International Journal of Learning Management Systems

http://dx.doi.org/10.21608/IJLMS.2025.130404

Legal Use of Artificial Intelligence Technologies and Tools in Modern Scientific Research

Mohamed Osman Mohamed GasmElseid 1,*

¹ Assistant professor, Information Systems Department, University of Technology, Sudan

Received: 25 Aug. 2025, Revised: 20 Sep. 2025, Accepted: 20 Oct. 2025.

Published online: 1 Oct. 2025.

Abstract: Artificial intelligence (AI) has transformed modern scientific research by replacing time-consuming traditional methods with rapid, automated, and data-driven approaches. This paper highlights the importance of AI technologies and tools in advancing research and education by presenting global examples and practical applications. Using an applied descriptive-analytic methodology, the study reviews key AI-driven platforms—such as Scite, Consensus, Elicit, Semantic Scholar, QuillBot, Gradescope.

Research Rabbit, and ChatGPT—that support literature discovery, scientific writing, productivity, and systematic reviews Findings indicate that these tools enhance efficiency, improve data analysis, accelerate the pace of discovery, and optimize scientific communication. However, challenges remain in ensuring data quality, addressing bias, and maintaining ethical responsibility.

The study concludes that AI should be regarded as a complementary tool that augments rather than replaces human creativity and expertise, with future progress depending on balancing technological innovation and human judgment.

Keywords: artificial intelligence, technology, AI applications, fields of AI.

Chapter one

Theoretical Part

1. Introduction

Artificial intelligence (AI) is a transformative technology with wide applications across numerous¹.

One emerging subset of AI is large language models (LLMs), which are trained on vast collections of text and, in some cases, multimodal data such as images. By capturing statistical patterns in language, LLMs are able to generate coherent, human-like responses and perform tasks such as summarization, translation, and question answering².

Recent surveys also highlight their growing role in scientific research, where they support literature reviews, hypothesis generation, and knowledge discovery³.

AI further accelerates scientific discovery by automating tasks, analyzing large datasets for hidden patterns, generating hypotheses, and designing experiments. These capabilities increase efficiency and enable faster breakthroughs in areas such as drug discovery, complex simulations, and the identification of research gaps, at the same time, ethical concerns including data bias, transparency, and accountability—require careful management.

As a result, although AI demonstrates significant potential to enhance scientific writing, it should be viewed as a complementary tool rather than a replacement for human expertise. Human creativity, critical thinking, and domain knowledge remain essential for ensuring originality, accuracy, and ethical responsibility in research. Accordingly, AI systems must be integrated into the research process in ways that augment, rather than substitute, human judgment⁴.

Research Problems:

The integration of artificial intelligence (AI) into scientific research presents both opportunities and challenges, on one hand, AI can support researchers in developing new skills for data analysis, problem-solving, and scientific writing. On the

^{1 -} sectors (Russell & Norvig, 2021)

^{2 -(}Brown et al., 2020; Bommasani et al., 2021)

³⁻⁽Lauscher et al., 2025)

^{4 -(}Floridi & Cowls, 2019; Jobin, Ienca, & Vayena, 2019)

other hand, concerns remain regarding data quality, interpretability, transparency, and ethical considerations. These challenges raise questions about how AI can be effectively adopted while maintaining rigor, reliability.

2. Importance of Research:

Employing AI techniques in scientific research represents a significant evolution in traditional methodologies, AI enables researchers to collect, process, and analyze data with unprecedented speed and accuracy, particularly in managing largescale or complex datasets. By leveraging AI-driven tools, researchers can generate novel insights, refine research ideas, and accelerate progress in ways that were not previously possible.

Furthermore, AI supports the design of more cost-effective and efficient experiments, improving both measurement and analysis methods. This contributes to faster discoveries, higher-quality outputs, and overall acceleration of scientific progress across multiple disciplines, for these reasons, AI is increasingly viewed as an essential tool for advancing scientific knowledge and enhancing research capabilities globally.

