherly supported the beneficial advantages of Mebo and in turn encouraged and upgraded the quality of tissue repair events without less or no complications (Tan et al., 2019; Mabvuure et al., 2020; Najim et al., 2022). Although most uses of mebo focused on burned wounds (Mabvuure et al., 2020; Guanghuai et al., 2022) but its accelerating impact on wound healing were in a great coincides with other researcher's data like. (Melnychuk et al., 2023) who documented its accelerating healing effects on diabetesrelated wounds or even (Alshehabat et al., who noticed the significant 2020) enhancement and acceleration of healing process within Mebo group comparable to honey in their comparative study on wound healing using healthy immunocompromised dogs. While (Tang et mentioned that 2014) significantly promoted and reduced the duration of cutaneous excisional wound repairing in rats. All these series of events associated with the progress of wound healing following application of both Endoform and Mebo patches participated significantly in the obvious lessening in the wound size area that was noticed in both treated groups especially Endoform group comparable with control groups on days 14 and 21 as the lessening in wound extent is a distinct clue for the good progress of wound healing process that agreed with others researchers outcomes (Coerper et al., 2009) who mentioned that more than 50% reduction in wound size is greatly correlated with progress of diabetic wound healing, or even (Vu et al., 2020) who stated that the rate of wound size reduction could be considered as a trusted valuable indicator for wound healing activities. Furthermore, there was perfect dissolution and full biosorption of these two dressing patches into the wound beds within the 1st week following dressing that even need the re-application of these patches as a result of the oily melting texture of Mebo patch (Moustafa, 2016) or the biodegradable

nature of endoform (Irvine et al., 2011) that was in the same line of (Melnychuk et al., 2023) results who reapplied Endoform patch every 5 to 7 days. The other parameter that was used to evaluate the efficiency of using Endoform and Mebo patches was the histopathological examination to study the and phenomena of healing progress process. The obtained microscopic outcomes exhibited presence of significant difference in the most observed healing features among the three experimental groups especially the severity inflammatory reaction which was less in both treated groups particularly Endoform group comparable to control group, this observation was in the same line of (Magin et al., 2016) who noticed the less inflammatory response associated with using Endoform as a dressing for rat fullthickness wounds, besides, (Capella et al., 2020) who compered Endoform with other biomaterial for wound healing and noticed its less inflammatory reaction. These obtained data of less inflammatory response could be to the fact that endoform is slightly treated, handled and decellularized to detached its layers of tissues and to keep its essential tissue repair elements (Agostinis et al., 2021) which in turn participated in that low level of inflammatory reaction toward it. In addition to the fact that ECM of the Endoform patch itself is a chief controller of the inflammatory response that made Endoform group showed the less inflammatory reaction due to its contents of growth factors and signaling molecules (Raizman et al., 2020) that modify tissue proteases associated with wound healing (Negron et al., 2014). Furthermore, the intact structure of endoform ECM was closely identical in composition and structure to skin histology (Raizman et al., 2020). On the other hands, the less inflammatory reaction that was associated with Mebo group was in the same line of other researchers work who studied the influence of Mebo on wound healing (Magin et al., 2016; Guanghuai et al., 2022) noticed the less existence

inflammatory cells due to the inflammatory and anti-infection belongings of Mebo because of its beta-sitosterol and berberine contents that hold these antiinflammatory and antimicrobial properties (Tan et al., 2019; Mabvuure et al., 2020; Naiim et al., 2022). These beneficial ingredients reduced both the level and intensity of the inflammatory reaction and promoting wound healing. Furthermore, the blood vessels formation new angiogenesis was also compared histopathologically and statistically. These observed comparisons exhibited presence of significant difference among the three experimental groups since the 1st week. It was noticed that the angiogenesis was better and even started earlier in both treated groups especially Endoform comparable to control group. Besids, this revasculirization was developing more and more with the progress of the healing process which is considerd as foundation for the ideal healing process as formation of new capillaries angiogenesis is one of the participating issues in wound repair process due to its vital role in sending of essential vital elements and oxygen to the quickly multiplying restored cells at wound spot (Guerra et al., 2018; Veith et al., 2019). Within wound healing events, new blood vessels are formed into the wounded area in a regular percentage, causing the formation of a rich system of recently blood vessels that even reaches near to 10 times denser than of the usual tissue (Dipietro, 2016). These observations could be due to the fact that Endoform reveals more angiogenic properties (Lucich et al., 2018) because it holds more than 150 signaling molecules and growth factors that inspires the progress of vasculature (Coerper et al., 2009; Raizman et al., 2020) besides its structure upholds remaining angiogenic channels to funding the creation of new blood vessels (Agostinis et al., 2021; Melnychuk et al., 2023). Furthermore, Endoform could also impact positively on the wound beds microenvironment that even shift and

