10.21608/avmj.2025.363719.1603

Assiut University web-site: www.aun.edu.eg

EFFECT OF DIETARY SUPPLEMENTATION OF *BAMBOO* LEAF EXTRACT (BLE) ON INTESTINAL BACTERIAL PROFILE AND DISEASE RESISTANCE OF BILL TRIMMED MULE DUCK

SHAYMAA YUSUF ¹; AHMED A.A. MOHAMMED ², SHAIMAA MATOQ ² AND MADEHA A.H. DARWISH ²

- ¹ Department of Microbiology and Immunology, Faculty of Veterinary Medicine, Assiut University, Assiut 71526, Egypt.
- ² Department of Animal and Poultry Behavior and Management, Faculty of Veterinary Medicine, Assiut University, Assiut 71526, Egypt.

Received: 28 February 2025; Accepted: 27 May 2025

ABSTRACT

Bamboo leaf extract plays a significant role in enhancing immunity and promoting disease resistance of birds and can be used as a feed supplement in avian husbandry. Beak trimming causes inflammation reactions and stress, leads to immune suppression and decreases disease resistance. The objectives of the current study were to investigate the effect of the extract of bamboo leaves on the enhancement of stressed bird resistance. Four groups (6 birds per group) were used; group 1: not bill trimmed and fed basal diet only without extract. Group 2: bill trimmed and had only a basal diet without extract. Groups 3 and 4: bill trimmed and fed basal diet plus bamboo extract 1 and 2 g per Kg respectively), a blood sample was collected on day 60 of the experiment to determine the Heterohil / Lymphocyte ratio as an indicator for bird resistance. The total bacterial count of lactobacilli and bifidobacteria wasdetermined. The pathogenic bacteria were isolated and identified by phenotypic examination and were confirmed by PCR. H/L ratio was lower in the bamboo supplied groups (3 & 4) than in groups 1 & 2. The groups (3 & 4) showed a significant increase in Lactobacillus count than groups 1 and 2. The result of the antibacterial test suggested antibacterial action of the extract against the isolated GramGram-negative bacteria more than GramGram-positive bacteria. The current results imply that the bamboo leaf extract could potentially be used as a substitute for synthetic agents that are used to solve bill trimming stress problems.

Keywords: Bamboo, H/L ratio, bill-trimming, lactobacilli and antibacterial activity

INTRODUCTION

The poultry meat had been preferred by the majority of Egyptian consumers over

Corresponding author: Shaymaa Yusuf E-mail address: shaymaayusuf@yahoo.com Present address: Department of Microbiology and immunology, Faculty of Veterinary Medicine, Assiut University, Assiut 71526, Egypt.

other animal proteins due to their remarkable growthbenefitsthatsupportconsumers'health, and theirlowprice (Hosny, 2006). In poultry husbandry, feather pecking andcannibalism are frequent problems that cause financial losses. Beak trimming means that nearly 25% to 33% of the upper beak only or with the lower beak of the bird is removed (American Veterinary Medical Association, 2010 and Riber & Hinrichsen, 2017). Stress

caused by beak trimming has been shown to cause decreased production performance, inflammation, immunological suppression, different infections and mortality, all of which have a negative effect on the production's return (Schwean-Lardner *et al.*, 2016; Ranjan *et al.*, 2019 and Li *et al.*, 2020).

Many synthetic growth promoters, such as antibiotics, have been used in poultry diets to enhance broiler chicken behavior and reduce the prevalence of microbial diseases. However, frequent use of these antibiotics has led to problems like disruption of normal flora, antibiotic resistance, and antibiotic residue in animal products (Nair *et al.*, 2018 and Ben *et al.*, 2019). Consequently, the antimicrobials use in the poultry industryhas been restricted in various countries. As a result, there has been a rise in the seeking ofnatural alternative dietary supplements that improve growth (Alagawany *et al.*, 2018).

Plant extracts have emerged as one of the most promising natural feed additives because of their growth-promoting, antiantibacterial, inflammatory, immunomodulatory properties (Kumari et al., 2007). The plant extracts are potent dietary supplements due compounds, including flavonoids bioactive polysaccharides, that have been shown to promote avian growth, immune response and disease resistance through antibacterial and antioxidant antiviral. effects (García-Lafuente et al., 2009; Park and Jhon, 2010 and Alagawany et al., 2018).

Bamboo is one of the most productive and medicinal plants (Kim *et al.*, 2011 and He *et al.*, 2014). Bamboo extract is rich in polysaccharides and flavonoids that have antioxidant capacity and boost animal immunity, extensive antibacterial activity, and anti-cancer effect (Kim *et al.*, 2016 and Ge *et al.*, 2020). The bamboo crude extract showed the most cytotoxicity against the MCF-7 cell line (IC₅₀ = 38.8 μ g/mL) and inhibited 63.4% of the cell growth at the

highest conc. of $100 \mu g/mL$, while it was safe against normal cells (Abdelhameed, R. F. *et al.*, 2020).

Antibacterial action of Bamboo shoots was reported against Klebsiella pneumoniae, Enterococcus faecalis, Staphylococcus epidermidis. Bacillus subtilis. Enterobacter aerogenes. (Ambika Rajagopal. 2017) Escherichia coli, Bacillus cereus and Staphylococcus aureus (Tanaka etal., 2011 and 2013). Moreover, the fibers of bamboo shoot shell have prebiotic potential that supports the lactic acid growth (lactobacillus bacteria bifidiobacteria) and increases their capacity to ferment substrates due to its high content of polysaccharides (Azmi et al., 2012; Gang et al., 2020 and Wu et al., 2020). Competition of Bifidiobacteria and lactobacilli with enteric pathogens for nutrients leads to prevention of pathogen invasion by intensive attachment to the mucosa of the intestine, and provokes mucosal defence mechanism (Symonds et al., 2012).

Enhancing the immune system of the host is a potent approach to combat the infections and mortality in birds. The bamboo leaf extract as a dietary supplement could possess immune-provoking functions in birds as it improves the IL-2 and IFN-γ production in blood and their gene expressions in the spleen, which playsa powerful role in the defense mechanism of host by magnified action on natural killer (NK) and T cells (Zhang *et al.*, 2015 and Gang *et al.*, 2020).

The host disease resistance in birds can be dependent on the heterophil to lymphocyte ratio (H/L) (Zhang *et al.*, 2023). So, the preference for immune function should be an important trait for the commercial breeding standards in the poultry industry, but it is difficult due to the absence of accurate indicators that can reflect the immune status of birds (Fulton 2004).

Heterophil to lymphocyte ratio (H/L) has a major heritability level and complicated

mechanism of genes related to immunity, that supports the selection for promoting chicken disease resistance based on Heterophil to lymphocyte ratio and its applicationas a marker for the avian immunity status (Campo & Davila 2002 and Zhang *et al.*, 2023).

Consequently, the current research was designed to determine outcomes of the extract of bamboo leaves as a dietary supplement for mule ducks exposed to beak trimming stress to enhance immunity and promote bird resistance against pathogenic bacteria and increase beneficial flora.

MATERIALS AND METHODS

This study was conducted in the Animal and Poultry Behavior and Management Research Unit and Department of Microbiology and Immunology at Assiut University, Faculty of Veterinary Medicine, Assiut, Egypt. All safety measures for handling laboratory animals and the microbiology lab. Biosafety were considered, and the ethical approval (No. 0620250292) of the experiment was designed by the Ethics Committee of the Faculty of Veterinary Medicine, Assiut University.

1-The bamboo extract

The mass spectrometer detector and the gas chromatograph (at the Central Laboratories Network, National Research Centre, Cairo, Egypt) were used to analyze the bamboo extract that was obtained from Pure Original Ingredient, Utah, USA. The main components were flavonoids, polyphenols and polysaccharides. As was supplied in a supplementary Figure 1 and supplementary tables (1-3) in a recent study by Fouadet al.(2025).

