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ABSTRACT
This review article explores the evolution and recent innovations in solar tracking

systems, with a specific focus on the integration of deep learning and artificial intelligence (Al)
techniques for enhanced sun detection. The paper highlights the strategic importance of
renewable energy, particularly in Egypt, and discusses Concentrated Solar Power (CSP) systems
especially Parabolic Trough Systems (PTS) as a sustainable energy solution. Traditional and
modern solar tracking techniques are critically analysed, showing how Al-driven methods
significantly improve tracking accuracy, system adaptability, and energy efficiency across
various environmental conditions. Key findings demonstrate that deep learning approaches, such
as Convolutional Neural Networks (CNNs) and ANFIS, can boost tracking precision by over
90%, reduce error margins to under 0.1°, and improve energy yield by up to 76% in dual-axis
systems. The review concludes that the integration of Al and machine vision not only enhances
the reliability and scalability of solar tracking systems but also opens new pathways for

autonomous, low-cost, and high-performance renewable energy applications.

Keywords: Solar tracking systems, deep learning, YOLO, concentrated solar power, renewable
energy.

1. Introduction

In 2015, the United Nations launched the Sustainable Development Agenda, with Goal 7 aiming
to provide sustainable energy for all by 2030. After a temporary 5.8% decrease in CO: emissions
in 2020 due to the COVID-19 pandemic, transitioning to low or zero-carbon energy sources is

essential to achieve net-zero emissions by 2050. Renewable energy's share in global electricity
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generation is expected to rise from 19% in 2019 to 79% by 2050. Egypt accounts for about 8%
of Africa's renewable energy production, which is equivalent to approximately 93 million tons of
oil. Although its share is relatively small on both regional and global scales, Egypt has vast
potential for renewable energy. The estimated capacity for concentrated solar power is 73,656
TWh/year, wind energy at 7,650 TWh/year, and photovoltaic solar energy at 36 TWh/year.
Additional resources include biomass (15.3 TWh/year), geothermal (25.7 TWh/year), and
hydropower (80 TWh/year). Currently, Egypt's total installed energy capacity is around 54.5
GW, with a small portion coming from renewable sources. With immense untapped resources
and ideal conditions for renewable energy generation, Egypt aims for renewable sources to
account for 42% of its electricity generation by 2035, as shown in Figure 1. Error! Reference
source not found.. Solar energy is one of the leading renewable resources, offering clean and
reliable power. The solar radiation reaching Earth is 27 times higher than global commercial
energy consumption, making it a highly attractive renewable option. Situated in the "Sun Belt,"
Egypt enjoys high direct solar radiation ranging from 5.5 to 9.0 kW/m? per day, with sunlight
lasting between 9 to 11 hours daily. The country has over 125 solar power stations generating up
to 9 GW, reducing carbon dioxide emissions by 9 million tons annually. Several solar projects

are either underway or completed, particularly in Upper Egypt and along the Red Sea coast [1],
(2], [3].
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Figure 1. Electricity production future plan classification [2].
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Concentrated Solar Power (CSP)
Concentrated Solar Power (CSP) systems represent an established and efficient approach to

sustainable energy generation, harnessing concentrated solar irradiance to produce both thermal
and electrical energy. These systems are particularly suitable for applications requiring medium
to high operating temperatures. CSP technologies employ reflective surfaces, typically mirrors,
to focus solar radiation onto a defined focal line or point. Linear-focus configurations—such as
Parabolic Trough Collectors (PTCs) and Linear Fresnel Collectors (LFCs) utilize single-axis
tracking mechanisms to direct sunlight along a focal line. Conversely, point-focus
configurations, including solar tower systems and parabolic dish systems, employ dual-axis
tracking to concentrate solar flux onto a discrete focal point, enabling higher concentration ratios

and thermal efficiencies.