promote its transition into the perfect healing phase (Lucich et al., 2018). On the other hand, the good angiogenesis of Mebo group could be due to the positive ability of Mebo on vascular endothelial growth factor (VEGF) expression that is crucial in the perfect initiation of angiogenesis as VEGF is the greatest significant moderator of angiogenesis within wound, presence encourages new capillary growth (Guerra et al., 2018; Veith et al., 2019). Besides that, the start of new blood vessels formation is totally governed by many growth factors particularly VEGF which is the greatest controlling proangiogenic element within healing wounded area by behaving as a commanding proangiogenic mediator (Dipietro, 2016). These data agreed with (Tang et al., 2014) who noticed the high expression of VEGF that hastened the abundant neovascularization within granulation tissue since day 8 during his work with rats to study the beneficial impact of Mebo on cutaneous excisional wound healing. Another microscopic criterion that was also compared statistically and histopathologically among experimental groups was reepithelialization, because it is an essential step during wound healing that could be considered as a crucial parameter for the successful wound closure (Pastar et al., 2014) that enables the skin to restore its normal barrier role (Bornes et al., 2021). The obtained data from these comparisons exhibited presence of significant difference in the degree and time of beginning of that re-epithelization which was very clear and even started earlier since the 1st week in both treated groups especially Endoform groups comparable to control group, this could be due to the helpful impact of Endoform on healing events because of its three dimensional structure that enabled the swift rebuilding of the epidermis, in addition to the presence of signaling molecules, and growth factors stimulates the good re-epithelialization that was also noticed with other researches (Capella et al., 2020; Raizman et al., 2020;

Sharma et al., 2023). Moreover, the good re-epithelization of Mebo group was also mentioned within other works especially (Alshehabat et al., 2020) who studied wound healing in immunocompromised and non-immunocompromised dogs and discovered that MEBO-treated wounds exhibited improved epithelialization area, compared with other treatments and (Gong al., 2023) who founded MEBO promoted the re-epithelialization of diabetic wound. These gained data of Mebo patch could be due to the ingredients of Mebo preserves moisture within the wound environment, which in turn enhanced the epithelialization process through facilitating the migration of epidermal cells (Tan & Dosan, 2019). Finally, The existence of abundant and well develped granulation tissue was also compared microscopically statsitcally among the experimental groups. The outcomes of copmarison these clearly exhibited presence of a significant variations toward both treated patches groups especially for Endoform in comparison to control group which was evident since day 7 post dressing indicating that both Mebo and Endoform patches corporated very well into the tissue as the granulation tissue which is branded microscopically by the existence and propagation of fibroblast cells and recent capillaries, delicat-walled is greatly addressed the presence of the well development of regenerative process within the wounded site (Hakkinen et al., 2011; Jiang & Scharffetter, 2020; Fadilah et al., 2023). These obtained data were in great agreement with other researchers data who mentioned the presence of good granulation tissue that in turn support re-epithelization associated with application of Endoform patches (Ingegneri & Romanelli, 2020; Agostinis et al., 2021). Besides (Magin et al., 2016; Bosque et al., 2023) ho stated that Endoform enhanced granulation tissue development on day 7 or even earlier, as with (Davis et al., 2022), who noticed that the granulation tissue development experienced initial improvement since day 4 for

those wounds treated with using Endoform native extracellular matrix. On the other hand, several studies noticed that MEBO application stimulate granulation tissue growth within wound (Zheng et al., 2020). Furthermore, granulation tissue was also detected with other work (Tang et al., 2014) who notice existence of granulation tissue day eight MEBO since significantly promoted the healing process when compared with other therapuetic options. The existence of all these good histopathological indicators since the early first week following dressing helped the well performance of both Endoform and Mebo patches comparable with control group.

