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ABSTRACT 

This review article explores the evolution and recent innovations in solar tracking 

systems, with a specific focus on the integration of deep learning and artificial intelligence (AI) 

techniques for enhanced sun detection. The paper highlights the strategic importance of 

renewable energy, particularly in Egypt, and discusses Concentrated Solar Power (CSP) systems 

especially Parabolic Trough Systems (PTS) as a sustainable energy solution. Traditional and 

modern solar tracking techniques are critically analysed, showing how AI-driven methods 

significantly improve tracking accuracy, system adaptability, and energy efficiency across 

various environmental conditions. Key findings demonstrate that deep learning approaches, such 

as Convolutional Neural Networks (CNNs) and ANFIS, can boost tracking precision by over 

90%, reduce error margins to under 0.1°, and improve energy yield by up to 76% in dual-axis 

systems. The review concludes that the integration of AI and machine vision not only enhances 

the reliability and scalability of solar tracking systems but also opens new pathways for 

autonomous, low-cost, and high-performance renewable energy applications. 

 

Keywords: Solar tracking systems, deep learning, YOLO, concentrated solar power, renewable 

energy. 
 

1. Introduction 
 

In 2015, the United Nations launched the Sustainable Development Agenda, with Goal 7 aiming 

to provide sustainable energy for all by 2030. After a temporary 5.8% decrease in CO₂ emissions 

in 2020 due to the COVID-19 pandemic, transitioning to low or zero-carbon energy sources is 

essential to achieve net-zero emissions by 2050. Renewable energy's share in global electricity 
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generation is expected to rise from 19% in 2019 to 79% by 2050. Egypt accounts for about 8% 

of Africa's renewable energy production, which is equivalent to approximately 93 million tons of 

oil. Although its share is relatively small on both regional and global scales, Egypt has vast 

potential for renewable energy. The estimated capacity for concentrated solar power is 73,656 

TWh/year, wind energy at 7,650 TWh/year, and photovoltaic solar energy at 36 TWh/year. 

Additional resources include biomass (15.3 TWh/year), geothermal (25.7 TWh/year), and 

hydropower (80 TWh/year). Currently, Egypt's total installed energy capacity is around 54.5 

GW, with a small portion coming from renewable sources. With immense untapped resources 

and ideal conditions for renewable energy generation, Egypt aims for renewable sources to 

account for 42% of its electricity generation by 2035, as shown in Figure 1. Error! Reference 

source not found.. Solar energy is one of the leading renewable resources, offering clean and 

reliable power. The solar radiation reaching Earth is 27 times higher than global commercial 

energy consumption, making it a highly attractive renewable option. Situated in the "Sun Belt," 

Egypt enjoys high direct solar radiation ranging from 5.5 to 9.0 kW/m² per day, with sunlight 

lasting between 9 to 11 hours daily. The country has over 125 solar power stations generating up 

to 9 GW, reducing carbon dioxide emissions by 9 million tons annually. Several solar projects 

are either underway or completed, particularly in Upper Egypt and along the Red Sea coast [1], 

[2], [3]. 

 
Figure 1. Electricity production future plan classification [2]. 
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Concentrated Solar Power (CSP) 

Concentrated Solar Power (CSP) systems represent an established and efficient approach to 

sustainable energy generation, harnessing concentrated solar irradiance to produce both thermal 

and electrical energy. These systems are particularly suitable for applications requiring medium 

to high operating temperatures. CSP technologies employ reflective surfaces, typically mirrors, 

to focus solar radiation onto a defined focal line or point. Linear-focus configurations—such as 

Parabolic Trough Collectors (PTCs) and Linear Fresnel Collectors (LFCs) utilize single-axis 

tracking mechanisms to direct sunlight along a focal line. Conversely, point-focus 

configurations, including solar tower systems and parabolic dish systems, employ dual-axis 

tracking to concentrate solar flux onto a discrete focal point, enabling higher concentration ratios 

and thermal efficiencies. 

Parabolic Trough Collectors (PTCs) 

PTCs are regarded as the most mature and widely used CSP technology. These systems consist 

of concave structures fitted with mirrors to direct sunlight towards receiver tubes situated at the 

focal line. The technology's main purpose is to capture direct solar energy and focus it onto the 

receiver tubes for optimal heat transfer. Regular maintenance and operational support are 

essential for ensuring the systems operate efficiently and have a long service life as shown in 

Figure 1 and Figure 2. 