3. Research objectives:

Study of the most important applications of artificial intelligence in research and studies, highlighting the impact of artificial intelligence on education and humanity in all fields, and the future of artificial intelligence in terms of challenges and advantages.

Research objectives in the form of important points:

- Review of tools and techniques used to support scientific research.
- The role of artificial intelligence in generating original scientific research.
- Artificial Intelligence's Development and Challenges in Scientific Writing.

4. Research Methodology:

This paper adopts an applied descriptive-analytic methodology.

The approach involves describing the real-world problems facing academic research and studies, analyzing these problems, and identifying potential solutions. The analysis draws upon recent scholarly literature, AI tools, and documented applications to evaluate how artificial intelligence can be integrated into research practices.

Chapter Two

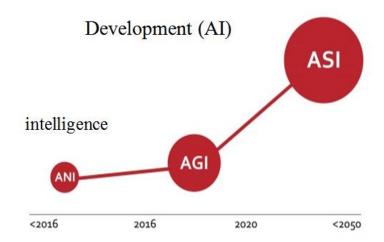
Practical applications

5. Introduction:

Artificial intelligence (AI) has become an essential aid for researchers in organizing their thoughts and producing datadriven outcomes. AI-powered platforms such as Semantic Scholar and Paper Digest can scan vast collections of scientific texts and extract relevant information, helping scholars navigate the growing volume of literature⁵. Similarly, large language models such as GPT-3 have demonstrated the ability to generate high-quality drafts, summarize articles, and support idea organization, thereby expediting the publishing process and enabling researchers to focus on higher-level contributions⁶. Among the most widely adopted tools, ChatGPT has proven particularly useful in research and publishing, as it can assist with structuring material, generating drafts, and providing proofreading support.

These tools enhance productivity and improve the overall quality of scientific writing. However, their limitations must also be recognized. Challenges such as bias in training data, ethical concerns regarding originality and authorship, and the irreplaceable need for human creativity and critical thinking remain central issues. Improving the scientific writing process therefore requires leveraging AI's potential while ensuring human oversight. Transparency, ethical responsibility, and reliability must guide the integration of AI-driven technologies into academic practice to maximize their benefits while minimizing risks.

Figure 1 illustrates the three main stages of AI development. Artificial Narrow Intelligence (ANI), which existed before 2016, refers to AI systems designed to perform specific tasks, such as speech recognition or image classification. The next


6 -(Brown et al., 2020; Bommasani et al., 2021)

© 2025 IJLMS

^{5 -(}Nicholson & Alperin, 2022)

stage, Artificial General Intelligence (AGI), expected to emerge around 2016–2020, represents AI capable of performing intellectual tasks across multiple domains at a human-like level. Looking ahead, Artificial Superintelligence (ASI) is projected to develop before 2050, referring to AI systems that would surpass human intelligence in all areas, including creativity, problem-solving, and decision-making.

This progression highlights both the opportunities and risks associated with AI evolution, underscoring the importance of ethical considerations, governance, and human oversight in guiding future advancements

Fig. 1: Stages of development of artificial intelligence⁷

6. Legal AI tools and techniques in support of scientific research and education are as follows:

AI Tools in Scientific Research

The use of artificial intelligence (AI) in scientific research has expanded rapidly, offering tools that support scholars in various aspects of the research process. These tools can be broadly categorized into literature discovery, writing assistance, productivity support, and advanced applications in systematic reviews and scientific discovery.

1. Literature discovery tools:

Several AI-powered platforms streamline the process of finding and analyzing scientific literature. Scite Assistant helps researchers discover and extract essential information from scientific papers while also tracking citations and facilitating collaboration Consensus is an AI-based search engine that enables users to retrieve peer-reviewed publications and extract key findings directly. Similarly, Elicit functions as a research assistant that supports writing, brainstorming, summarization, and classification of texts, and can even generate seminar presentations Semantic Scholar is another widely used intelligent academic search engine that prioritizes scientific content, allowing researchers to analyze papers, extract critical insights, identify trends, and organize references into collections.