Birds and Dietary Treatments 2-The experiment

The mule ducklings of the experiment were supplied from the company of El-Salam in Cairo, Egypt. A total of 120 birds at the age of one day old from a commercial hatchery,

all housing management measures are considered (same body weight, ambient temperature, lighting and humidity) (Coates *et al.*, 2000; Sari *et al.*, 2013 and Abdel-Hamid & Abdel-Fattah, 2020).

Twenty-four birds free from pathogenic bacteria were selected, and four groups (6 birds/group) were used; group 1: not bill trimmed and fed a basal diet only without bamboo extract. Group 2: bill trimmed and fed a basal diet without bamboo extract. Groups 3 and 4: bill trimmed and fed basal diet with bamboo extract (1 and 2 g per kg-1), and bill-trimming was made for birds of groups 2,3& 4 fromthe 1st day of age to the experiment end. Birds were fed 17% duck mash from the 1st day to 8 Ws according to Matoq, S. *et al.* (2024).

3-Beak trimming:

Birds in groups 2, 3 &4 were subjected to beak trimming after 21 days of experiment according to Gustafson *et al.*(2007) to cut nearly 0.51 cm of the maxilla.

4- Detection of Heterohil/ Lymphocyte (H/L) ratio as an index for disease resistance:

-Blood collection:

EDTA test tubes were used to collect blood samples from all birds in all groups to determine the Heterohil / Lymphocyte (H/L) ratio onthe 60day. Blood films were constructed, and Giemsa stain was applied for staining. One hundredWBCs were enumerated, and then we calculated heterophil/lymphocyte ratios according to Parga *et al.*(2001).

The following equation was used for the calculation of H/L ratios:

H/L ratio= The count of heterophil cells The count of lymphocytes

5-Microbial assessment:

1-Sample collection:

The caecal contents of ducks were collected aseptically from all birds. The samples were

transferred in an icebox to the microbiology lab and analyzed within a few hours of collection (Sieuwerts et al., 2008).

2-Isolation and Estimation of Total Bacterial Count of Lactobacilli and : (Amaliah *et al.*, 2018).

One Gram of cecum content was collected and homogenized in 0.9 % sterilized saline (W/V:1/10) under aseptic conditions for microbiota count.

MRS and MRS supplemented with 1cysteine, respectively, were used isolation and enumeration of lactobacilli and bifidio-beteria. The plates of Lactobacillus and Bifidiobacterium were incubated anaerobic-ally at 37°C for 48h under anaerobic conditions (Taye, Y. et al., 2021). The isolated bacteria were identified by the morphology of colonies, microscopic examination and biochemical tests. Finally confirmed by PCR using a set of speciesspecific primers listed in Table (1). Each bacterial count was calculated from plates containing 30 to 300CFU (Levy-Pereira et Then we counted colonies, al.. 2018). transformed the colonycount to log and log CFU g⁻¹ was the final expression of total bacterial count (Adel et al., 2016).

CFU/g = (count of Colonies × Factor of Dilution) / Volume of Culture plated (ml) 3-Isolation and identification of Gram +ve and Gram -ve aerobic bacteria according to Manual of Clinical Microbiology: (Murray, P. R., 2003 and Versalovic, J., 2011)

In 9 ml buffered peptone water 1g of each sample were homogenized (High Media, India), then kept for overnight at 37- 42 °C in incubator and streaked onto a set of agars (Blood Agar, Nutrient agar, Mannitol Salt Agar, Bile azide esculin agar, MacConkey agar, Eosin and methylene blue agar (EMB), aeromonas pseudomonas selective media, Bisthmus sulphite agar and Xylose-Lysine-Deoxycholate (XLD)) to allow the growth of

bacteria under aerobic conditions for 24-48 hrs. The media are obtained from (Oxoid, UK) and (High Media, India). The isolated bacteria were identified by morphology of colonies, microscopic examination and biochemical tests (catalase, oxidase, coagulase, citrate, urease, TSI, IMVC and motility test) and confirmed by PCR using the mentioned species-specific primers in Table (1).

3-Molecular confirmation of isolated bacteria by PCR: (Ramadan H. et al 2016)

1-DNA extraction:

One mL of sterile distilled water was used for the suspension of 3 to 5 colonies of each sample. The resuspended bacterial cells were destroyed by heat for 15-20 minAt 100°C, and then were centrifuged at 15,000 rpm for 15 min. DNA obtained from supernatant was preserved at -20°C until used for PCR. The DNA concentration was detected using a nanodrop.

2- Amplification:

The thermal cycler (BioRadT100, USA) was used for PCR. The Amplification was prepared in a total of 20 µl volume. The PCR mixture was composed of: 12.3µl of free nuclease water, 2 µl of 10X Taq PCR Buffer, 1.6 µl of dNTP Mixture, 1 µl of forward Primer, reverse Primer was 1 µl of, 2 µl of DNA and 0.1 µl Taq DNA Polymerase. Different amplification conditions of the PCR reaction are made according to each primer pair.

3-Electrophoresis and imaging of PCR products:

Agarose gel (1.5%) stained with ethidium bromide in 1x TBE buffer was used for the detection of PCR products. The ladder was supplied from Fermentas, Thermo, Germany. The gel was visualized under ultraviolet light, imaged by a gel documentation system and computer software was used to analyze the data.

Table 1: Primers used for PCR in the study.

	Sequence (5' to 3')	Band size	Ref.	
Lactobacillus spp	TGGAAACAGRTGCTAATACCG	222 1	(Byun et al.,	
(16s rRNA)	GTCCATTGTGGAAGATTCCC	232 bp	2004)	
Bifidiobacterium	GGGTGGTAATGCCGGATG	500 los	(Kok et al.,	
spp (16s rRNA)	CCACCGTTACACCGGGAA	523 bp	1996)	
Salmonella spp	GCT GCG CGC GAA CGG CGA AG		(Cocolin <i>et al.</i> , 1998 &	
**	TCC CGG CAG AGT TCC CATT	389 bp	Ferretti, <i>et al.</i> ,	
(inv A gene)			2001)	
Pseudomonas spp	ATG GAA ATG CTG AAA TTC GGC	5041	(V4 -1 2004)	
(OprL gene)	CTT CTT CAG CTC GAC GCG ACG	504 bp	(Xu et al., 2004)	
Enterococci spp	TACTGACAAACCATTCATGATG	1101	(IV4 -1 1000)	
(16s rRNA)	AACTTCGTCACCAACGCGAAC	112 bp	(Ke <i>et al.</i> , 1999)	
S. aureus	GCGATTGATGGTGATACGGTT	270.1	I4/ 2002	
(nuc gene)	AGCCAAGCCTTGACGAACTAAAGC	270 bp	Louie <i>et al</i> .200	
E. colispp	CGATTCTGGAAATGGCAAAAG	720 ha	Huat al 2011	
(phoA gene)	CGTGATCAGCGGTGACTATGAC	720 bp	Hu <i>et al.</i> , 2011	

Nuc: nuclease, *phoA*: alkaline phosphatase, *OprL*: outer membrane proteins, *inv A*: invasion protein, bp:base pair

4-Invitro antibacterial effect of bamboo extract by Agar well diffusion assay: (Hossain*et al.*, 2022)

The Muller Hinton agar (MHA) plate surface wasinoculated by spreading a volume of the microbial inoculum over the entire agar surface. Then a circular hole (6–8 mm) was made aseptically into the agar using a sterile cork borer, and a suitable volume (20–100 µL) of 1% and 2% conc of the extract solution was applied to the well. The agar plate was then incubated under proper conditions (37 °C for 24h) then the zone of inhibition (ZOI) wasmeasured.