Parabolic Trough Collectors (PTCs)
PTCs are regarded as the most mature and widely used CSP technology. These systems consist

of concave structures fitted with mirrors to direct sunlight towards receiver tubes situated at the
focal line. The technology's main purpose is to capture direct solar energy and focus it onto the
receiver tubes for optimal heat transfer. Regular maintenance and operational support are
essential for ensuring the systems operate efficiently and have a long service life as shown in

Figure 1 and Figure 2.
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Figure 1 Schematic diagram of a solar parabolic trough collector system [4].
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Figure 2 Diagram of PTS [5]

However, various errors can occur in Parabolic Trough Collector (PTC) systems, affecting their
optical, thermal, and electrical performance. Examples of these errors include tilt deviations,
shape imperfections, tracking inaccuracies, and dust accumulation, all of which can lead to
significant degradation in the system’s optical performance and cause noticeable optical losses.
This study aims to provide a comprehensive review of methods for addressing tracking errors,
ranging from traditional techniques to the use of artificial intelligence and deep learning for
detecting and locating the sun’s position. The system then dynamically adjusts the tracking
mechanism to ensure that solar rays strike the mirrors perpendicularly. This alignment
guarantees optimal reflection of sunlight onto the receiver tube. These approaches offer an
effective and reliable means of maintaining accurate solar tracking, thus enhancing the overall

performance of the PTC system.
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2. Literature review

2.1 Renewable Energy in Egypt

According to Mostafa et al. (2024), Africa holds 40% of the global solar energy potential but
contributes only 1.48% to global production. In Egypt, where solar radiation ranges from 5.5 to 9
kWh/m? per day, efforts are underway to increase renewable energy's share from 10% to 42% by
2035, supported by projects like the Benban Solar Park. The study emphasizes the importance of
collaboration between academia and industry to advance renewable energy development [1], [3].
As stated by Moharram et al. (2022), Egypt has significant potential in renewable energy,
particularly solar and wind energy. The country benefits from approximately 3050 hours of
sunlight annually, making it ideal for solar projects such as the Benban Solar Park, expected to
become the largest photovoltaic facility in the world. Additionally, Egypt has substantial wind
energy resources, especially in areas like the Sinai Peninsula and the Gulf of Suez, where wind
speeds range from 8 to 10 m/s. The country also supports initiatives like "net metering," which
encourages the installation of solar panels and the sale of excess energy to the national grid [2].
This study explores Egypt's solar energy potential, specifically identifying the most suitable
strategic locations for installing photovoltaic (PV) systems to support the country's electricity
needs, especially in rural and desert areas. Seven key sites were evaluated using data from four
stations to validate the ERAS reanalysis dataset. The results indicate that EI-Golf, Shiab-Elbanat,
and Saffaga are the most cost-effective sites for PV system installation, owing to their favorable
solar radiation levels and low energy production costs, making them ideal for sustainable energy

development in Egypt [6].

Solar energy, particularly through photovoltaic (PV) panels, has seen significant advancements
in recent years, but faces challenges related to energy storage and efficiency during non-sunny
periods. Concentrated Solar Power (CSP) systems address these issues by using mirrors to
concentrate sunlight, generating high temperatures to produce steam for electricity generation.
CSP can store thermal energy, enabling electricity production even during cloudy periods or at
night, enhancing its efficiency compared to PV systems. It also produces high-quality thermal

energy for industrial use.

A study by Elshafey et al. (2018) highlights the potential of solar thermal power plants to meet
global energy demands, reduce fossil fuel dependence, and mitigate pollution, while discussing

challenges faced by a 140 MW integrated solar power plant in Egypt [7].
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2.2 Parabolic Trough Systems (PTS)

In recent years, solar energy systems have seen significant advancements due to continuous
technological progress. Among these systems, the Parabolic Trough Collector (PTC) system is
one of the most efficient in converting solar energy into thermal energy. This system relies on a
design that enhances the concentration of sunlight onto a receiver containing a heat transfer fluid,

increasing its efficiency in various applications such as electricity generation and heating.

According to Himanshu et al. (2022), a comprehensive review of parabolic solar collectors was
conducted, highlighting the importance of proper geometric dimensions and optimized materials
to improve thermal efficiency, with a focus on the use of nanofluids for enhanced heat

transfer|8].