 
Figure 1 Schematic diagram of a solar parabolic trough collector system [4]. 
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Figure 2 Diagram of PTS [5] 

However, various errors can occur in Parabolic Trough Collector (PTC) systems, affecting their 

optical, thermal, and electrical performance. Examples of these errors include tilt deviations, 

shape imperfections, tracking inaccuracies, and dust accumulation, all of which can lead to 

significant degradation in the system’s optical performance and cause noticeable optical losses. 

This study aims to provide a comprehensive review of methods for addressing tracking errors, 

ranging from traditional techniques to the use of artificial intelligence and deep learning for 

detecting and locating the sun’s position. The system then dynamically adjusts the tracking 

mechanism to ensure that solar rays strike the mirrors perpendicularly. This alignment 

guarantees optimal reflection of sunlight onto the receiver tube. These approaches offer an 

effective and reliable means of maintaining accurate solar tracking, thus enhancing the overall 

performance of the PTC system.  
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2. Literature review 

2.1 Renewable Energy in Egypt 

According to Mostafa et al. (2024), Africa holds 40% of the global solar energy potential but 

contributes only 1.48% to global production. In Egypt, where solar radiation ranges from 5.5 to 9 

kWh/m² per day, efforts are underway to increase renewable energy's share from 10% to 42% by 

2035, supported by projects like the Benban Solar Park. The study emphasizes the importance of 

collaboration between academia and industry to advance renewable energy development [1], [3]. 

As stated by Moharram et al. (2022), Egypt has significant potential in renewable energy, 

particularly solar and wind energy. The country benefits from approximately 3050 hours of 

sunlight annually, making it ideal for solar projects such as the Benban Solar Park, expected to 

become the largest photovoltaic facility in the world. Additionally, Egypt has substantial wind 

energy resources, especially in areas like the Sinai Peninsula and the Gulf of Suez, where wind 

speeds range from 8 to 10 m/s. The country also supports initiatives like "net metering," which 

encourages the installation of solar panels and the sale of excess energy to the national grid [2]. 

This study explores Egypt's solar energy potential, specifically identifying the most suitable 

strategic locations for installing photovoltaic (PV) systems to support the country's electricity 

needs, especially in rural and desert areas. Seven key sites were evaluated using data from four 

stations to validate the ERA5 reanalysis dataset. The results indicate that El-Golf, Shiab-Elbanat, 

and Saffaga are the most cost-effective sites for PV system installation, owing to their favorable 

solar radiation levels and low energy production costs, making them ideal for sustainable energy 

development in Egypt [6].  

Solar energy, particularly through photovoltaic (PV) panels, has seen significant advancements 

in recent years, but faces challenges related to energy storage and efficiency during non-sunny 

periods. Concentrated Solar Power (CSP) systems address these issues by using mirrors to 

concentrate sunlight, generating high temperatures to produce steam for electricity generation. 

CSP can store thermal energy, enabling electricity production even during cloudy periods or at 

night, enhancing its efficiency compared to PV systems. It also produces high-quality thermal 

energy for industrial use.  

A study by Elshafey et al. (2018) highlights the potential of solar thermal power plants to meet 

global energy demands, reduce fossil fuel dependence, and mitigate pollution, while discussing 

challenges faced by a 140 MW integrated solar power plant in Egypt [7]. 
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2.2 Parabolic Trough Systems (PTS) 

In recent years, solar energy systems have seen significant advancements due to continuous 

technological progress. Among these systems, the Parabolic Trough Collector (PTC) system is 

one of the most efficient in converting solar energy into thermal energy. This system relies on a 

design that enhances the concentration of sunlight onto a receiver containing a heat transfer fluid, 

increasing its efficiency in various applications such as electricity generation and heating. 

According to Himanshu et al. (2022), a comprehensive review of parabolic solar collectors was 

conducted, highlighting the importance of proper geometric dimensions and optimized materials 

to improve thermal efficiency, with a focus on the use of nanofluids for enhanced heat 

transfer[8].  