CONCLUSIONS

The macroscopic and the microscopic outcomes of this study exhibited clearly that full-thickness cutaneous wounds dressing in dogs can be done successfully and perfectly using either Endoform or Mebo biodegradable patches with superiority of Endoform.

Acknowledgments

The researchers of this conducted project would like to document their gratefulness to institution of Veterinary Medicine, Mosul University, Mosul, Iraq.

Conflict of Interests

All authors declare that they have no conflict of interest associated with this article.

REFERENCES

Abd-El Azeem, R.M.; Ibrahim, A.; Kotob, M.H.; Elshahawy, A. and Selim, S.M. (2022): Evaluation of the healing of wounds dressed with zinc metalorganic frameworks (Zn-MOFs) in dogs: an experimental study. Assiut Veterinary Medical Journal, 68(175), 139-159. doi: 10.21608/AVMJ.2022. 157557.1085.

- Agostinis, C.; Spazzapan, M.; Vuerich, R.; Balduit, A.; Stocco, C.; Mangogna, A.; Ricci, G.; Papa, G.; Zacchigna, S. and Bulla, R. (2021): Differential capability of clinically employed dermal regeneration scaffolds to support vascularization for tissue bioengineering. Biomedicines, 9(10), 1458. doi: 10.3390/ Biomedicines 9101458.
- Aisa, J. and Parlier, M. (2022): Local wound management: a review of modern techniques and products. Veterinary

 Dermatology, 33(5), 463-478. doi: 10.1111/Vde.13104.
- Allawi, A.H. and Saeed, M.G. (2023): Effect of homologous platelet rich fibrin matrix and injectable platelet rich fibrin on full thickness skin autograft healing in dogs. Iraqi Journal of Veterinary Sciences, 37(5 Supplement I-Iv). doi: 10.33899/Ijvs.2022.1371380.2643.
- Al-Mutheffer, E.A.; Omar, R.A. and Ali, A.F. (2024): Local application benefits of dl-methionine as wound powder: a novel approach for wound healing process in rabbits. Iraqi Journal of Veterinary Sciences, 38(3), 523-529. doi: /10.33899/Ijvs.2024.143690.3267.
- Al-Qadhi, A.S.; Zedan, I.A.; Al-Ajeli, R.R.; Salem, M.T. and Ali, A.K. (2022): The effect of therankeron d6 on the healing of intestinal anastomosis in dogs. Iraqi Journal of Veterinary Sciences, 36(1), 261-265 doi: 10.33899/Ijvs.2021.129975.1712.
- Al-Sabaawy, D.M. and Al-Hyani, O.H. (2022): Effect of aloe vera gel on the healing of cutaneous wounds in donkeys. Iraqi Journal of Veterinary Sciences, 36(2), 425-432. doi:10.33899/Ijvs.2021.130479.1830
- Al-Saigh, A.M.; Ibrahim, S.M. and Al-Hyani, O.H. (2024): Effect of aloe vera gel on articular cartilage regeneration in dogs. Iraqi Journal of Veterinary Sciences, 38(2), 275-283.

- doi: 10.33899/Ijvs.2023.142075. 3155.
- Alshehabat, M.; Hananeh, W.; Ismail, Z.B.; Rmilah, S.A. and Abeeleh, M.A. (2020): Wound healing immunocompromised dogs: a comparison between the healing effects of moist exposed burn honey. Veterinary ointment and World, 13(12), 2793. doi:10.14202/Vetworld.2020.2793-2797.
- Bornes, L.; Windoffer, R.; Leube, R.E.; Morgner, J. and Van Rheenen, J. (2021): Scratch-Induced partial skin wounds re-epithelialize by sheets of independently migrating keratinocytes. Life Science Alliance, 4(1). doi:10.26508/Lsa. 202000765.
- Bosque, B.A.; Dowling, S.G.; May, B.C.; Kaufman, R.; Zilberman, I.; Zolfaghari, N.; Que, H.; Longobardi, J.; Skurka, J.; Geiger, J.E. and Melin, M.M. (2023): Ovine forestomach matrix in the surgical management of complex lower-extremity soft-tissue defects: a retrospective multicenter case series. Journal of the American Podiatric Medical Association, 113(3). doi:10.7547/22-081.
- Capella-Monsonis, H.; Tilbury, M.A.; Wall, J.G. and Zeugolis, D.I. (2020): Porcine mesothelium matrix as a biomaterial for wound healing applications. Materials Today Bio, 7, 100057. doi: 10.1016/J.Mtbio.2020.100057.
- Cavanaugh, R.P. (2024): Postoperative complications. Techniques in small animal Wound Management, 53-71. doi:10.1002/9781119933861.Ch3.
- Coerper, S.; Beckert, S. and Kuper, M.A. (2009): Fifty percent area reduction after four weeks of treatment is a reliable indicator for healing—analysis of a single-center cohort of 704 diabetic patients. Journal of Vascular Surgery, 49(3), 811. doi: 10.1016/J.Jdiacomp.2008.02.001.