Additionally, Wassila et al. (2022) emphasized the significant improvements in heat transfer with
the use of nanofluids and turbulators, noting that fin inserts were more effective than nanofluids,

despite their higher costs [9].

Kai et al. (2024) developed a strategy to enhance the efficiency of parabolic trough collectors
(PTCs) by integrating multiple concentration ratios (CRs) within a single loop. The results
showed a 6.7% increase in optical efficiency and a 4.5% rise in thermal efficiency compared to

traditional systems, improving the overall system performance [4].

Ayoub et al. (2023) introduced the Heat Loss Out System (Heat LOS) for assessing temperature
distribution in CSP plants using an infrared camera mounted on a vehicle. The system
demonstrated a 93% accuracy rate using deep learning, helping to improve the lifespan and

operational efficiency of CSP systems [11].

Bouarfa et al. (2024) developed advanced optical and thermal models for PTC systems using the
Tonatiuh software and MCRT method. The results showed a high correlation with experimental

data, highlighting the potential of solar energy for industrial processes in semi-arid climates [12].

Building on the technological advancements and performance optimization strategies discussed
for CSP and PTC systems, the next section explores solar tracking systems, which play a critical

role in maximizing energy capture by ensuring continuous alignment with the sun’s position.

3319



ERURJ 2025, 4, 4,3314-3335

2.3 Solar Tracking Systems

Solar panels have become more efficient due to advancements in materials and solar tracking
systems. Solar tracking allows collectors to follow the sun’s path, maximizing energy capture
and improving overall efficiency. By aligning the collector with the sun throughout the day,
tracking systems optimize energy absorption, reduce reflection losses, and enhance solar energy
conversion.

Solar tracking systems can be classified into different types based on their axis of movement and
operational mechanism. Table 1 summarizes the main categories, highlighting their operating

principles, advantages, and limitations.

Table 1 Classification of Solar Tracking Systems

System Type | Operating Mechanism Advantages Disadvantages
Fixed Panels are positioned at a | Low cost, minimal | Lower efficiency, cannot
constant tilt throughout | maintenance adapt to the sun’s movement
the day
Single-Axis | Moves along one axis | Higher energy | Less efficient than dual-axis
Tracking (East-West or North— | yield compared to | systems
South) fixed systems,
moderate cost
Dual-Axis Moves along two axes to | Maximum energy | Higher  cost, increased
Tracking track the sun precisely yield, optimal | maintenance
tracking

M.A. Ben Taher et al. (2023) introduced a design for parabolic trough collectors (PTC) that uses
the Monte Carlo Ray-Trace (MCRT) method to predict solar flux distribution. The study
achieved an optical efficiency of 83.01% and a heat flux uniformity of 92.24%, highlighting the
importance of optimizing collector design for improved heat transfer and solar flux distribution
[10].

GARIP et al. (2023) explored a solar cogeneration system with a small-scale Stirling engine
adapted for solar applications, capable of producing 1 kW of electricity and 3 kW of heat. The
system, equipped with a dual-axis tracking system, showed a significant reduction in required
collecting surface area, although the high cost of Stirling micro-cogenerators remains a challenge

for widespread adoption [13].
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Balaji et al. (2022) developed a Selective Power Point Tracking (SPPT) technique for
photovoltaic (PV) systems, which tracks reduced power during partial shading and varying
irradiation conditions. The algorithm, integrated with Salp Swarm Perturb and Observe (SSPO),
demonstrated a tracking efficiency of over 98% and response times of less than 1 second,
proving effective in PV system control [14].

Abdel-hamed et al. (2022) presented an efficient single-axis solar tracking system using the
Harris Hawks Optimization (HHO) algorithm, optimizing sun-tracking control through the
Weighted Goal Attainment Function (WGAF). Simulation results showed significant
improvements in performance, indicating the system's potential for practical applications in
solar-powered systems [15].

Nguyen et al. (2016) highlighted the importance of alignment in the performance of trough solar
concentrators. Their research demonstrated the effectiveness of automatic control systems in
tracking the sun's movement and enhancing the efficiency of parabolic trough concentrators by
adjusting the collector's position in response to changing solar radiation [16].