Additionally, Wassila et al. (2022) emphasized the significant improvements in heat transfer with 

the use of nanofluids and turbulators, noting that fin inserts were more effective than nanofluids, 

despite their higher costs [9]. 

Kai et al. (2024) developed a strategy to enhance the efficiency of parabolic trough collectors 

(PTCs) by integrating multiple concentration ratios (CRs) within a single loop. The results 

showed a 6.7% increase in optical efficiency and a 4.5% rise in thermal efficiency compared to 

traditional systems, improving the overall system performance  [4].  

Ayoub et al. (2023) introduced the Heat Loss Out System (Heat LOS) for assessing temperature 

distribution in CSP plants using an infrared camera mounted on a vehicle. The system 

demonstrated a 93% accuracy rate using deep learning, helping to improve the lifespan and 

operational efficiency of CSP systems [11].  

Bouarfa et al. (2024) developed advanced optical and thermal models for PTC systems using the 

Tonatiuh software and MCRT method. The results showed a high correlation with experimental 

data, highlighting the potential of solar energy for industrial processes in semi-arid climates [12].  

Building on the technological advancements and performance optimization strategies discussed 

for CSP and PTC systems, the next section explores solar tracking systems, which play a critical 

role in maximizing energy capture by ensuring continuous alignment with the sun’s position. 
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2.3 Solar Tracking Systems 

Solar panels have become more efficient due to advancements in materials and solar tracking 

systems. Solar tracking allows collectors to follow the sun’s path, maximizing energy capture 

and improving overall efficiency. By aligning the collector with the sun throughout the day, 

tracking systems optimize energy absorption, reduce reflection losses, and enhance solar energy 

conversion.  

Solar tracking systems can be classified into different types based on their axis of movement and 

operational mechanism. Table 1 summarizes the main categories, highlighting their operating 

principles, advantages, and limitations. 

 

Table 1 Classification of Solar Tracking Systems 

System Type Operating Mechanism  Advantages  Disadvantages 

Fixed Panels are positioned at a 

constant tilt throughout 

the day  

Low cost, minimal 

maintenance  

Lower efficiency, cannot 

adapt to the sun’s movement 

Single-Axis 

Tracking 

Moves along one axis 

(East–West or North–

South)  

Higher energy 

yield compared to 

fixed systems, 

moderate cost  

Less efficient than dual-axis 

systems 

Dual-Axis 

Tracking  

Moves along two axes to 

track the sun precisely  

Maximum energy 

yield, optimal 

tracking  

Higher cost, increased 

maintenance 

 

 

M.A. Ben Taher et al. (2023) introduced a design for parabolic trough collectors (PTC) that uses 

the Monte Carlo Ray-Trace (MCRT) method to predict solar flux distribution. The study 

achieved an optical efficiency of 83.01% and a heat flux uniformity of 92.24%, highlighting the 

importance of optimizing collector design for improved heat transfer and solar flux distribution 

[10].  

GARIP et al. (2023) explored a solar cogeneration system with a small-scale Stirling engine 

adapted for solar applications, capable of producing 1 kW of electricity and 3 kW of heat. The 

system, equipped with a dual-axis tracking system, showed a significant reduction in required 

collecting surface area, although the high cost of Stirling micro-cogenerators remains a challenge 

for widespread adoption  [13]. 
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Balaji et al. (2022) developed a Selective Power Point Tracking (SPPT) technique for 

photovoltaic (PV) systems, which tracks reduced power during partial shading and varying 

irradiation conditions. The algorithm, integrated with Salp Swarm Perturb and Observe (SSPO), 

demonstrated a tracking efficiency of over 98% and response times of less than 1 second, 

proving effective in PV system control [14]. 

Abdel-hamed et al. (2022) presented an efficient single-axis solar tracking system using the 

Harris Hawks Optimization (HHO) algorithm, optimizing sun-tracking control through the 

Weighted Goal Attainment Function (WGAF). Simulation results showed significant 

improvements in performance, indicating the system's potential for practical applications in 

solar-powered systems [15]. 

Nguyen et al. (2016) highlighted the importance of alignment in the performance of trough solar 

concentrators. Their research demonstrated the effectiveness of automatic control systems in 

tracking the sun's movement and enhancing the efficiency of parabolic trough concentrators by 

adjusting the collector's position in response to changing solar radiation [16]. 