- Dabrowska, A.K.; Spano, F.; Derler, S.; Ablhart, C.; Spencer, N.D. and Rossi, (2018): The relationship R.M.skin function, between barrier body-dependent properties, and factors. Skin Research and Technology, 24(2), 165-174. doi:10.1111/Srt.12424.
- Davidson, J.R. (2015): Current concepts in wound management and wound healing products. Veterinary clinics. Small Animal Practice, 45(3), 537-564. doi: 10.1016/J.Cvsm.2015. 01.009.
- Davis, S.C.; Gil, J.; Solis, M.; Higa, A.; Mills, A.; Simms, C.; Pena, P.V.; Li, J. and Raut, V. (2022): Antimicrobial effectiveness of wound matrices containing native extracellular matrix with polyhexamethylene biguanide. International Wound Journal, 19(1), 86-99. doi:10.1111/Iwj.13600.
- Deng, X.; Gould, M. and Ali, M.A. (2022):

 A review of current advancements for wound healing: biomaterial applications and medical devices. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 110(11), 2542-2573. doi:10.1002/Jbm.B.35086.
- Dipietro, L.A. (2016): Angiogenesis and wound repair: when enough is enough. Journal of Leucocyte Biology, 100(5), 979-984. doi:10.1189/Jlb.4mr0316-102r.
- El Charif, M.H.; Doughan, S.; Kredly, R.; Kassas, S.; Azab, R. and Shaity, E. Mebo (2021): versus topical diltiazem versus a combination of both ointments in the treatment of acute anal fissure: a randomized clinical trial protocol. Bmc Complementary Medicine and Therapies, 21. 1-10. doi:10.1186/S12906-021-03227-Z.
- El-Shaer, A.J.; Badr, H.A. and Allsadek, D.M. (2023): The combined effect of the human umbilical cord blood with chitosan scaffold on the full-thickness

- wound healing process in rats. Iraqi Journal of Veterinary Sciences, 37, (2), 39 1-403 doi:10.33899/Ijvs. 2022.134782.2404.
- Fadilah, N.I.M.; Phang, S.J.; Kamaruzaman, N.; Salleh, A.; Zawani, M.; Sanyal, A.; Maarof, M. and Fauzi, M.B. (2023): Antioxidant biomaterials in cutaneous wound healing and tissue regeneration: a critical review. Antioxidants, 12(4), 787. doi:10.3390/Antiox12040787.
- Gong, Y.; Jiang, Y.; Huang, J.; He, Z. and Tang, Q. (2023): Moist exposed burn ointment accelerates diabetes-related wound healing by promoting reepithelialization. Frontiers in Medicine, 9, 1042015. doi:10.3389/Fmed.2022.1042015.
- Guanghuai, C.; Ying, Z.; Feifei, L.; Xingzi, H.; Shumin, D.; Qiongyu, L.; Mengge, P. and Wenming, L. (2022):

 Research progress in the application of mebo in wound healing. International Medicine and Health Guidance News, 28(8), 1134. doi: 10.3760/Cma.J.Issn.1007-1245.2022.08.023.
- Guerra, A.; Belinha, J. and Jorge, R.N. (2018): Modelling skin wound healing angiogenesis: a review. Journal of Theoretical Biology, 459, 1-17. doi: 10.1016/J.Jtbi.2018.09.020.
- Hakkinen, L.; Larjava, H. and Koivisto, L. (2011): Granulation tissue formation and remodeling. Endodontic Topics, 24(1), 94-129. doi:10.1111/Etp.12008.
- Hynes, R.O. (2009): The extracellular matrix: not just pretty fibrils. Science, 326(5957), 1216-1219. doi:10.1126/Science.1176009.
- Ingegneri, A. and Romanelli, M. (2020):
 Extracellular matrices. technology in practical dermatology: non-invasive imaging. Lasers and Ulcer Management, 425-431. doi: 10.1007/978-3-030-45351-0 40