2. Writing and productivity tools:

AI also supports academic writing and productivity, QuillBot employs natural language processing to improve writing quality through paraphrasing, fluency enhancement, and readability improvements, Gradescope applies machine learning to automate grading, recognize handwriting, and provide detailed analytics for student performance. Research Rabbit enables researchers to visualize academic networks, track citations, generate references, and create paper summaries. Meanwhile, ChatGPT provides flexible support for text generation, translation, answering questions, logical reasoning, and grammar correction, Perplexity AI serves as an advanced academic search engine that retrieves relevant information from multiple scientific sources and presents interconnected references.

7. Applications in academic writing and systematic reviews:

Beyond individual tools, recent studies emphasize the broader role of AI in academic writing. identified six areas where AI tools enhance research productivity: idea generation, content organization, literature summarization, data management, editing, and ethical compliance. Similarly, Cheng et al. (2025) demonstrated that large language models such as ChatGPT

can improve idea refinement, grammar correction, and proofreading, while also cautioning about risks such as inaccuracies, bias, and copyright issues.

AI has also been increasingly applied to systematic literature reviews (SLRs). De la Torre-López et al. (2024) reviewed AI techniques for automating SLRs over the past 15 years, covering tasks such as review planning, paper collection, filtering, information extraction, and reporting. These repetitive processes make literature reviews a strong candidate for automation using machine learning.

8. Future perspectives:

Looking forward, AI is expected to play an even more active role in scientific discovery. Eger et al. (2025) outlined how large language models and multimodal AI can accelerate literature retrieval, inspire new research directions, generate both textual and visual content (such as figures and diagrams), and perform automated evaluations of scientific outputs. However, they also highlighted ethical challenges related to plagiarism, data security, and the reliability of AI-generated results.

To provide a concise overview, **Table 1** summarizes the main AI tools discussed in this section, highlighting their primary functions, contributions to research, and supporting references.

Tool	Primary Function	Contribution to Research
Scite Assistant	Citation analysis & discovery	Tracks citations, evaluates context, supports collaboration
Consensus	AI-powered literature search	Retrieves peer-reviewed findings directly
Elicit	Research assistant & brainstorming	Summarization, classification, idea generation
Semantic Scholar	Intelligent academic search engine	Extracts insights, tracks trends, organizes references
QuillBot	Writing assistant (NLP)	Paraphrasing, fluency, readability
Gradescope	Assessment support	Automates grading, provides analytics
Research Rabbit	Research management	Citation tracking, network visualization
ChatGPT	Large language model	Drafting, translation, reasoning, proofreading
Perplexity AI	Academic search engine	Retrieves cross-source references

Table 1: Key AI Tools in Scientific Research⁸

5-Explanation of Table 1:

As shown in Table 1, AI tools serve diverse purposes across the research workflow. Literature-focused platforms such as Scite, Consensus, Elicit, and Semantic Scholar assist with information retrieval and knowledge synthesis. Writing and productivity tools like QuillBot, Gradescope, and Research Rabbit support drafting, editing, assessment, and citation management. General-purpose large language models such as ChatGPT, alongside academic search engines like Perplexity AI, provide flexible support across multiple domains. Collectively, these tools demonstrate how AI is enhancing efficiency, collaboration, and quality in scientific research, while also underscoring the need for ethical oversight and human judgment.

9. Results and recommendations:

Although (AI) demonstrates significant potential to enhance scientific writing, it should be viewed as a complementary tool rather than a replacement for human expertise. Human creativity, critical thinking, and domain knowledge remain essential for ensuring originality, accuracy, and ethical responsibility in research. Accordingly, AI systems must be integrated into the research process in ways that augment, rather than substitute, human judgment. From the researchers' recommendations Focus on the techniques and tools in artificial intelligence that were reviewed in the research to develop scientific research

10. Conclusion:

The researcher reached a set of points for using legal artificial intelligence tools and techniques to support scientific research and education, which are as follows:

Artificial intelligence (AI) presents significant opportunities for advancing scientific research and academic writing. By integrating AI-powered tools, researchers can enhance efficiency, accuracy, and overall quality in areas such as proofreading, citation management, data analysis, and manuscript preparation. For instance, tools like ChatGPT have the potential to boost research productivity, optimize workflows, and improve content clarity and coherence.