Hariri et al. (2022) compared single-axis solar tracking systems (SAST) with sensor-based solar
tracking systems (STS), showing that sensor-based STS outperforms SAST in terms of energy
output and consumption. The sensor-based system improved tracking accuracy and reduced
energy consumption, offering a more effective solution for PV energy generation [17].

Adolfo et al. (2017) developed a vision-based solar tracking sensor that ensures accurate sun
alignment by measuring the angle of incidence of solar rays. This sensor, validated through
experimental testing, achieved a high level of accuracy and was proven effective for use in solar
tracking systems [18].

Satué¢ et al. (2020) introduced an automated calibration algorithm for high concentration
photovoltaic (HCPV) systems, improving sun tracking accuracy and power output. The method
significantly reduced startup time and installation costs, while enhancing power performance by
5% to 7% compared to manual calibration [19].

Tiwari et al. (2023) presented a closed-loop solar tracking system that enhances PV panel
efficiency through real-time sun tracking. Their system demonstrated improved current output
and resilience to wind pressure, showing promise for reducing solar energy costs and improving

system reliability [20].
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Sappaniran et al. (2023) developed a sensorless dual-axis solar tracking system using a Particle
Filter (PF) to improve energy generation. The system demonstrated a 20.1% increase in energy
output compared to fixed systems and performed well in varying weather conditions, suggesting
potential for autonomous energy systems [21].

Coronado et al. (2023) introduced a dual closed-loop control strategy for single-axis solar
trackers in parabolic trough systems. Their approach, which combines photodiode-based solar
sensors with a shadow-based visual device, reduces solar tracking error by 78%, improving

system stability and performance under diverse weather conditions as shown in Figure 3 [22].

Sun rays
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Figure 3 Proposed SBVD: (a) CAD design and (b) construction and installation [22].

Tchao et al. (2023) developed a dual-axis solar tracking system for concentrating solar power
plants, utilizing a computer vision-based controller that incorporates a webcam, light sensor,
Arduino microcontroller, and stepper motors to track the sun’s position. This system achieves
high accuracy in sunlight detection by monitoring the shadow of a stick on a transparent plate,
with initial tests demonstrating precise tracking with minimal operational costs. The team plans
to integrate machine learning models in future research to further improve accuracy under

varying weather conditions as shown as Figure 4 [23].
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Figure 4 Locating the Stick’s Shadow to Compute its Length [23].

Saeedi et al. (2021) focused on enhancing photovoltaic (PV) panel efficiency through the design
of a dual-axis solar tracker (DAST). Their system uses an analog control mechanism combining
a Wheatstone bridge circuit with light-dependent resistors (LDRs) to ensure optimal alignment of
the PV panels relative to the sun. This design allows for significant improvements in energy
absorption, with experimental results indicating a notable increase in power output by accurately

tracking the sun’s position throughout the day, surpassing the performance of fixed panels [24].

Bhattb et al. (2022) introduced a dual-axis solar tracking system controlled by a programmable
logic controller (PLC). This system integrates a multi-quadrant photoelectric detector and a solar
orbital tracking scheme to enhance solar positioning accuracy. The system achieves tracking
accuracy of less than 0.07 degrees, demonstrating its effectiveness in real-world applications.
Future developments will focus on refining the mechanical components and improving

performance under varying environmental conditions [25].

Stanek et al. (2022) investigated the impact of solar tracking errors on the optical and
thermodynamic efficiency of parabolic-trough solar concentrating systems. Their findings
showed that even small errors in tracking could cause significant decreases in efficiency, with a
2° tracking error resulting in a reduction of up to 42.5 percentage points in efficiency. The study
highlights the importance of precise tracking, especially for systems with low concentration
ratios, and emphasizes the need for highly accurate solar tracking systems to optimize

performance [26].