Hariri et al. (2022) compared single-axis solar tracking systems (SAST) with sensor-based solar 

tracking systems (STS), showing that sensor-based STS outperforms SAST in terms of energy 

output and consumption. The sensor-based system improved tracking accuracy and reduced 

energy consumption, offering a more effective solution for PV energy generation [17]. 

Adolfo et al. (2017) developed a vision-based solar tracking sensor that ensures accurate sun 

alignment by measuring the angle of incidence of solar rays. This sensor, validated through 

experimental testing, achieved a high level of accuracy and was proven effective for use in solar 

tracking systems [18]. 

Satué et al. (2020) introduced an automated calibration algorithm for high concentration 

photovoltaic (HCPV) systems, improving sun tracking accuracy and power output. The method 

significantly reduced startup time and installation costs, while enhancing power performance by 

5% to 7% compared to manual calibration [19]. 

Tiwari et al. (2023) presented a closed-loop solar tracking system that enhances PV panel 

efficiency through real-time sun tracking. Their system demonstrated improved current output 

and resilience to wind pressure, showing promise for reducing solar energy costs and improving 

system reliability [20]. 
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Sappaniran et al. (2023) developed a sensorless dual-axis solar tracking system using a Particle 

Filter (PF) to improve energy generation. The system demonstrated a 20.1% increase in energy 

output compared to fixed systems and performed well in varying weather conditions, suggesting 

potential for autonomous energy systems [21]. 

Coronado et al. (2023) introduced a dual closed-loop control strategy for single-axis solar 

trackers in parabolic trough systems. Their approach, which combines photodiode-based solar 

sensors with a shadow-based visual device, reduces solar tracking error by 78%, improving 

system stability and performance under diverse weather conditions as shown in Figure 3 [22]. 

 

 
Figure 3 Proposed SBVD: (a) CAD design and (b) construction and installation [22]. 

Tchao et al. (2023) developed a dual-axis solar tracking system for concentrating solar power 

plants, utilizing a computer vision-based controller that incorporates a webcam, light sensor, 

Arduino microcontroller, and stepper motors to track the sun’s position. This system achieves 

high accuracy in sunlight detection by monitoring the shadow of a stick on a transparent plate, 

with initial tests demonstrating precise tracking with minimal operational costs. The team plans 

to integrate machine learning models in future research to further improve accuracy under 

varying weather conditions as shown as Figure 4 [23]. 
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Figure 4 Locating the Stick’s Shadow to Compute its Length [23]. 

Saeedi et al. (2021) focused on enhancing photovoltaic (PV) panel efficiency through the design 

of a dual-axis solar tracker (DAST). Their system uses an analog control mechanism combining 

a Wheatstone bridge circuit with light-dependent resistors (LDRs) to ensure optimal alignment of 

the PV panels relative to the sun. This design allows for significant improvements in energy 

absorption, with experimental results indicating a notable increase in power output by accurately 

tracking the sun’s position throughout the day, surpassing the performance of fixed panels [24]. 

Bhattb et al. (2022) introduced a dual-axis solar tracking system controlled by a programmable 

logic controller (PLC). This system integrates a multi-quadrant photoelectric detector and a solar 

orbital tracking scheme to enhance solar positioning accuracy. The system achieves tracking 

accuracy of less than 0.07 degrees, demonstrating its effectiveness in real-world applications. 

Future developments will focus on refining the mechanical components and improving 

performance under varying environmental conditions [25]. 

Stanek et al. (2022) investigated the impact of solar tracking errors on the optical and 

thermodynamic efficiency of parabolic-trough solar concentrating systems. Their findings 

showed that even small errors in tracking could cause significant decreases in efficiency, with a 

2° tracking error resulting in a reduction of up to 42.5 percentage points in efficiency. The study 

highlights the importance of precise tracking, especially for systems with low concentration 

ratios, and emphasizes the need for highly accurate solar tracking systems to optimize 

performance [26]. 