5-Statistical analysis:

One-way ANOVA was used to analyze the collected data and comparingthe means was made by the Tukey-Kramer test.The

differenceswere considered statistically significant when P < 0.05; and the results were reported as mean \pm SE.

RESULTS

1-Effect of dietary supplementation of bamboo leaf extract (BLE) Heterophile /Lymphocyte ratio of bill-trimmed mule ducks.

Heterophil-lymphocyte ratio was lower in birds of groups 3 &4 than in groups 1 and 2 (P < 0.05). Atthe same time, the group 1 birds had a lower heterophil lymphocyte ratio than the group2. There were no statistical differences in heterophil lymphocyte ratio between groups 3 &4 (P > 0.05) Table (2).

Table 2: Effect of dietary supplementation of bamboo leaf extract (BLE) Heterophil/Lymphocyte ratio of bill trimmed of mule duck.

Treatment	Group 1	Group 2	Group 3	Group 4	<i>P</i> -value
H/L ratio	0.303±0.028b	0.579±0.028 ^a	0.146±0.028°	0.072±0.028°	0.0001

 a,b,c Mean \pm SE with different superscripts in the same row differ (P < 0.05).

Group 1, No bill-trimming and fed only a basal diet;

Group 2, Bill-trimmed supplied only the basal diet;

Group 3: Bill-trimmed and fed the basal diet + 1 gr of bamboo extract.

and Group 4, Bill trimmed and fed the basal diet +2 gr of bamboo extract.

H/L ratio means heterophile lymphocyte ratio.

2-Estimation of total bacterial count of lactobacilli and bifidiobacteria of bill-trimmed mule duck:

Table (3) showed that bamboo shoots fed to groups 3 and 4 showed significant increasein Lactobacillus count, more than groups 1 and 2.

The count of lactobacilli in the bamboo-fed groups was 7.01 ± 0.02 and 7.31 ± 0.04 in groups 3 and 4, respectively. Whereas the groups 1 and 2 recorded 6.70 ± 0.07 and 6.63 ± 0.06 , respectively. However, Bifidiobacteria were not detected in all experiment groups

Table 3: Estimation of total bacterial count of lactobacilli and bifidiobacteria.

Treatment	Group 1	up 1 Group 2 Group 3		Group 4
Lactobacillus	6.70±0.07c	6.63±0.06c	7.01±0.02b	7.31±0.04a
Bifidobacteria	ND	ND	ND	ND

Data expressed as (mean ± SD) of 6 replicates. **ND:non-detected

Within the same column, means with different letters are significantly different ($p \le 0.05$).

Group 1, No bill-trimming and fed only a basal diet;

Group 2, Bill-trimmed supplied only the basal diet;

Group 3: Bill-trimmed and fed the basal diet + 1 gr of bamboo extract.

and Group 4, Bill trimmed and fed the basal diet +2 gr of bamboo extract

3-Isolation of both GramGram+ve and Gram -ve aerobic bacteria from bill-trimmed mule duck:

The pathogenic bacteria flourished in group 2, that exposed to bill trimming and fed the basal diet without extract supplementation. This can suggest the stress effect of bill trimming on the immune status of the bird. The bamboo leaf extract effects on isolated bacteria are presented in Tables (5-9). The isolated Gram -ve bacteria were *E.coli, Klebsiella spp, Salmonella spp, Proteus spp* and *Pseudomonas spp* and Gram +ve bacteria were *staphylococci spp and enterococci spp*.

The result of bacterial isolation showed variation between groups (P < 0.05) in Gram

negative bacteria. It was noticed that pathogenic Gram-negative bacteria (except E. coli) as Pseudomonas, Proteus and Salmonella were less in groups 3&4 than the groups 1&2, which suggests the antibacterial effect of bamboo leaf extract on Gram-ve bacteria, even with the lowest amount in group 3. However, no significant differences (P>0.05) were presented in isolated Gram positive bacteria between all the groups that suggest the absence of antibacterial effect of bamboo leaf extract on Gram +ve bacteria (S.aureus, S.epidermidis, enterococci) isolated from all birds in all groups by nearly percent that may be due to absence of antibacterial activity or the need for raising the dose of bamboo extract.

Table 4: Effect of dietary supplementation of *bamboo* leaf extract (BLE) on the number of isolated Gram +ve and Gram -ve bacteria from bill-trimmed mule duck.

Treatment	Group 1	Group 2	Group 3	Group 4	<i>P</i> -value
No. of isolated Gm+ve spp.	2±0.23	1.83±0.23	2.17±0.23	2.17±0.23	0.7065
No. of isolated Gm-ve spp.	2±0.42ab	2.83±0.42a	2.17 ± 0.42^{ab}	1±0.42b	0.0463

 $^{^{}a,b,ab}$ Mean± SE with different superscripts in the same row differ (P < 0.05).

Table 5: Isolatedbacteria from ducks in group 1.

Sampleno.	Gm +ve bacteria	Gm -ve bacteria E. coli spp.	
N1	S. aureus Enterococcus spp.		
N2	S. aureus Enterococcusspp.	E.coli spp. Klebsiella	
N3	S. epidermidis Enterococcusspp	E.coli spp. Klebsiella	
N4	S. aureus Enterococcusspp S. aureus	E.coli spp. Klebsiella	
N5	Enterococcusspp S. aureus	E.coli spp. Pseudomonasspp	
N6	Enterococcusspp.	E.coli spp.	

Group 1, No bill-trimming and fed only a basal diet.

Table 6: Isolated bacteria from ducks in group 2.

Sample no.	Gm+ve bacteria	Gm-ve bacteria
C 1	S. aureus Enterococcus spp.	E. coli spp. Pseudomonas spp Salmonella spp.
C 2	S. aureus Enterococcus spp.	E. coli spp. Proteus spp. Salmonella spp
С 3	S. aureus Enterococcus spp.	E. coli spp. Klebsiella spp.
C4	S. aureus Enterococcus spp.	E. coli spp.
C 5	S. aureus Enterococcus spp.	E. coli spp. Pseudomonas spp. Proteus spp
C 6	S. aureus	E. coli spp. Klebsiella spp. Pseudomonas spp Proteus spp. Salmonella spp

Group 2, Bill-trimmed and supplied only the basal diet;

Group 1, No bill-trimming and fed only a basal diet;

Group 2, Bill-trimmed and fed only the basal diet;

Group 3: Bill-trimmed and fed the basal diet + 1 g of bamboo extract.

and Group 4, Bill trimmed and fed the basal diet +2 g of bamboo extract.

Table 7: Isolated bacteria from ducks in group 3.

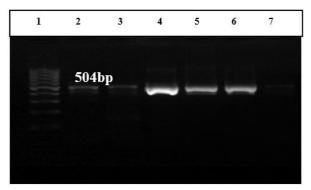
Sample no.	Gm+ve bacteria	Gm-ve bacteria
L 1	S. aureus Enterococcus spp.	E. coli spp.
L 2	S. aureus Enterococcus spp.	E. coli spp. Klebsiella spp Proteus spp. Salmonella spp
L 3	S. aureus Enterococcus spp.	E. coli spp. Proteus spp
L4	S. epidermidis Enterococcus spp.	E. coli spp.
L 5	S. aureus Enterococcus spp.	E. coli spp. Klebsiella spp Pseudomonas spp. Proteus spp
L6	S. aureus S. epidermidis Enterococcus spp	Klebsiella spp.

Group 3: Bill-trimmed and fed the basal diet + 1 g of bamboo extract.

Table 8: Isolated bacteria from ducks in group 4.