Amjad et al. (2023) presented an autonomous dual-axis solar tracking system that operates

without requiring location or seasonal data. Using solar sensors and DC motors, the system
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adjusts the incidence and declination angles to maintain optimal alignment with the sun. The
experimental results in Jordan showed a significant improvement in energy efficiency, with the
system enhancing performance by 76% in summer and 41% in winter compared to fixed PV

panels [27].

Al-Othman et al. (2023) developed a hybrid solar tracking system for PV panels in Jordan,
designed to adapt to fluctuating weather conditions. Their system integrates an open-loop
monitoring system with a dynamic feedback controller that uses an active search algorithm to
adjust in real-time based on solar irradiance readings. Experimental results indicated a 35%
increase in power generation, demonstrating the system’s effectiveness, particularly under

overcast conditions [28].

Hicham et al. (2022) proposed a solar tracking system that improves PV panel efficiency by
regulating power output using Maximum Power Point Tracking (MPPT). This system activates
the tracking motor when the power output increases and stops when the optimal solar radiation is
reached, thus ensuring accurate alignment with the sun. Their approach, validated through
simulations and experiments, showed a significant improvement in energy yield compared to

traditional tracking methods [29].

Venkata et al. (2022) explored a solar tracking system that uses machine learning algorithms—
both linear and nonlinear regression—to predict the maximum available power based on
irradiation and temperature data. This system was shown to achieve efficiencies above 95%,
outperforming traditional MPPT methods such as Beta MPPT and Artificial Neural Networks
(ANN) in terms of accuracy and adaptability to changing weather conditions [30].

Sushmi et al. (2022) developed a forecasting technique for irradiation levels using Artificial
Neural Networks (ANN) and Support Vector Regression (SVR). Their research showed that
ANN outperforms SVR, especially for non-linear and noisy data, making it more suitable for
predicting irradiation levels. This technique enhances the performance of MPPT systems,
enabling more effective decision-making under varying environmental conditions [31].
Traditional solar tracking systems (STS) typically rely on fixed astronomical data such as time,

date, and elevation. While simple and cost-effective, these systems have limited adaptability to
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dynamic environmental conditions, which can compromise alignment accuracy. Sensor-based
systems improve responsiveness and accuracy but face challenges related to environmental
sensitivity, increased complexity, and maintenance demands. These limitations have driven
recent research toward more advanced solutions that leverage computer vision, machine learning
(ML), and artificial intelligence (Al) to create adaptive, efficient, and robust solar tracking

approaches.

24 Advances in Solar Tracking System

Recent advancements in solar tracking focus on integrating intelligent algorithms and vision-
based technologies to overcome the constraints of traditional and sensor-based systems. By
combining cameras with ML and Al, these innovative approaches can dynamically adjust to
changing environmental conditions, optimize panel orientation, and enhance energy yield. The
following studies illustrate how modern Al-driven tracking techniques are transforming system

performance and reliability.

Abdollahpour et al. (2018) developed a dual-axis solar tracking system that uses image
processing for panel orientation adjustment based on shadow analysis. This method led to
significant improvements in energy absorption. The system achieved an accuracy of about £2°,
ensuring optimal alignment with solar irradiance and maximizing power output. This solution is
cost-effective and location-independent, though challenges remain in overcast conditions where
shadow clarity is reduced. One potential solution to this is incorporating higher-resolution

cameras to improve performance under diverse weather conditions [32].

Rahmawati et al. (2020) focused on the importance of precise solar panel positioning for optimal
energy production. They employed image processing techniques to track the sun’s position,
calculating its angle by analyzing the shadow of a small object. Their system achieved tracking
accuracies of 95% in azimuth and 96% in altitude, ensuring the panels were aligned to maximize
energy capture. This approach holds promise for enhancing energy efficiency through precise

solar tracking and shows potential for adaptability under different weather conditions [33].

AL-Rousan et al. (2020) explored the application of Al techniques, specifically the Adaptive
Neural Fuzzy Inference System (ANFIS), to manage solar tracking systems. ANFIS models

3325



ERURJ 2025, 4, 4,3314-3335

proved effective in predicting the optimal tilt and orientation angles for solar panels, enhancing
energy efficiency. Research suggests that solar trackers using ANFIS outperform traditional
control methods, including fuzzy logic and neural networks, offering superior performance with

fewer errors and higher prediction accuracy [34].