Amjad et al. (2023) presented an autonomous dual-axis solar tracking system that operates 

without requiring location or seasonal data. Using solar sensors and DC motors, the system 
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adjusts the incidence and declination angles to maintain optimal alignment with the sun. The 

experimental results in Jordan showed a significant improvement in energy efficiency, with the 

system enhancing performance by 76% in summer and 41% in winter compared to fixed PV 

panels [27]. 

Al-Othman et al. (2023) developed a hybrid solar tracking system for PV panels in Jordan, 

designed to adapt to fluctuating weather conditions. Their system integrates an open-loop 

monitoring system with a dynamic feedback controller that uses an active search algorithm to 

adjust in real-time based on solar irradiance readings. Experimental results indicated a 35% 

increase in power generation, demonstrating the system’s effectiveness, particularly under 

overcast conditions [28]. 

Hicham et al. (2022) proposed a solar tracking system that improves PV panel efficiency by 

regulating power output using Maximum Power Point Tracking (MPPT). This system activates 

the tracking motor when the power output increases and stops when the optimal solar radiation is 

reached, thus ensuring accurate alignment with the sun. Their approach, validated through 

simulations and experiments, showed a significant improvement in energy yield compared to 

traditional tracking methods [29]. 

Venkata et al. (2022) explored a solar tracking system that uses machine learning algorithms—

both linear and nonlinear regression—to predict the maximum available power based on 

irradiation and temperature data. This system was shown to achieve efficiencies above 95%, 

outperforming traditional MPPT methods such as Beta MPPT and Artificial Neural Networks 

(ANN) in terms of accuracy and adaptability to changing weather conditions [30]. 

Sushmi et al. (2022) developed a forecasting technique for irradiation levels using Artificial 

Neural Networks (ANN) and Support Vector Regression (SVR). Their research showed that 

ANN outperforms SVR, especially for non-linear and noisy data, making it more suitable for 

predicting irradiation levels. This technique enhances the performance of MPPT systems, 

enabling more effective decision-making under varying environmental conditions [31]. 

Traditional solar tracking systems (STS) typically rely on fixed astronomical data such as time, 

date, and elevation. While simple and cost-effective, these systems have limited adaptability to 
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dynamic environmental conditions, which can compromise alignment accuracy. Sensor-based 

systems improve responsiveness and accuracy but face challenges related to environmental 

sensitivity, increased complexity, and maintenance demands. These limitations have driven 

recent research toward more advanced solutions that leverage computer vision, machine learning 

(ML), and artificial intelligence (AI) to create adaptive, efficient, and robust solar tracking 

approaches. 

2.4 Advances in Solar Tracking System 

Recent advancements in solar tracking focus on integrating intelligent algorithms and vision-

based technologies to overcome the constraints of traditional and sensor-based systems. By 

combining cameras with ML and AI, these innovative approaches can dynamically adjust to 

changing environmental conditions, optimize panel orientation, and enhance energy yield. The 

following studies illustrate how modern AI-driven tracking techniques are transforming system 

performance and reliability. 

Abdollahpour et al. (2018) developed a dual-axis solar tracking system that uses image 

processing for panel orientation adjustment based on shadow analysis. This method led to 

significant improvements in energy absorption. The system achieved an accuracy of about ±2°, 

ensuring optimal alignment with solar irradiance and maximizing power output. This solution is 

cost-effective and location-independent, though challenges remain in overcast conditions where 

shadow clarity is reduced. One potential solution to this is incorporating higher-resolution 

cameras to improve performance under diverse weather conditions [32]. 

Rahmawati et al. (2020) focused on the importance of precise solar panel positioning for optimal 

energy production. They employed image processing techniques to track the sun’s position, 

calculating its angle by analyzing the shadow of a small object. Their system achieved tracking 

accuracies of 95% in azimuth and 96% in altitude, ensuring the panels were aligned to maximize 

energy capture. This approach holds promise for enhancing energy efficiency through precise 

solar tracking and shows potential for adaptability under different weather conditions [33]. 

AL-Rousan et al. (2020) explored the application of AI techniques, specifically the Adaptive 

Neural Fuzzy Inference System (ANFIS), to manage solar tracking systems. ANFIS models 
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proved effective in predicting the optimal tilt and orientation angles for solar panels, enhancing 

energy efficiency. Research suggests that solar trackers using ANFIS outperform traditional 

control methods, including fuzzy logic and neural networks, offering superior performance with 

fewer errors and higher prediction accuracy [34]. 