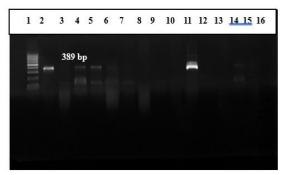
Sample no.	Gm+ve bacteria	Gm-ve bacteria
H 1	S. aureus Enterococcus spp.	E. coli spp.
Н 2	S. aureus S. epidermidis Enterococcus spp.	E. coli spp.
Н 3	S. aureus S. epidermidis Enterococcus spp.	E. coli spp.
H4	S. aureus	E. coli spp.
Н 5	S. aureus S. epidermidis Enterococcus spp.	E. coli spp.
Н6	Enterococcus spp.	Klebsiella spp.

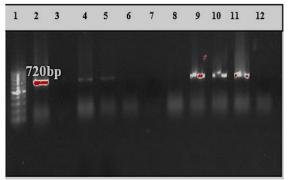
Group4: Bill trimmed and fed the basal diet +2 g of bamboo extract


4-Molecular confirmation of isolated bacteria by PCR:

Using the previously mentioned primers in Table 1 for confirmation of *Lactobacilli*, *Bifidiobacteria*, *S.aureus*, *Salmonella spp*,

Pseudomonas spp, E.coli and Enterococci, PCR yielded different products with different size bands specific for each primer that were observed in gel documentation figures (1-6).


Fig1: Agarose gel electrophoresis of amplified 16srRNA gene of lactobacilli,: Lanes 1: Marker lane 100-2000 bp DNA ladder; Lanes 1-10: positive amplification of 232 bp of 16srRNA gene, lane 11: positive control and lane 12: negative control


Fig3: Agarose gel electrophoresis of amplified *oprL gene of Pseudomonas*,: Lanes 1: Marker lane 100-1000 bp DNA ladder; Lanes 1-7positive amplification of 504 bp of *OprL* gene.

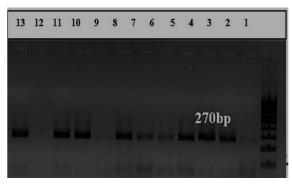
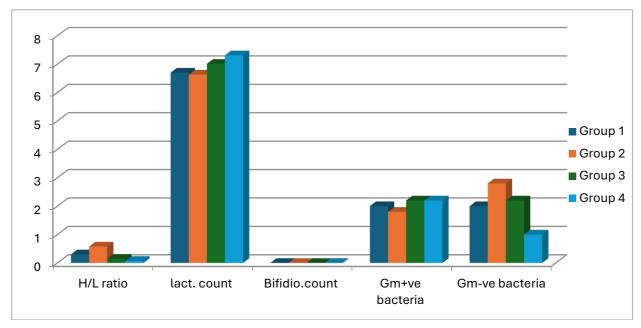

Fig5: Agarose gel electrophoresis of amplified 16srRNA gene of Enterococci,: Lanes 1: Marker lane 100-1000 bp DNA ladder; Lanes 2-7: positive amplification of 112 bp of 16srRNA of Enterococci gene; lane 8:positive control and lane 9;negative control.

Fig2: Agarose gel electrophoresis of amplified *invA gene of Salmonella spp*: Lanes 1: Marker lane 100-1000 bp DNA ladder; Lane2: positive control and Lane 3: negative control and lanes (4,5,11&14): positive amplification of 389 bp of *invA* gene.

Fig4: Agarose gel electrophoresis of amplified *PhoA gene of E.coli*: Lanes 1: Marker lane 100-1000 bp DNA ladder; Lanes 2: positive control and lane 3: negative control; lanes (4,5,9,10,11) positive amplification of 720 bp of *PhoA* gene.

Fig6: Agarose gel electrophoresis of amplified *nuc gene of S.aureus*: Lanes 1: Marker lane 100-1000 bp DNA ladder; Lanes (2-8,10&11): positive amplification of 270 bp of *nuc* gene; lane 12: negative control and lane 13:positive control.

5-Invitro antibacterial effect of bamboo extract by Agar well diffusion assay: (Hossain *et al.*, 2022)


The antibacterial effect of bamboo extract against E.coli, Pseudomonas, Salmonella,

S.aureus, S.epidermidis and enterococci at conc of 1% and 2% showing an antibacterial effect against Gram-negative bacteria (Table 9).

Table 9:The ZOI 1% and 2% concof the extract against both isolated gm-ve and GM+ve bacteria.

ZOI/conc.	E. coli	Klebsiella	Salmonella spp.	Pseudomonas spp.	S. aureus	S. epidermidis	Entero- cocci
1%	22 mm ± 1	31 mm ± 2	31 mm ± 1	$\begin{array}{c} 30 \text{ mm} \\ \pm 2 \end{array}$	7mm ± 0.5	9 mm ± 1	13 mm ± 0.5
2%	27 mm ± 1	33 mm ± 1	35mm ± 1.5	34 mm ± 2.5	11 mm ± 1	14 mm ± 1	18 mm ± 2

All of the results of the effect of dietary supplementation of bamboo leaf extract on H/L ratio, lactic acid count and pathogenic bacteria in bill-trimmed mule duck were summarized in Figure 7.

Fig 7:Effect of dietary supplementation of bamboo leaf extract on H/L ratio, lactica acid count (lactobacilli and bifidiobacteria) and pathogenic bacteria (Gram positive and Gram negative) in bill-trimmed mule duck. (Group 1, No bill-trimming and fed only a basal diet; Group 2, Bill-trimmed supplied only with the basal diet; Group 3: Bill-trimmed and fed the basal diet + 1 g of bamboo extract. and Group 4, Bill trimmed and fed the basal diet +2 gr of bamboo extract.)

DISCUSSION

Beak trimming was considered as an important step of an inclusive strategy toreduce aggressive peck cannibalism and death in poultry, However, it causes stress due to pain that has been shown to cause inflammation and change in intestinal bacteria profile that affect birds and lead to immune suppression, influence of diseases

and finally death resulted in economic losses (Schwean-Lardner *et al.*, 2016; Riber & Hinrichsen, 2017; Ranjan *et al.*, 2019 and Li *et al.*, 2020).

Recent studies haverecorded that bamboo leaf extract food additiveswerea promising natural feed supplement which enhances immune-response, antioxidant capacity

regulation (Wedleret al., 2014; Lodhi et al., 2016 and Ge et al., 2020). Additionally, extract bamboo leaf has powerful antibacterial action and can be used to treat a variety of bacterial infections. Moreover, it improves the beneficial gut bacteria community by acting as substrates due to the high content of polysaccharides, which promote the fermentation process in the colon by increasing the Lactobacillus spp and Bifidobacterium spp. number (Tanka et al., 2011 &2013; Durgesh & Wasnik, 2014 and Vasave et al., 2019).

The current study focused on the outcomes of usingthe bamboo leaf extract as an antibacterial and prebiotic feed additive that increases the disease resistance of birds, improves the beneficial bacteria, and supports immune response.

Quantification of leucocytes is the most uncomplicated measure to evaluate the chicken's robustness and immunity status using blood films (Ken and Evans 2000). The most abundant immune cells in avian blood are heterophils and lymphocytes (Palacios et al., 2009 and Lee, 2006;). The heterophils participate mainly in natural and adaptive defence mechanisms to stand against pathogenic microbes. and lymphocytes are responsible for antibodyproduction and cellular immunity (Wigley, 2013).

The heterophil to lymphocyte ratio is related to the potency of innate and adaptive avian immunity (Krams *et al.*, 2012 and MacColl *et al.*, 2017).