- Irvine, S.M.; Cayzer, J.; Todd, E.M.; Lun, S.; Floden, E.W.; Negron, L.; Fisher, J.N.; Dempsey, S.G.; Alexander, A.; Hill, M.C. and O'rouke, A. (2011): Quantification of in vitro and in vivo angiogenesis stimulated by ovine forestomach matrix biomaterial. Biomaterials, 32(27), 6351-6361. doi: 10.1016/J. Biomaterials.2011.05.040.
- Jewo, P.I.; Fadeyibi, I.O.; Babalola, O.S.; Saalu, L.C.; Benebo, A.S.; Izegbu, M.C. and Ashiru, O.A. (2009): A comparative study of the wound healing properties of moist exposed burn ointment (mebo) and silver sulphadiazine. Annals of Burns and Fire Disasters, 22(2), 79. pmc3188221.
- Jiang, D. and Scharffetter-Kochanek, K. (2020): Mesenchymal stem cells adaptively respond to environmental cues thereby improving granulation formation and tissue wound healing. Frontiers in Cell and Developmental Biology, 8, 697. doi:10.3389/Fcell.2020.00697.
- Jiang, Y.; Gong, Q.; Wei, C.; Lu, F.; Zhuo, C. and Tang, Q. (2021): Study on improvement effect and mechanism of mebo on lps-induced injury of rat skin fibroblasts. China Pharmacy, 702-708.wpr-875651.
- Kaur, G.; Narayanan, G.; Garg, D.; Sachdev, A. and Matai, I. (2022): Biomaterials-based regenerative strategies for skin tissue wound healing. Acs Applied Bio Materials, 5(5), 2069-2106. doi:10.1021/Acsabm.2c00035.
- Khudhur, E.; Al-Ajeli, R.R.; Al-Qadhi, A.S.; Al-Anaaz, M.T. and Shekho, H.A. (2024): Effect of laparoscopic adrenalectomy on estrogen, progesterone and cortisol hormones in bitch. Iraqi Journal of Veterinary Sciences, 38(4), 933-939. doi: 10.33899/Ijvs.2024.150928.3730.
- Li, W.; Ma, Y.; Yang, Q.; Pan, Y. and Meng, Q. (2017): Moist exposed burn

- ointment for treating pressure ulcers: a multicenter randomized controlled trial. Medicine, 96(29), E7582. doi:10.1097/Md.000000000000007582.
- Lucich, E.A.; Rendon, J.L. and Valerio, I.L. (2018): Advances in addressing full-thickness skin defects: a review of dermal and epidermal substitutes. Regenerative Medicine, 13(4), 443-456. doi:10.2217/Rme-2017-0047
- Lun, S.; Irvine, S.M.; Johnson, K.D.; Fisher, N.J.; Floden, E.W.; Negron, L.; Dempsey, S.G.; Mclaughlin, R.J.; Vasudevamurthy, M.; Ward, B.R. and May, B.C. (2010): A functional extracellular matrix biomaterial derived from ovine forestomach. Biomaterials, 31(16), 4517-4529. 10.1016/J. doi: Biomaterials.2010.02.025.
- Mabvuure, N.T.; Brewer, C.F.; Gervin, K. and Duffy, S. (2020): The use of moist exposed burn ointment (mebo) for the treatment of burn wounds: a systematic review. Journal of Plastic Surgery and Hand Surgery, 54(6), 337-343. doi:10.1080/2000656x. 2020.1813148.
- Madyan, A. Khalaf; Al-Sharqi, S.A. and Ahmed, B.M. (2024): Accelerating the healing of full-thickness excision wounds in mice using piezoelectric direct discharge plasma. Iraqi Journal of Veterinary Sciences, 38(4), 847-857. doi:10.33899/Ijvs.2024. 150583.3709.
- Magin, C.M.; Neale, D.B.; Drinker, M.C.; Willenberg, B.J.; Reddy, S.T.; La Perle, K.M.; Schultz, G.S. and Brennan, A.B. (2016): Evaluation of a bilayered, micropatterned hydrogel dressing for full-thickness wound healing. Experimental Biology and Medicine, 241(9), 986-995. doi:10.1177/1535370216640.
- Melnychuk, I.; Servetnyk, I. and Kosnik, N. (2023): Extracellular matrix-based collagen dressings for scalp repair following mohs micrographic