Traditional solar tracking systems (STS), which depend on time, date, and elevation data, have 

significant limitations in adapting to environmental changes, leading to reduced alignment 

accuracy. In contrast, sensor-based systems face challenges due to their sensitivity to 

environmental conditions, complexity, and ongoing maintenance needs. These systems also tend 

to consume a considerable amount of energy, suffer from reliability issues, and require frequent 

upkeep. As a result, there is a growing interest in exploring innovative solutions that integrate 

cameras with machine learning (ML) and artificial intelligence (AI) technologies to create more 

adaptable and efficient solar tracking systems. This approach seeks to enhance the overall 

performance and adaptability of these systems to varying environmental conditions. 

Abdollahpour et al. (2018) developed a dual-axis solar tracking system that uses image 

processing for panel orientation adjustment based on shadow analysis. This method led to 

significant improvements in energy absorption. The system achieved an accuracy of about ±2°, 

ensuring optimal alignment with solar irradiance and maximizing power output. This solution is 

cost-effective and location-independent, though challenges remain in overcast conditions where 

shadow clarity is reduced. One potential solution to this is incorporating higher-resolution 

cameras to improve performance under diverse weather conditions [32]. 

Rahmawati et al. (2020) focused on the importance of precise solar panel positioning for optimal 

energy production. They employed image processing techniques to track the sun’s position, 

calculating its angle by analyzing the shadow of a small object. Their system achieved tracking 

accuracies of 95% in azimuth and 96% in altitude, ensuring the panels were aligned to maximize 

energy capture. This approach holds promise for enhancing energy efficiency through precise 

solar tracking and shows potential for adaptability under different weather conditions [33]. 

AL-Rousan et al. (2020) explored the application of AI techniques, specifically the Adaptive 

Neural Fuzzy Inference System (ANFIS), to manage solar tracking systems. ANFIS models 
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proved effective in predicting the optimal tilt and orientation angles for solar panels, enhancing 

energy efficiency. Research suggests that solar trackers using ANFIS outperform traditional 

control methods, including fuzzy logic and neural networks, offering superior performance with 

fewer errors and higher prediction accuracy [34]. 

Phiri et al. (2023) conducted a systematic review on the use of Deep Learning (DL) in solar 

tracking systems, underlining its potential to improve solar energy applications. The review 

highlighted that traditional Machine Learning (ML) models struggle with large datasets and data 

representation, while DL models show great promise in forecasting temperature and predicting 

solar irradiance. The review covers 37 academic papers published between 2012 and 2022, 

examining various topics such as dataset usage, preprocessing methods, feature engineering, DL 

algorithms, and performance metrics. Despite the rise of deep hybrid learning models, the review 

identifies ongoing challenges, including dataset availability, the use of image-based data, and the 

need for optimized preprocessing. Addressing these issues is essential for advancing DL in solar 

tracking systems [35]. 

Paletta et al. (2023) investigated methods to improve solar energy forecasting accuracy using 

physics-informed transfer learning. The study utilized deep learning techniques, specifically 

convolutional neural networks (CNNs), to analyze cloud images from ground-level sky cameras 

to predict solar irradiance. Transfer learning techniques such as zero-shot learning (ZSL) and 

few-shot learning (FSL) were used, enabling pre-trained models to adapt to new environments 

without requiring extensive local data. The results indicated a significant improvement in 

forecasting accuracy in both cloudy and clear-sky conditions, facilitating the rapid deployment of 

reliable forecasting models in industrial settings. The study addressed traditional deep learning 

limitations, which often rely on large local datasets, making them unsuitable for immediate use 

in situations requiring timely solar forecasts. By using multi-location datasets, these models 

showed improved generalization, making them more scalable for solar energy forecasting 

solutions [36]. 

Mohammad et al. (2023) discussed the transformative role of AI in the solar energy sector, 

emphasizing its ability to revolutionize the generation, management, and grid integration of solar 

power. AI innovations in solar panel technology have significantly enhanced both efficiency and 
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scalability. Moreover, machine learning techniques contribute to improved grid stability and 

energy forecasting accuracy. AI-powered management systems also convert data into actionable 

insights, optimizing system performance and enabling predictive maintenance. These 

advancements are critical for creating a more efficient, reliable, and sustainable future for solar 

energy, which is vital for meeting global energy needs and combating climate change [37]. 