Traditional solar tracking systems (STS), which depend on time, date, and elevation data, have
significant limitations in adapting to environmental changes, leading to reduced alignment
accuracy. In contrast, sensor-based systems face challenges due to their sensitivity to
environmental conditions, complexity, and ongoing maintenance needs. These systems also tend
to consume a considerable amount of energy, suffer from reliability issues, and require frequent
upkeep. As a result, there is a growing interest in exploring innovative solutions that integrate
cameras with machine learning (ML) and artificial intelligence (Al) technologies to create more
adaptable and efficient solar tracking systems. This approach seeks to enhance the overall

performance and adaptability of these systems to varying environmental conditions.

Abdollahpour et al. (2018) developed a dual-axis solar tracking system that uses image
processing for panel orientation adjustment based on shadow analysis. This method led to
significant improvements in energy absorption. The system achieved an accuracy of about £2°,
ensuring optimal alignment with solar irradiance and maximizing power output. This solution is
cost-effective and location-independent, though challenges remain in overcast conditions where
shadow clarity is reduced. One potential solution to this is incorporating higher-resolution

cameras to improve performance under diverse weather conditions [32].

Rahmawati et al. (2020) focused on the importance of precise solar panel positioning for optimal
energy production. They employed image processing techniques to track the sun’s position,
calculating its angle by analyzing the shadow of a small object. Their system achieved tracking
accuracies of 95% in azimuth and 96% in altitude, ensuring the panels were aligned to maximize
energy capture. This approach holds promise for enhancing energy efficiency through precise

solar tracking and shows potential for adaptability under different weather conditions [33].

AL-Rousan et al. (2020) explored the application of Al techniques, specifically the Adaptive
Neural Fuzzy Inference System (ANFIS), to manage solar tracking systems. ANFIS models
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proved effective in predicting the optimal tilt and orientation angles for solar panels, enhancing
energy efficiency. Research suggests that solar trackers using ANFIS outperform traditional
control methods, including fuzzy logic and neural networks, offering superior performance with

fewer errors and higher prediction accuracy [34].

Phiri et al. (2023) conducted a systematic review on the use of Deep Learning (DL) in solar
tracking systems, underlining its potential to improve solar energy applications. The review
highlighted that traditional Machine Learning (ML) models struggle with large datasets and data
representation, while DL models show great promise in forecasting temperature and predicting
solar irradiance. The review covers 37 academic papers published between 2012 and 2022,
examining various topics such as dataset usage, preprocessing methods, feature engineering, DL
algorithms, and performance metrics. Despite the rise of deep hybrid learning models, the review
identifies ongoing challenges, including dataset availability, the use of image-based data, and the
need for optimized preprocessing. Addressing these issues is essential for advancing DL in solar

tracking systems [35].

Paletta et al. (2023) investigated methods to improve solar energy forecasting accuracy using
physics-informed transfer learning. The study utilized deep learning techniques, specifically
convolutional neural networks (CNNs), to analyze cloud images from ground-level sky cameras
to predict solar irradiance. Transfer learning techniques such as zero-shot learning (ZSL) and
few-shot learning (FSL) were used, enabling pre-trained models to adapt to new environments
without requiring extensive local data. The results indicated a significant improvement in
forecasting accuracy in both cloudy and clear-sky conditions, facilitating the rapid deployment of
reliable forecasting models in industrial settings. The study addressed traditional deep learning
limitations, which often rely on large local datasets, making them unsuitable for immediate use
in situations requiring timely solar forecasts. By using multi-location datasets, these models
showed improved generalization, making them more scalable for solar energy forecasting

solutions [36].

Mohammad et al. (2023) discussed the transformative role of Al in the solar energy sector,
emphasizing its ability to revolutionize the generation, management, and grid integration of solar

power. Al innovations in solar panel technology have significantly enhanced both efficiency and
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scalability. Moreover, machine learning techniques contribute to improved grid stability and
energy forecasting accuracy. Al-powered management systems also convert data into actionable
insights, optimizing system performance and enabling predictive maintenance. These
advancements are critical for creating a more efficient, reliable, and sustainable future for solar

energy, which is vital for meeting global energy needs and combating climate change [37].