- surgery. Cutis. 111(5), E33-E35. doi:10.12788/Cutis.0796.
- Mirani, B.; Hadisi, Z.; Pagan, E.; Dabiri, S.M.H.; Van Rijt, A.; Almutairi, L.; Noshadi, I.; Armstrong, D.G. and Akbari, M. (2023): Smart dual-sensor wound dressing for monitoring cutaneous wounds. Advanced Healthcare Materials, 12(18), 2203233.
 - doi:10.1002/Adhm.202203233.
- Mohamed, M.M.; Ali, M.A.M.; Abdelhakiem, M.A.H. and Abdelhakiem, H. (2024): Surgical use of fascia lata grafts as bladder wall substitutes after partial cystectomy in dogs. Assiut Veterinary Medical Journal, 70(183), 105-117. doi: 10.21608/AVMJ.2024.297027.1279.
- Motiea, E.; Hussein, M.T. and Hussein, K.H. (2025): Investigating the healing potential of fresh amniotic membranes in full-thickness canine skin wounds. Assiut Veterinary Medical Journal, 71(184), 73-80.doi: 10.21608/avmj.2024.319387.1389.
- Moustafa, A. (2016): Moist exposed burn ointment (mebo) dressing in treatment of equine limb distal wounds. Alexandria Journal of Veterinary Sciences, 48(1). doi: 10.5455/Ajvs.209977.
- Najim, S.M.; Fadhil, A.A.; Abdullah, M.N. and Hammodi, L.E. (2022): Estimation of the healing effects of the topical use of mebo and hyaluronic acid gel in the burned rats. Journal of Advanced Pharmacy Education & Research, 12(2). doi: 10.1155/2021/5531999.
- Negron, L.; Lun, S. and May, B.C. (2014):
 Ovine forestomach matrix biomaterial is a broad-spectrum inhibitor of matrix metalloproteinases and neutrophil elastase. International Wound Journal, 11(4), 392-397. doi:10.1111/J.1742-481x.2012.01106. X.
- Nicholas, M.N. and Yeung, J. (2017): Current status and future of skin

- substitutes for chronic wound healing. Journal of Cutaneous Medicine and Surgery, 21(1), 23-30. doi: 10.1177/1203475416664037
- Nikahval, B.; Oryan, A.; Memarian, P. and Kamali, A. (2020): Use of ovine acellular peritoneal matrix combined with honey and ovine fetal skin extract in the healing of full-thickness infected burn wounds in a rat model. Veterinary Research Forum, 11(4), P 355. doi:10.30466/Vrf.2018.92422. 2235.
- Pastar, I.; Stojadinovic, O.; Yin, N.C.; Ramirez. Н.: Nusbaum. A.G.: Sawaya, A.; Patel, S.B.; Khalid, L.; Issroff, R.R. and Tomic-Canic, M. (2014): Epithelialization in wound healing: a comprehensive review. Advances in Wound Care, 3(7), 445-464. doi:10.1089/ Wound.2013.0473.
- Raizman, R.; Hill, R. and Woo, K. (2020):

 Prospective multicenter evaluation of an advanced extracellular matrix for wound management. Advances in Skin & Wound Care, 33(8), 437-444. doi: 10.1097/01.Asw.0000667052. 74087.D6.
- Rajab, A.M.; Taqa, G.A. and T Al-Wattar, W. (2022): The effect of topically applied hyaluronic acid on skin wound healing in rabbits. Journal of Applied Veterinary Sciences, 7(1), 38-45. doi: 10.21608/Javs.2021.102235.1111.
- Rodrigues, M.; Kosaric, N.; Bonham, C.A. and Gurtner, G.C. (2019): Wound healing: a cellular perspective. Physiological Reviews, 99(1), 665-706. doi:10.1152/Physrev.00067.2017.
- Rosenbaum, A.J.; Banerjee, S.; Rezak, K.M. and Uhi, R.L. (2018): Advances in wound management. Jaaos-Journal of the American Academy of Orthopaedic Surgeons, 26(23), 833-843. doi:10.5435/Jaaos-D-17-00024.
- Schultz, G.S. and Wysocki, A. (2009): Interactions between extracellular

- matrix and growth factors in wound healing. Wound Repair and Regeneration, 17(2), 153-162. doi:10.1111/J.1524-475x.2009. 00466. X.
- Sharma, A.; Sharma, D. and Zhao, F. (2023): Updates on recent clinical assessment of commercial chronic wound care products. Advanced Healthcare Materials, 12(25), 2300556.

doi:10.1002/Adhm.202300556.