Lorilla et al. (2022) designed a system that dynamically tracks the sun’s centroid with 

remarkable flexibility, even under low irradiation conditions, such as cloud cover. The system 

uses a high-resolution camera with a 180-degree field of view, facilitating precise image 

processing and employing adaptive control techniques to adjust the pan and tilt of servo motors. 

The system achieved azimuth and altitude tracking accuracies of 0.23° and 0.66%, respectively, 

using the Solar Position Algorithm (SPA), comparable to commercial solar trackers. This 

prototype shows strong performance for dynamic solar tracking, making it suitable for Parabolic 

Dish Solar Concentrators. It also integrates AI-based computing for remote applications, using 

low-cost hardware to ensure commercial viability. Future plans include incorporating AI for 

direct normal irradiance estimation and implementing wireless motor control at Concentrating 

Solar Power (CSP) sites, as well as data collection during various solar events [38]. 

Oğuz et al. (2020) explored the use of embedded systems with wide-angle cameras to accurately 

track the sun’s trajectory. Their system captures images of the sun and processes them to 

determine its position in the sky. The system, which uses a Raspberry Pi 2 B and a 5MP wide-

angle camera, demonstrated the potential for improved accuracy in solar tracking, presenting the 

mechanical and electronic setups, image acquisition procedure, and initial processing results 

[39]. 

Carballo et al. (2019) introduced an innovative solar tracking system that combines computer 

vision, low-cost hardware, and deep learning techniques to address the cost and operational 

challenges faced by traditional systems. Deployed at the Plataforma Solar de Almería, the system 

uses convolutional neural networks (CNNs) to detect objects and track the sun’s position. By 

forecasting cloud movements, detecting shadows, and measuring concentrated solar radiation, 

the system enhances solar panel efficiency. This method minimizes reliance on expensive and 

complex mechanical tracking systems. Moreover, its ability to predict cloud coverage and 
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shadow effects enables proactive adjustments to the panels, leading to more efficient energy 

production. The system reduces costs and enhances the reliability and efficiency of solar power 

generation, positioning it as a promising alternative for sustainable energy systems [40].  

Adel et al. (2019) introduced a new methodology for improving solar flux analysis in solar 

central receiver (SCR) systems. Traditional single-CCD cameras often struggle to capture solar 

flux accurately due to their limited dynamic range. To overcome this, the authors proposed using 

a double-CCD camera that captures two images at different exposure levels, which are then 

combined into a high dynamic range (HDR) image using a newly developed weighting function. 

This method improves the resolution of solar flux details, providing more accurate analysis of 

beam accuracy and optical quality in SCR systems. The paper presents experimental results that 

demonstrate the new weighting function’s superiority over existing methods, marking a 

significant advancement in solar flux analysis and aiding in the design and operation of solar 

power plants [41]. 

Garcia-Gil et al. (2019) presented a solar tracker design that uses panoramic images captured by 

a fisheye camera. The images are processed digitally to estimate the sun’s azimuth and elevation 

angles, which are then used to position the solar tracker accurately. The system operates 

effectively under various weather conditions without the need for GPS or complex calculations 

and does not require latitude or longitude data. However, the fisheye camera needs to be oriented 

north and leveled with the ground. The proposed method demonstrates impressive precision 

compared to established algorithms, with future research focused on developing maximum 

power point tracking systems [42]. 

Gozhyj et al. (2020) discussed the use of neural networks to optimize the control mechanisms of 

solar power plants and electricity distribution. They described a system based on a neural 

network designed to track the maximum power point (MPP) of photovoltaic systems, adjusting 

battery charging to maximize energy output. The system uses a multilayer neural network trained 

with a backpropagation algorithm, which improves system efficiency by optimizing voltage and 

current distribution based on real-time solar panel and battery conditions [43]. 
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Rahate et al. (2021) introduced a two-axis solar tracking system that combines computer vision 

with photosensor technologies to enhance solar energy collection. The system employs a 

Raspberry Pi 4 for real-time image processing, while an ATmega128 microcontroller controls 

stepper motors based on the processed data. The system integrates image-based feedback to 

address disturbances like cloud cover and uses photosensor-based control to make accurate 

adjustments. This approach enhances both solar tracking precision and energy efficiency, making 

it adaptable to changing weather conditions [44]. 