Lorilla et al. (2022) designed a system that dynamically tracks the sun’s centroid with
remarkable flexibility, even under low irradiation conditions, such as cloud cover. The system
uses a high-resolution camera with a 180-degree field of view, facilitating precise image
processing and employing adaptive control techniques to adjust the pan and tilt of servo motors.
The system achieved azimuth and altitude tracking accuracies of 0.23° and 0.66%, respectively,
using the Solar Position Algorithm (SPA), comparable to commercial solar trackers. This
prototype shows strong performance for dynamic solar tracking, making it suitable for Parabolic
Dish Solar Concentrators. It also integrates Al-based computing for remote applications, using
low-cost hardware to ensure commercial viability. Future plans include incorporating Al for
direct normal irradiance estimation and implementing wireless motor control at Concentrating

Solar Power (CSP) sites, as well as data collection during various solar events [38].

Oguz et al. (2020) explored the use of embedded systems with wide-angle cameras to accurately
track the sun’s trajectory. Their system captures images of the sun and processes them to
determine its position in the sky. The system, which uses a Raspberry Pi 2 B and a SMP wide-
angle camera, demonstrated the potential for improved accuracy in solar tracking, presenting the
mechanical and electronic setups, image acquisition procedure, and initial processing results

[39].

Carballo et al. (2019) introduced an innovative solar tracking system that combines computer
vision, low-cost hardware, and deep learning techniques to address the cost and operational
challenges faced by traditional systems. Deployed at the Plataforma Solar de Almeria, the system
uses convolutional neural networks (CNNs) to detect objects and track the sun’s position. By
forecasting cloud movements, detecting shadows, and measuring concentrated solar radiation,
the system enhances solar panel efficiency. This method minimizes reliance on expensive and

complex mechanical tracking systems. Moreover, its ability to predict cloud coverage and
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shadow effects enables proactive adjustments to the panels, leading to more efficient energy
production. The system reduces costs and enhances the reliability and efficiency of solar power

generation, positioning it as a promising alternative for sustainable energy systems [40].

Adel et al. (2019) introduced a new methodology for improving solar flux analysis in solar
central receiver (SCR) systems. Traditional single-CCD cameras often struggle to capture solar
flux accurately due to their limited dynamic range. To overcome this, the authors proposed using
a double-CCD camera that captures two images at different exposure levels, which are then
combined into a high dynamic range (HDR) image using a newly developed weighting function.
This method improves the resolution of solar flux details, providing more accurate analysis of
beam accuracy and optical quality in SCR systems. The paper presents experimental results that
demonstrate the new weighting function’s superiority over existing methods, marking a
significant advancement in solar flux analysis and aiding in the design and operation of solar

power plants [41].

Garcia-Gil et al. (2019) presented a solar tracker design that uses panoramic images captured by
a fisheye camera. The images are processed digitally to estimate the sun’s azimuth and elevation
angles, which are then used to position the solar tracker accurately. The system operates
effectively under various weather conditions without the need for GPS or complex calculations
and does not require latitude or longitude data. However, the fisheye camera needs to be oriented
north and leveled with the ground. The proposed method demonstrates impressive precision
compared to established algorithms, with future research focused on developing maximum

power point tracking systems [42].

Gozhyj et al. (2020) discussed the use of neural networks to optimize the control mechanisms of
solar power plants and electricity distribution. They described a system based on a neural
network designed to track the maximum power point (MPP) of photovoltaic systems, adjusting
battery charging to maximize energy output. The system uses a multilayer neural network trained
with a backpropagation algorithm, which improves system efficiency by optimizing voltage and

current distribution based on real-time solar panel and battery conditions [43].