- Shihab, T.J.; Sultan, A.A.; Atiyah, A.G. and Alwash, S.W. (2023): Evaluation of histopathological and healing potentials of the full-thickness a topical wound for cutaneous formulation containing ointment extract of bark quercus aegilops in mice. Iraqi Journal of Veterinary Sciences, 37(2), 121-8. doi:10.33899/ livs.2023.1374710.2685.
- Simcock, J. and May, B.C. (2013): Ovine forestomach matrix as a substrate for single-stage split-thickness graft reconstruction. Eplasty, 13, E58. pmcid: 24570766; Pmcid: Pmc3922230.
- Sizeland, K.H.; Wells, H.C.; Kelly, S.J.; Nesdale, K.E.; May, B.C.; Dempsey, S.G.; Miller, C.H.; Kirby, N.; Hawley, A.; Mudie, S. and Ryan, T. (2017): Collagen fibril response to strain in scaffolds from ovine forestomach for tissue engineering. Acs Biomaterials Science & Engineering, 3(10), 2550-2558.

doi:10.1021/Acsbiomaterials.7b0058

- Sultana, J.; Molla, M.R.; Kamal, M.; Shahidullah, M.; Begum, F. and Bashar, M.A. (2009): Histological differences in wound healing in maxillofacial region in patients with or without risk factors. Bangladesh Journal of Pathology, 24(1), 3-8. doi:10.3329/Bjpath. V24i1.2874.
- Tan Jiaqi, T.J.; Wang Jin, W.J.; Yang Chuang, Y.C.; Zhu Chongzun, Z.C.;

- Guo Geyong, G.G.; Tang Jin, T.J. and Shen Hao, S.H. (2019): Antimicrobial characteristics of berberine against prosthetic joint infection-related staphylococcus aureus of different multi-locus sequence types. BMC complementary and alternative medicine, 19, 1-10. doi:10.1186/S12906-019-2558-9.
- Tan, J.; Zhang, Q.Y.; Huang, L.P.; Huang, and Xie. (2021): *K*. H.O.Decellularized scaffold and its elicited immune response towards the host: the underlying mechanism and means of immunomodulatory modification. Biomaterials Science, 9(14). 4803-4820. doi:10.1039. /D1bm00470k.
- Tan, S.H.; Ngo, Z.H.; Leavesley, D. and Liang, K. (2022): Recent advances in the design of three-dimensional and bioprinted scaffolds for full-thickness wound healing. Tissue Engineering Part B: Reviews, 28(1), 160-181. doi:10.1089/Ten.Teb.2020.0339.
- Tan, S.T. and Dosan, R. (2019): Lessons from epithelialization: the reason behind moist wound environment. The Open Dermatology Journal, 13(1). doi:10.2174/1874372201913010034.
- Tang, Q.L.; Han, S.S.; Feng, J.; Di, J.Q.; Qin, W.X.; Fu, J. and Jiang, Q.Y. (2014): Moist exposed burn ointment promotes cutaneous excisional wound healing in rats involving vegf and bfgf. Molecular Medicine Reports, 9(4), 1277-1282. doi: 10.3892/Mmr.2014.1921.
- Tsioli, V.; Gouletsou, P.G.; Galatos, A.D.; Psalla. D.; Lymperis, A.: Papazoglou, L.G.and Karayannopoulou, M. (2016): Effects of two occlusive, hydrocolloid dressings on healing of full-thickness skin wounds in cats. Veterinary and Orthopaedics Comparative And Traumatology, 29(04), 298-305. doi:10.3415/Vcot-15-04-0058.