Jose et al. (2019) explored a new solar tracking method that uses deep learning techniques via 

TensorFlow, an open-source machine learning framework. This framework enhances flexibility 

and allows the implementation of neural networks across various devices, including embedded 

systems and mobile platforms. The networks accurately recognize the Sun and its trajectory, 

enabling precise tracking without additional data. The advanced machine learning framework 

outperforms the original system in terms of speed and accuracy. Future research will focus on 

training networks with larger datasets, optimizing implementations, and achieving autonomous 

control of heliostats to improve tracking accuracy and minimize errors [45].  

Sections 2.3 and 2.4 reviewed various solar tracking system designs, optimization strategies, and 

AI-based enhancements. Table 2 provides a consolidated summary of the key studies, outlining 

the system type, techniques used, and the main performance results reported. 

Table 2 Summary of Key Studies in Sections 2.3 and 2.4 

Authors System Type Technique Used Key Results 

Ben Taher et al. 

(2023)  

PTC MCRT Optical efficiency: 83.01%, 

heat flux uniformity: 92.24% 

GARIP et al. 

(2023) 

Dual-axis

  

Stirling engine 1 kW electricity + 3 kW heat 

generation 

Balaji et al. (2022) PV  SPPT + SSPO >98% tracking efficiency, <1 s 

response time 

Abdel-hamed et al. 

(2022)  

Single-axis HHO + WGAF Significant performance 

improvement 

Hariri et al. (2022) SAST / STS

  

Light sensors STS outperformed SAST in 

energy output and accuracy 

Tchao et al. (2023) Dual-axis 

CSP  

Computer vision + 

Arduino 

High accuracy, low 

operational cost 



ERURJ 2025, 4, 4, 3314-3335 

 

3331 

Venkata et al. 

(2022) 

PV  ML regression >95% efficiency, 

outperformed traditional 

MPPT 

Phiri et al. (2023) Various Deep Learning Improved solar irradiance 

forecasting 

Paletta et al. (2023) PV Transfer Learning 

+ CNN 

Enhanced cloud and irradiance 

prediction 

Lorilla et al. (2022) Parabolic 

Dish  

180° camera + AI Azimuth accuracy: 0.23°, 

altitude accuracy: 0.66° 

 

In summary, the reviewed literature demonstrates the significant advancements in solar 

tracking technologies, particularly through the integration of AI and deep learning, which have 

shown substantial potential to enhance system efficiency, adaptability, and reliability under 

diverse environmental conditions. These findings lay the groundwork for future innovations. 

 

3. Conclusion 

This review has examined the evolution of solar tracking systems, highlighting the transition 

from traditional time-based and sensor-driven mechanisms to advanced solutions powered by 

artificial intelligence (AI) and deep learning (DL). The literature indicates that AI- and DL-

enhanced tracking systems offer substantial improvements in accuracy, adaptability, and energy 

yield, particularly under dynamic and challenging environmental conditions. Furthermore, 

integration of computer vision, optimization algorithms, and hybrid control strategies has shown 

promising results in reducing tracking errors, improving system efficiency, and lowering 

operational costs. 

Despite these advancements, several research gaps remain. Scalability and real-time 

implementation of AI-based tracking systems require further exploration, especially for large-

scale solar power plants. Challenges such as high initial costs, maintenance complexity, and 

performance variability under extreme weather still hinder widespread adoption. Moreover, the 

lack of standardized datasets and benchmarking methods limits the ability to compare solutions 

objectively across different studies. 

Future research should focus on developing cost-effective, energy-efficient, and self-calibrating 

tracking systems capable of operating autonomously in diverse environmental contexts. 
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Integrating AI with emerging technologies such as Internet of Things (IoT) networks, edge 

computing, and predictive maintenance frameworks can further enhance system resilience and 

efficiency. By addressing these challenges, the next generation of solar tracking systems can 

significantly contribute to the global transition toward sustainable and reliable renewable energy 

solutions. 
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