3329



ERURJ 2025, 4, 4,3314-3335

Rahate et al. (2021) introduced a two-axis solar tracking system that combines computer vision
with photosensor technologies to enhance solar energy collection. The system employs a
Raspberry Pi 4 for real-time image processing, while an ATmegal28 microcontroller controls
stepper motors based on the processed data. The system integrates image-based feedback to
address disturbances like cloud cover and uses photosensor-based control to make accurate
adjustments. This approach enhances both solar tracking precision and energy efficiency, making

it adaptable to changing weather conditions [44].

Jose et al. (2019) explored a new solar tracking method that uses deep learning techniques via
TensorFlow, an open-source machine learning framework. This framework enhances flexibility
and allows the implementation of neural networks across various devices, including embedded
systems and mobile platforms. The networks accurately recognize the Sun and its trajectory,
enabling precise tracking without additional data. The advanced machine learning framework
outperforms the original system in terms of speed and accuracy. Future research will focus on
training networks with larger datasets, optimizing implementations, and achieving autonomous

control of heliostats to improve tracking accuracy and minimize errors [45].

Sections 2.3 and 2.4 reviewed various solar tracking system designs, optimization strategies, and
Al-based enhancements. Table 2 provides a consolidated summary of the key studies, outlining

the system type, techniques used, and the main performance results reported.

Table 2 Summary of Key Studies in Sections 2.3 and 2.4

Authors System Type | Technique Used Key Results

Ben Taher et al. | PTC MCRT Optical efficiency: 83.01%,

(2023) heat flux uniformity: 92.24%

GARIP et al. | Dual-axis Stirling engine 1 kW electricity + 3 kW heat

(2023) generation

Balaji et al. (2022) | PV SPPT + SSPO >98% tracking efficiency, <1 s
response time

Abdel-hamed et al. | Single-axis HHO + WGAF Significant performance

(2022) improvement

Hariri et al. (2022) | SAST / STS | Light sensors STS outperformed SAST in
energy output and accuracy

Tchao et al. (2023) | Dual-axis Computer vision + | High accuracy, low

CSp Arduino operational cost
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Venkata et al.|PV ML regression >95% efficiency,

(2022) outperformed traditional
MPPT

Phiri et al. (2023) | Various Deep Learning Improved solar irradiance
forecasting

Paletta et al. (2023) | PV Transfer Learning | Enhanced cloud and irradiance

+ CNN prediction
Lorilla et al. (2022) | Parabolic 180° camera + Al | Azimuth  accuracy: 0.23°,
Dish altitude accuracy: 0.66°

In summary, the reviewed literature demonstrates the significant advancements in solar
tracking technologies, particularly through the integration of Al and deep learning, which have
shown substantial potential to enhance system efficiency, adaptability, and reliability under

diverse environmental conditions. These findings lay the groundwork for future innovations.

3. Conclusion

This review has examined the evolution of solar tracking systems, highlighting the transition
from traditional time-based and sensor-driven mechanisms to advanced solutions powered by
artificial intelligence (AI) and deep learning (DL). The literature indicates that AI- and DL-
enhanced tracking systems offer substantial improvements in accuracy, adaptability, and energy
yield, particularly under dynamic and challenging environmental conditions. Furthermore,
integration of computer vision, optimization algorithms, and hybrid control strategies has shown
promising results in reducing tracking errors, improving system efficiency, and lowering

operational costs.

Despite these advancements, several research gaps remain. Scalability and real-time
implementation of Al-based tracking systems require further exploration, especially for large-
scale solar power plants. Challenges such as high initial costs, maintenance complexity, and
performance variability under extreme weather still hinder widespread adoption. Moreover, the
lack of standardized datasets and benchmarking methods limits the ability to compare solutions

objectively across different studies.

Future research should focus on developing cost-effective, energy-efficient, and self-calibrating

tracking systems capable of operating autonomously in diverse environmental contexts.
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Integrating Al with emerging technologies such as Internet of Things (IoT) networks, edge
computing, and predictive maintenance frameworks can further enhance system resilience and
efficiency. By addressing these challenges, the next generation of solar tracking systems can
significantly contribute to the global transition toward sustainable and reliable renewable energy

solutions.
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