- Veith, A.P.; Henderson, K.; Spencer, A., Sligar, A.D. And Baker, A.B. (2019): Therapeutic strategies for enhancing angiogenesis in wound healing. Advanced Drug Delivery Reviews, 146, 97-125. doi: 10.1016/J.Addr.2018.09.010.
- Vu, H.; Nair, A.; Tran, L.; Pal, S.; Senkowsky, J.; Hu, W. and Tang, L. (2020): A device to predict short-term healing outcome of chronic wounds. Advances in Wound Care, 9(6), 312-324. doi: 10.1089/Wound.2019.1064.
- Zaki, M.M.; Ibrahim, S.M. and Ibrahim, M.M. (2024): Comparison between acellular ovine skin and acellular bovine pericardium on the induced skin loss healing in local breed cats. Iraqi Journal of Veterinary Sciences,

- 38(4), 949-961. doi: 10.33899/ IJVS.2024.151344.3750.
- Zhan, H.B.; Sun, Q.Q.; Yan, L. and Cai, J. (2021): Clinical study of mebo combined with jinhuang powder for diabetic foot with infection. Evidence-Based Complementary and Alternative Medicine, 2021(1), 5531988. doi:10.1155/2021/5531988.
- Zheng, A.; Ma, H.; Liu, X.; Huang, Q.; Li, Z.; Wang, L.; Zeng, N. and Wu, B. (2020): Effects of moist exposed burn therapy and ointment (mebt/mebo) on the autophagy motor signalling pathway in diabetic ulcer wounds. Pharmaceutical Biology, 58(1), 124-130. doi: 10.1080/13880209.2019.1711430.

مقارنة بين تاثير رقعة الايندوفورم والميبو على اصلاح الجروح الجلدية في الكلاب

رضوان رياض العجيلي ، احمد سعد القاضي ، سحر محمد ابراهيم ، اسامة حازم اسماعيل

فرع الجراحة وعلم تناسل الحيوان، كلية الطب البيطري، جامعة الموصل، الموصل، العراق

Email: sahar1212@uomosul.edu.iq, Assiut University web-site: www.aun.edu.eg

تم التخطيط لهذا العمل لمقارنة قدرة لاصقات الميبو وإندوفورم على إصلاح جروح الجلد لدى الكلاب. وقد استخدم في الدراسة سبعة و عشرون كلبًا بالغًا من السلالات المحلية. ، تم استحداث جرح جلدي مربع كامل السماكة بابعاد ٢ × ٢ سم على الجانب الجانبي لمنطقة مرفق اليد في جميع الحيوانات ثم تم تقسيم الحيوانات إلى ثلاث مجموعات متساوية. في المجموعة الأولى (مجموعة السيطرة)، ثركت هذه الجروح المستحدثة مقتوحة للشفاء تلقائيًا دون استخدام أي نوع من العلاج، بينما بالنسبة للمجموعتين الثانية والثالثة، تم وضع لاصقات الميبو وإندوفورم بنفس حجم الجرح على تلك الجروح وتم تضميدها بإحكام. تم تقييم النتائج استندا الى العلامات العيانية والنسيجية المرضية في اليوم السابع والرابع عشر والحادي والعشرين بعد الجراحة. أظهرت النتائج الإجمالية أن سرعة عملية الشفاء كانت أفضل بكثير في كل من مجموعتي الميبو والإندوفورم منذ الأسبوع الأول مقارنة بمجموعة السيطرة، ومع ذلك، كانت مجموعة الحيوانات الإندوفورم هي الافضل، إلى جانب أن كلتا المجموعتين المعالجتين أظهرتا انخفاضًا تدريجيًا واضحًا في حجم الجرح مقارنة بمجموعة السيطرة، على الرغم من أن حجم الجرح اصبح اصغر بكثير في الإندوفورم من مجموعة الميبو. علاوة على ذلك، أظهرت التقييمات النسيجية المرضية تكوينًا المجموعتين الظهارة وتكوين بصيلات الشعر وملحقات الجلد الأخرى في كل من مجموعتي العلاج مقارنة بمجموعة السيطرة. في الختام، يمكن وتكوين بصيلات الشعر وملحقات الجلد الأخرى في كل من مجموعتي العلاج مقارنة بمجموعة الميبو والإندوفورم لتسريع الشفاء التام للجروح الجلدية ذات السماكة الكاملة في الكلاب على الرغم من أن الإندوفورم يُصنف على أنه الخيار الأول الأفضل.