Thiam et al. (2022a and 2022b) showed that H/L was an indicator to select the resistant birds to Salmonella typhimurium and Salmonella Enteritidis in chickens. Thiam et al. (2021) mentioned that the H/L was correlated with Salmonella enteritidis clearance through the intestinal immune response and the fowls with low H/L had improved intestinal immune defense mechanism and observed a great relation of

the H/L ratio with intestinal expression of IFN- γ and IL-1 β , which allow to predict the intestinal immune status in vivo in fowls and considered the H/L ratio a trait for bird disease resistance. The level of H/L ratio could cause a decline in antibody production and immune suppression through high levels of secreted corticosterone (Rouhalamini & Salarmoini, 2014). In the current study, the Heterophil/lymphocyte ratio was lower in the bamboo leaf extract-fed groups than in groups 1 and 2 (P<0.05). This agreed with El-Kazaz (2015), who reported that the H/L ratio in non-bill-trimmed ducks was lower than bill-trimmed ducks. These results can attributed to the antioxidant antagonistic effect to inflammation of bamboo leaf extract, which was confirmed by Hu et al. (2000), Guo et al. (2008) and Ni et al.(2013). On the contrary, our result disagreed with Dennis et al.(2009) and El Shafaei et al.(2017), who revealed that there wasnosignificant difference between the billtrimmed ducks and non-trimmed birds in heterophil lymphocyte ratio.

Bamboo leaf extract is a potential source of polysaccharides that possess prebiotic properties, whichstimulate the multiplication of Lactobacillus spp. and Bifidobacterium spp. (Azmi et al., 2012). In the present study, groups 3 & 4 (supplied with bamboo extract) showed significant differences (P<0.05) in Lactobacillus count than groups 1 and 2, which recorded a decrease in the total count of Lactobacillus. However, Bifidiobacteria were not detected in all experiment groups. The prebiotic activity of bamboo was recorded in different studies (Azmi et al., 2012; He et al., 2016 and Chen et al., 2018) that agree with our result regarding lactobacilli and disagree with the results of bifidiobeteria.

Pathogenic bacteria are implicated inmajor economic losses in duck breeding. The mortality rates in ducks due to bacterial diseases are higher than viral diseases that have been expanded worldwide (Friend, 1999 and Enany, 2018). Various studies detected the in vitro antibacterial activity of

the bamboo plant to fight Gram+ve and Gram-ve bacteria (Cushnie et al., 2014; Mabhiza et al., 2016 and Ambika & Rajagopal, 2017). Interestingly, in this study, the Gram -ve bacteria (except E. coli) were more less in the groups supplemented with bamboo extract. While the Gram +ve bacteria S.epidermidis (S.aureus. enterococci) were isolated from all groups without a significant difference (P>0.05). The present result of isolated bacteria and invitro antibacterial test showed activity against Pseudomonas spp, Klebsiella and Salmonella spp. (Table 9) could suggest the antibacterial effect against Gram -ve bacteria more than Gram +ve bacteria. Recent studies of the antibacterial effect of bamboo in vitro supported our results as they showed that the bamboo species are more efficacious against Gram-ve bacteria than against Gram+ve bacteria (Gokarneshan &Khan, Anselmo-Moreira et al., 2021 and Angeline et al., 2021). Anselmo-Moreira et al.(2021) indicated that the higher lipophilicity of the studied bamboo is related to the antibacterial constituents and that they are more effective against Gram-negative bacteria. Moreover, high content of flavonoids operates as an antibacterial agent byinhibiting the production of nucleic acid, energy metabolism of bacteria and damaging of the cytoplasmic membrane (Xie et al., 2014). Concerning the isolation of the *E. coli and S.* aureus and S. epidermis in the current study, the Bamboo leaf extract supplemented groups did not show an antibacterial action that can kill E. coli and S. aureus and S. epidermis. These results agreed with some studies that proved that inert bamboo fiber was inactive against S. aureus and E. coli (Xi and Qin, 2012; Tanaka et al., 2013 and Gokarneshan &Khan. 2020). Different results of antibacterial activity confirmed by various studies (Singh et al., 2010; Zhang et al., 2010 and Owolabi & Lajide, 2015), which could be due to differences in the method of extraction,type of extract and the hygroscopicity of the extract (Tanaka et al., 2013;Gokarneshan & khan, 2020). It was reported that the extracts of bamboo leaves in ethanol and aqueous

phases were not effective against species of Staphylococcus (S. aureus, S. subfava and S.epidermis), and Gram-ve bacteria (Parekh and Chanda, 2008). However, Naidu (2012) and Singh et al.(2012) observed that the methanol extract of bamboo plant species could be a bactericidal agent for E. coli, P. aeruginosa, S. aureus, and S. epidermis. Finally, a recent study highlighted the effect of the concentration of the dose on the antibacterial effect as was detected that the methanol extract of bamboo plant species did not have effect at dose of 10 mg/ml against E. coli and S. aureus and began to give moderate effect from concentration of 20 mg/ml which is directly proportional to the increase in the dose (Angeline et al., 2021).

CONCLUSION

The current results imply that the bamboo leaf extracts could be used as a natural feed additive candidate due to potent antibacterial activity, prebiotic effect and moreover enhancing immunity. Other medicinal applications and future research are recommended for studying the factors that determine the antibacterial property and the roles of the extract of bamboo leaves on duck health, especially with the increasing demand for organic animal products without antibiotics and synthetic chemicals.

REFERENCES

Abdelhameed, R.F.; Nafie, M.S.; Ibrahim, A.K.; Yamada, K.; Abdel-Kader, M.S.; Ibrahim, A.K. and Habib, E.S. (2020): Cytotoxic, apoptosis-inducing activities, and molecular docking of a new sterol from bamboo shoot skin Phyllostachys heterocycla var. pubescens. Molecules, 25(23), 5650.

Abdel-Hamid, S. and Abdel-Fattah, E.M. (2020): Effect of different dietary protein levels on some behavioral patterns and productive performance of muscovy duck. Advances in Animal and Veterinary Sciences 8: 661–667.

- Adel, M.; Yeganeh, S.; Dadar, M.; Sakai, M. and Dawood, M.A.O. (2016): Effects of dietary Spirulina platensis on growth performance, humoral and mucosal immune responses and disease resistance in juvenile great sturgeon (Huso huso Linnaeus, 1754). Fish & shellfish immunology, 56, 436-444.
- Alagawany, M.; Abd El-Hack, M.E.; Farag, M.R.; Sachan, S.; Karthik, K. and Dhama, K.(2018): The use of probiotics as eco-friendly alternatives for antibiotics in poultry nutrition. Environmental Science and Pollution Research 25: 10611–10618.
- Amaliah, ZZN.; Bahri S. and Amelia, P. (2018): Isolation and characterization of lactic acid bacteria from soybean soaking wastewater. Jurnal Fitofarmaka Indonesia, 5(1): 253-257.
- Ambika, K. and Rajagopal, B. (2017): In Vitro Antimicrobial and Antiproliferative Activity of Bambusa vulgaris International Journal of Pharmaceutical and Pharmaceutical Research 9: 10 22.
- Ambika, K. and Rajagopal, B. (2017): In Vitro Antimicrobial and Antiproliferative Activity of Bambusa vulgaris International Journal of Pharmaceutical and Pharmaceutical Research 9: 10 22.
- American veterinary Medical Association (2010): Literature review on the welfare implications of beak trimming.
- Angeline, S.; Emmanuel, C.; Nonglait, R. and Suting, B. (2021): Antimicrobial and antioxidant activity of fermented bamboo shoot dendrocalamus hamiltonii. Current Trends in Biotechnology and Pharmacy 15:115–123.
- Anselmo-Moreira, F.; Gagliano, J.; Sala-Carvalho, W.R.; Grombone-Guaratini, M.T. and Furlan, C.M. (2021):

 Antibacterial potential of extracts from different Brazilian bamboo species. Brazilian Journal of Botany, 44(2), 309-315.