_

⁸-Nicholson & Alperin, 2022

At the same time, the ethical and practical challenges of adopting AI must be carefully addressed. Issues such as bias, accountability, transparency, and the risk of over-reliance on automation require ongoing attention. Importantly, AI cannot replace human creativity, critical thinking, or domain expertise; rather, it should complement and extend these capabilities.

Therefore, the future of AI in scientific research lies in achieving a balance between technological innovation and human judgment. When guided by ethical principles and rigorous oversight, AI can become a transformative partner in scientific discovery, supporting both innovation and integrity in academic work.

Reference

- [1] Bommasani, R., Hudson, D. A., Adeli, E., Altman, R., Arora, S., von Arx, S., ... Liang, P. (2021). On the opportunities and risks of foundation models. *arXiv preprint arXiv:2108.07258*.
- [2] Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P., ... Amodei, D. (2020). Language models are few-shot learners. *Advances in Neural Information Processing Systems*, *33*, 1877–1901.
- [3] Cheng, A., et al. (2025). Artificial intelligence-assisted academic writing. *BMC Medical Research Methodology*, 25(1). https://pmc.ncbi.nlm.nih.gov/articles/PMC12007126/
- [4] De la Torre-López, J., Ramírez, A., & Romero, J. R. (2024). Artificial intelligence to automate the systematic review of scientific literature. *arXiv preprint arXiv:2401.10917*. https://arxiv.org/abs/2401.10917
- [5] Eger, S., et al. (2025). Large language models and multimodal AI in scientific discovery. *arXiv* preprint arXiv:2502.10045.
- [6] Eger, S., Cao, Y., D'Souza, J., Geiger, A., Greisinger, C., Gross, S., Hou, Y., Krenn, B., Lauscher, A., Li, Y., Lin, C., Moosavi, N. S., Zhao, W., & Miller, T. (2025). Transforming science with large language models: A survey on AI-assisted scientific discovery, experimentation, content generation, and evaluation. arXiv preprint arXiv:2502.05151. https://arxiv.org/abs/2502.05151
- [7] Floridi, L., & Cowls, J. (2019). A unified framework of five principles for AI in society. *Harvard Data Science Review*, *I*(1). https://doi.org/10.1162/99608f92.8cd550d1
- [8] Jobin, A., Ienca, M., & Vayena, E. (2019). The global landscape of AI ethics guidelines. *Nature Machine Intelligence*, 1(9), 389–399. https://doi.org/10.1038/s42256-019-0088-2
- [9] Khalifa, M., et al. (2024). Using artificial intelligence in academic writing and research. *Journal of Computational Science Education*, 15(2), 45–60.
- [10] Kung, J., et al. (2023). Elicit: AI research assistant for scientific workflows. *PLOS Computational Biology*, 19(4), e1008936. https://pmc.ncbi.nlm.nih.gov/articles/PMC10089336/
- [11] Nicholson, J. M., & Alperin, J. P. (2022). Scite: A smart citation index that displays the context of citations. *Quantitative Science Studies*, 3(3), 882–897. https://doi.org/10.1162/qss-a-00207
- [12] Russell, S., & Norvig, P. (2021). Artificial intelligence: A modern approach (4th ed.). Pearson.
- [13] Tao, J., & Zhang, Y. (2023). Using Elicit AI research assistant for data extraction in systematic reviews: A feasibility study across environmental and life sciences. *ResearchGate*. https://www.researchgate.net/publication/394624546
- [14] Thomas, J., & Nye, B. (2024). Using Elicit AI research assistant for data extraction in systematic reviews: A feasibility study across environmental and life sciences. *BMC Medical Research Methodology*, 24(3), 145–158. https://pmc.ncbi.nlm.nih.gov/articles/PMC11921719/