- Azmi, A.F.M.N.; Mustafa, S.; Hashim, D.M. and Manap, Y.A. (2012): Prebiotic activity of polysaccharides extracted from Gigantochloa levis (Buluh beting) shoots. Molecules, 17(2), 1635-1651.
- Ben, Y.; Fu, C.; Hu, M.; Liu, L.; Wong, M.H. and Zheng, C. (2019): Human health risk assessment of antibiotic resistance associated with antibiotic residues in the environment: A review. Environmental Research 169: 483–493.
- Byun, R.; Nadkarni, M.A.; Chhour, K.-L.; Martin, F.E.; Jacques, N.A. and Hunter, N. (2004): Quantitative analysis of diverse Lactobacillus species present in advanced dental caries. Journal of clinical microbiology, 42(7), 3128-3136.
- Campo, JL. and Davila, SG. (2002): Estimation of heritability for heterophil:lymphocyte ratio in chickens by restricted maximum likelihood. Effects of age, sex, and crossing. Poult. Sci. 81: 1448-1453.
- Chen, G.; Chen, K.; Zhang, R.; Chen, X.; Hu, P. and Kan, J. (2018):
 Polysaccharides from bamboo shoots processing by-products: New insight into extraction and characterization.
- Coates, W.; Ralph, A. and County, S. (2000): Raising duck in small flocks. Review, Journal of Poultry Science 42:1–14.
- Cocolin, L.; Manzano, M.; Cantoni, C. and Comi, G. (1998): Use of Polymerase Chain Salmonella Typhimurium in food. J Appl Microbiol.;85:673–7.
- Cushnie, T.; Cushnie, B. and Lamb, A. (2014): Alkaloids: An overview of their antibacterial, antibiotic-enhancing and antivirulence activities. International Journal of Antimicrobial Agents 44: 377–386.
- Dennis, R.; Fahey, A. and Cheng, H.W. (2009): Infrared beak treatment method compared with conventional hotblade trimming in laying hens. Poultry Science 88:38–43.
- Developmental and Comparative Immunology, 33, pp. 456-463

- Durgesh, D. and Wasnik, P.M. (2014):
 Antibacterial Activity of Bambusa bambose L. against Multiple Drug Resistant (MDR) Bacteria Isolated from Clinical Specimen. International Journal of Pharmaceutical Sciences 25: 215–218.
- El-Kazaz, S.E. (2015): Bahviour and welfare of quail due to some farm applicable managerial practices. Ph.D thesis, Faculty of Veterinary Medicine, Alexandria University, Egypt.
- El-shafaei, H.E.; Sharaf, M.; Rashed, R. and El-kazaz, S. (2017): Consequences of Bill Trimming on Behavior, Welfare and Performance of Muscovy ducks. Alexandria Journal of Veterinary Sciences 55:124–128.
- Enany, M.E.; Algammal, A.M.; Shagar, G.I.; Hanora, A.M.; Elfeil, W.K. and Elshaffy, N.M. (2018): Molecular typing and evaluation of sidr honey inhibitory effect on virulence genes of MRSA strains isolated from catfish in Egypt. Pakistan Journal of Pharmaceutical Sciences 31: 1865–1870.
- Ferretti, R.; Mannazzu, I.; Cocolin, L, Comi, G. and Clementi, F. (2001): Twelve-Hour PCR BasedMethod for Detection of Salmonella spp. in Food. Appl Environ Microbiol.;67:977–8.
- Fouad, A.M.; Abo-Al-Ela, H.G.; Moneeb, R.H.; Alfons, M.S.; Salah, A.S. and Yusuf, S. (2025): Impact of Bambusa vulgaris-supplemented diet on Nile tilapia challenged with Pseudomonas putida: Hematological, immune, and oxidative responses. Fish & Shellfish Immunology, 157, 110102. Friend, M. 1999. Field Manual of Wildlife Diseases: General Field Procedures and Diseases of Birds. Biological Resources Division Information and Technology Report: 207–214.
- Fulton, J.E. (2004): Selection for avian immune response: a commercial breeding company challenge. Poultry science, 83(4), 658-661.
- Gang, S.; Kong, F.; Xu, D.; Yin, L.; He, C.; Lin, G.; Fu, H.; Wang, K.; Tian, Y. and

- Zhao, X. (2020): Bamboo leaf favone changed the community of cecum microbiota and improved the immune function in broilers. Scientific Reports 10: 1–10.
- García-Lafuente, A.; Guillamón, E.; Villares, A.; Rostagno, M.A. and Martínez, J.A. (2009): Flavonoids as anti-infammatory agents: Implications in cancer and cardiovascular disease. Inflammation Research 58: 537–552.
- Ge, Q.; Li, H.; Wu, P.; Sha, R.; Xiao, Z. and Dai, J. (2020):Investigation of physicochemical properties and antioxidant activity of ultrafine bamboo leaf powder prepared by ball milling. Journal of Food Processing and Preservation 44:1–9.
- Gokarneshan, N. and khan, A. (2020):
 Antimicrobial properties of bamboo fibres. Biomedical Journal of Scientific and Technical Research 32: 25299–25302.
- Guo, X.F.; Yue, Y.D.; Meng, Z.F., Tang, F., Wang, J.; Yao, X.; Xun, H. and Sun, J. (2010): Detection of antioxidative capacity of bamboo leaf extract by scavenging hydroxyl free radical. Spectroscopy and Spectral Analysis 30:508–511.
- Gustafson, L.; Cheng, H.W.; Garner, J.P.; Pajor, E.A. and Mench, J.A. (2007): The effects of different bill-trimming methods on the welfare of Pekin ducks. Poultry Science 86: 1831–1839.
- He, M.X.; Wang, J.L.; Qin, H.; Shui, Z.X.; Zhu, Q.L.and Wu, B. (2014): Bamboo: a new source of carbohydrate for bio refinery. Carbohydrate Polymers 111: 645–654.
- He, S.D.; Wang, X.; Zhang, Y.; Wang, J.; Sun, H.J. and Wang, J.H. (2016): Isolation and prebiotic activity of water-soluble polysaccharides fractions from the bamboo shoots (Phyllostachys praecox). Carbohydrate Polymers, 151, 295–304.
- Hosny, F.A. (2006): Poultry Sector Country Review Bangladesh. FAO Animal Production and Health Livestock Country Reviews.

- Hossain, ML.; Lim, LY.; Hammer, K.; Hettiarachchi, D. and Locher, C.(2022): A Review of Commonly Used Methodologies for Assessing the Antibacterial Activity of Honey and Honey Products. Antibiotics., 11(7):975.
- Hu, C.; Zhang, Y. and Kitts, D.D. (2000): Evaluation of antioxidant and prooxidant activities of bamboo Phyllostachys nigra var. henonis leaf extract in vitro. Journal of Agricultural and Food Chemistry 48: 3170–3176.
- Hu, Q.; Tu, J.; Han, X.; Zhu, Y.; Ding, C. and Yu, S. (2011): Development of multiplex PCR assay for rapid detection of Riemerella anatipestifer, Escherichia coli, and Salmonella enterica simultaneously from ducks. Journal of Microbiological Methods 87 (2011) 64–69.
- KA Lee (2006): Linking immune defenses and life history at the levels of the individual and the species Integrative and Comparative Biology, 46 pp. 1000-1015.
- Ke, D.; Picard, F.O.J.; Martineau, F., M nard, C.; Roy, P.H.; Ouellette, M. and Bergeron, M.G. (1999): Development of a PCR assay for rapid detection of enterococci. Journal of clinical microbiology, 37(11), 3497-3503.
- Kim, N.; Nam, R.; Ruy,S.Y.; Kim, K.J.; Mand, J. and Jeong, H.J. (2016): Effectof bamboo salt and its component, hydrogen sulfide, on enhancing immunity. Molecular Medicine Reports 14: 1673–1680.
- Kim, S.H.; Lee, I.C.; Kang, S.S. and Moon, C. (2011): Effects of bamboo charcoal and bamboo leaf Supplementation on Performance and meat quality in chickens. Journal of Life Science 21: 805–810.
- Krams, I.; Vrublevska, J.; Cirule, D.; Kivleniece, I.; Krama, T.; Rantala, M.J. and Hõrak, P. (2012): Heterophil/lymphocyte ratios predict the magnitude of humoral immune response to a novel antigen in great tits (Parus

- major). Comparative Biochemistry and Physiology Part A, 161, 422–428.
- Kumari, P.; Gupta, M.K.; Ranjan, R.; Singh, K.K.: Yadava, R.: Levy-Pereira, N.: Yasui, G.S.; Cardozo, M.V., Dias Neto, J.; Farias, T.H.V.; Sakabe, R. and Pilarski, F. (2018): Immunostimulation and increase of intestinal lactic acid bacteria with dietary mannan-oligosaccharide in Nile tilapia juveniles. Revista Zootecnia, Brasileira de 47, e20170006.
- Kumari, P.; Gupta, M.K.; Ranjan, R.; Singh, K.K. and Yadava, R.Y. (2007):
 Curcuma longa as feed additive in broiler birds and its patho physiological effects. Indian Journal of Experimental Biology 45: 272–277.
- Li, J.; Chen, H.; Dai, C.; Sa, R.; Wang, Z. and Wang, J. (2020): Effects of beak trimming on the performance, beak length, behavior, and carcass traits of a local broiler breed reared in battery cages. Animal Science Journal 91:1–7.
- Li, J.; Chen, H.; Dai, C.; Sa, R.; Wang, Z. and Wang, J. (2020): Effects of beak trimming on the performance, beak length, behavior, and carcass traits of a local broiler breed reared in battery cages. Animal Science Journal 91:1–7.
- Lodhi, S.; Jain, A.P.; Rai, G. and Yadav A.K. (2016): Preliminary investigation for wound healing and anti-inflammatory effects of Bambusa vulgaris leaves in rats: Journal of Ayurveda and Integrative Medicine 7: 14–22.
- Louie, L.; Goodfellow, J.; Mathieu, P.; Glatt, A.; Louie, M. and Simor, A.E. (2002): Rapid detection of methicillinresistant staphylococci from blood culture bottles by using a multiplex PCR assay. J. Clin. Microbiol.;40(8):2786–2790. doi: 10.1128/JCM.40.8.2786-2790.2002.
- Palacios, M. G.; Cunnick, J. E.; Vleck, D. and Vleck, C. M. (2009): Ontogeny of innate and adaptive immune defense components in free-living tree swallows, Tachycineta bicolor

- Mabhiza. *D*.: Chetemerere, Т. and Mukanganyama, S. (2016): Antibacterial Properties of Alkaloid Extracts from Callistemon citrinus and Vernonia adoensis against Staphylococcus aureus and Pseudomonas aeruginosa. International Journal of Medicinal Chemistry 7: 1-11.
- MacColl. E.; Vanesky, *K.*; *Buck*, J.A.; Dudek, B.M.; Eagles-Smith, C.A.; Heath, and Downs. J.A.*J. (2017):* Correlates of immune defenses in golden eagle nestlings. Journal of Experimental Zoology Part A, 327, 243–253.
- Matoq, S.; Darwish, M.H.; Mohammed, A.A.; Yusuf, S. and Negm, E.A. (2024): Effect of dietary supplementation of bamboo leaves extract on behaviors, performance and some blood parameters of bill-trimmed mule ducks. Journal of Advanced Veterinary Research, 14(7), 1276-1281.
- Murray, P.R.; Baron, E.J.; Jorgensen, J.H.; Pfaller, M.A. and Yolken, R.H. (2003): Manual of clinical microbiology: Volumes 1 and 2.
- Ken, N. and Evans, M. R. (2000): Ecological immunology: Life history trade-offs and immune defense in birds Behavioral Ecology, 8, pp. 19-26.
- Naidu, M.A. (2012): Antimicrobial activity of methanolic extracts of Bambooshoots (Bambusa vulgaris). International Journal Of Pharmaceutical and Biological Archive 3: 1547–1549.
- Nair, D.V.T.; Venkitanarayanan, K. and Johny, A.K. (2018): Antibiotic-resistant Salmonella in the food supply and the potential role of antibiotic alternatives for control. Foods 7:167.
- Ni, Q.; Xu, G.; Gao, Q.; Yang, D. and Zhang, Y. (2013): Evaluation of reactive oxygen species scavenging activities and DNA damageprevention effect of Pleioblastus kongosanensis f. aureostriatusleaf extract by chemiluminescence assay. The Journal

- of Photochemistry and Photobiology 128: 115–121.
- Owolabi, M.S. and Lajide, L. (2015):
 Preliminary phytochemical screening and antimicrobial activity of crude extracts of Bambusa vulgaris Schrad.
 American Journal of Essential Oils and Natural Products 3: 3–5.
- Parekh, J. and Chanda, S.V. (2008):
 Antibacterial activity of aqueous and alcoholic extracts of 34 Indian medicinal plants against some Staphylococcusspecies. The Turkish Journal of Biology 32: 63–71.
- Parga, M.L.; MSc, S.; Mrcv, H.; Pend,l. and Neil, A. (2001): The effect of transport on hematologic parameters in trained and untrained harris's hawks (parabuteo unicinctus) and peregrine falcons (falco peregrinus). Journal of Avian Medicine and Surgery 15: 162–169.
- Park, E.J. and Jhon, D.Y. (2010): The antioxidant, angiotensin converting enzyme inhibition activity, and phenolic compounds of bamboo shoot extracts. LWT Food Science and Technology 43: 655–659.
- Ramadan, H.; Awad, A. and Ateya, A. (2016): Detection of phenotypes, virulence genes and phylotypes of avian pathogenic and human diarrheagenic Escherichia coli in Egypt. JIDC.;10(6):584–91.
- Ranjan, A.; Sinha, R.; Devi, S. and Tiwari, S. (2019): Effect of Heat Stress on Poultry Production and their Managemental Approaches. International Journal of Current Microbiology and Applied
- Riber, A. and Hinrichsen, L. (2017): Welfare consequences of omitting beak trimming in barn Layers. Frontiers in Veterinary Science 4: 1–7.
- Rouhalamini, S.M. and Salarmoini, M. (2014): Effect of zinc sulfate and organic chromium supplementation on the performance, body temperature, carcass characteristics, tibia ash and serum biochemical parameters of

- Japanese quails under heat stress conditions. Livestock science 2: 9–18.
- Sari, M.; Onk, K.; Isik, S.; Tilki, M. and Tufan, T. (2013): Effects of housing system, slaughter age, and sex on slaughter and carcass traits of native Turkish duck. Turkish Journal of Veterinary and Animal Sciences 37: 694–700.
- Schwean-Lardner, K.; Annett-Christianson, C.B.; Rajendram, J. and Classen, H.L. (2016): Does age of hot-blade trimming impact the performance and welfare of 2 strains of White Leghorn hens. Journal of Applied Poultry Research 25: 547–560.
- Sieuwerts, S.;De Bok, F.A.M.; Mols, E.;De Vos, W.M. and van HylckamaVlieg, J.E.T. (2008): A simple and fast method for determining colony forming units. Letters in Applied Microbiology 47: 275–278.
- Singh, S.A.; Bora, T.C. and Singh, N.R. (2012): Preliminary phytochemical analysis and antimicrobial potential of fermented Bambusa balcooa shoots. The Bioscan 7: 391–394.
- Singh, V.K.; Shukla, R.; Satish, V.; Kumar, S.; Gupta, S. and Mishra, A. (2010):
 Antibacterial activity of leaves of bamboo. international journal of pharmacology 2: 1–5.
- Symonds, E.L.; O'Mahony, C.; Lapthorne, S.; O'Mahony, D.; Sharry, J.M. and O'Mahony, L. (2012): Bifidobacterium infantis 35624 protects against salmonella-induced reductions in digestive enzyme activity in mice by attenuation of the host inflammatory response. Clinical and Translational Gastroenterology, 3(e15), 1–10.
- Tanaka, A.; Kim, H.J.; Shimizu, K. and Kondo, R. (2011): Antibacterial activity of moso bamboo shoot skin (Phyllostachys pubescens) against Staphylococcus aureus. Journal of Wood Science, 57: 542–544.
- Tanaka, A.; Shimizu, K. and Kondo, R. (2013): Antibacterial compounds from shoot skins of moso bamboo

- (Phyllostachys pubescens). Journal of Wood Science 59: 155–159.
- Taye, Y.; Degu, T.; Fesseha, H. and Mathewos, M. (2021): Isolation and identification of lactic acid bacteria from cow milk and milk products. Sci World J. In.
- Thiam, M.; Barreto Sánchez, A.L.; Zhang, J.; Wen, J.; Zhao, G. and Wang, Q. (2022a): Investigation of the potential of heterophil/lymphocyte ratio as a biomarker to predict colonization resistance and inflammatory response to Salmonella Enteritidis infection in chicken. Pathogens, 11(1), 72.
- Thiam, M.; Wang, Q.; Barreto Sánchezm, AL.; Zhang, J.; Ding, J.; Wang, H.; Zhang, Q.; Zhang, N.; Wang, J.; Li, O.; Wen, J. and Zhao, G.(2022b): Heterophil/Lymphocyte Ratio Level Modulates Salmonella Resistance, Cecal Microbiota Composition and Capacity Functional in Chicken. Front Immunol. 13:816689. 10.3389/fimmu.2022.816689. doi: PMID: 35493492; PMCID: PMC9047862.
- Thiam, M.; Barreto Sánchez, A.L.; Zhang, J.; Zheng, M.; Wen, J.; Zhao, G. and Wang, Q. (2021): Association of Heterophil/Lymphocyte Ratio with Intestinal Barrier Function and Immune Response to Salmonella enteritidis Infection in Chicken. Animals, 11(12), 3498
- Vasave, H.; Wasule, D. and Bobade, R. (2019):Bamboo's extract for rejuvenating skin. International Journal of Scientific Development and Research 4: 138–143.
- Versalovic, J. (Ed.). (2011):Manual of clinical microbiology (Vol. 1).

 American Society for Microbiology Press.
- Wedler, J.; Daubitz, T.; Schlotterbeck, G. and Butterweck., V. (2014): In vitro anti-inflammatory and wound-healing potential of a Phyllostachys edulis leaf extract identification of isoorientin as an active compound. Planta Medica 80: 78–84.

- Wigley, P. (2013): Immunity to bacterial infection in the chicken. Developmental and Comparative Immunology 41: 413–417.
- Wu, W.; Hu, J.; Gao, H.; Chen, H.; Fang, X. and Mu, H. (2020): The potential cholesterol-lowering and prebiotic effects of bamboo shoot dietary fibers and their structural characteristics. Food chemistry 332: 1–32.
- Xi, L. and Qin, D. (2012): The antibacterial performance of natural bamboo fiber and its influencing factors. Wood Science and Technology 55: 27–31.
- Xie, Y.; Yang, W.; Tang, F.; Chen, X. and Ren, L. (2014): Antibacterial Activities of Flavonoids: Structure-Activity Relationship and Mechanism. Current Medicinal Chemistry 22: 132–49.
- Xu, J.; Moore, J.E.; Murphy, P.G.; Millar, B.C. and Elborn, J.S. (2004): Early detection of Pseudomonas aeruginosa comparison of conventional versus molecular (PCR) detection directly from adult patients with cystic fibrosis (CF). Annals of

- Clinical Microbiology and Antimicrobials, 3: 21.
- Zhang, J.Y.; Gong, J.Y.; Ding, Y.T.; Lu, B.Y.; Wu, X.Q. and Ying, Z. (2010):

 Antibacterial activity of water-phase extracts from bamboo shavings against food spoilage microorganisms. African Journal of Biotechnology 9:7710–7717.
- Zhang, J.Y.; Lin, S.Y.; Zhao, J.; Li, X.H.Z.; Wang, G.; Li, C.C.and Shu, G. (2015): The effects of bamboo leaf flavonoid on the immune function and growth performance in immuno suppression broilers. Journal of Sichuan Agricultural University 3: 314–318.
- Zhang, J.; Jie, W.A.N.G.; Qiao, W.A.N.G.; Cui, H.X.; Ding, J.Q.; Wang, Z.X. and Zhao, G.P. (2023): Immunogenetic basis of chicken's heterophil to lymphocyte ratio revealed by genomewide indel variants analysis. Journal of Integrative Agriculture, 22(9), 2810-282.

تأثير المكمل الغذائي لمستخلص اوراق نبات الخيزران علي بكتريا الامعاء ومقاومة الأمراض في بط البغال المشذبة المنقار

شيماء يوسف ، احمد عبد العليم محمد ، شيماء جمال معتوق ، مديحة حسنى درويش

يلعب مستخلص أوراق الخيزران دورًا مهمًا في تعزيز مناعة الطيور ومقاومتها للامراض ويمكن استخدامه كمكمل غذائي طبيعي في تربية الطيور. يؤدي تقليم المنقار إلى تفاعلات التهابية وحدوث الإجهاد التي بدورها قد تؤدي إلى كبت المناعة وتقليل مقاومة الطائر للأمراض. كانت أهداف الدراسة الحالية هي معرفة تأثير مستخلص أوراق الخيزران في تعزيز مقاومة الطيور المجهدة. تم استخدام أربع مجموعات (٦ طيور لكل مجموعة)؛ المجموعة ١: لم يتم تقليم المنقار وتغذيته على عذاء أساسي بالإضافة إلى مستخلص الخيزران (١ و ٢ جم لكل كجم، المجموعتان ٣ و ٤: تم تقليم المنقار وتغذيته على غذاء أساسي بالإضافة إلى مستخلص الخيزران (١ و ٢ جم لكل كجم، على التوالي)، وتم جمع عينة الدم في اليوم ٢٠ من التجربة لتحديد نسبة خلايا الهيتيروفيل / الخلايا الليمفاوية (١ / H) كمؤشر لمقاومة الطيور. تم تحديد العدد البكتيري الكلي للعصيات اللاكتوبسيلس والبيفيديو بكتريا وتم عزل البكتيريا المسببة للأمراض وفحصها عن طريق الفحص المظهري وأخيراً تم التأكد من ذلك بواسطة اختبار تفاعل البلمرة المتسلسل. كانت نسبة H / L أقل في المجموعة ١ والمجموعة ١ والمجموعة ٢ والمجموعة ١ والمجموعة ٢ والمجموعة ٢ والمجموعة ٢ والمجموعة ١ والمعزولة بالبكتيريا سالبة الجرام المعزولة بالبكتريا موجبة الجرام المعزولة. تشير النتائج الحالية إلى أنه من الممكن استخدام مستخلص أوراق نبات الخيزران كليريا للمواد الصناعية التي تستخدم لحل مشاكل إجهاد تقليم المنقار.