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ABSTRACT 

Modern exogenous and endogenous-based stimuli-responsive drug delivery systems 

(DDSs) for temporal and spatial drug release were examined aiming to focus on the shortcomings 

of traditional treatment approaches. This review addresses the mechanism of action and smart 

chemistry of numerous stimuli-responsive polymeric carriers, which are important in both the 

exogenous and endogenous domains of sick cells or tissues. Research is being conducted globally 

to build new stimuli-responsive DDSs, both internal and external, for biomedical, and/or 

pharmaceutical applications. A crucial component of designing so-called "smart" DDSs, which 

sophisticatedly regulates drug loading, adjusts the mechanism of drug release, controls individual 
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variability, and offers targeted drug delivery, is the polymeric carriers' dual/multi-responsive, 

internal, and even external behavior. Numerous DDSs have been invented, proposed, and used 

thus far. These systems include electrical, photo/light, pH, magnetic, temperature, ultrasonic, 

redox responsive DDSs, and multi-responsive DDSs (linking two or more from any of the 

aforementioned). To close the research gap, several difficult issues still need to be resolved despite 

the tremendous advancements made in the DDSs field. The drug release mechanisms and the uses 

of exogenous and endogenous stimuli-responsive DDSs in therapeutic settings were therefore 

highlighted.  

 

Keywords: Drug delivery systems, drug release kinetics, stimuli-responsive targeting, exogenous 

stimuli, and endogenous stimuli. 

1. Introduction 

DDSs are devices or formulations fabricated to introduce an active pharmaceutical 

substance to the body, thereby improving its safety and effectiveness through controlling the site, 

and time of drug release [1]. This encompasses the delivery of the pharmaceutical formula, the 

regulated liberation of its active constituents, and the consequent conveyance of these active 

constituents to the intended site of activity [2]. 

Traditional DDSs are restricted by their incapability to precisely control dosing, and attain 

site targeting [3]. Conventional approaches of drug delivery encounter difficulties in sustaining 

optimal drug levels while minimizing side effects and preventing drug toxicity [4,5]. 

To cope with the restrictions of traditional DDSs, and to improve the patients’ care quality, 

the pharmaceutical research field addresses the necessity for the development and design of novel 

DDSs (NDDSs) [6]. The necessity for elevated performance, and modified drug release is triggered 

by the paramount importance of enhancing patient compliance, achieving superior clinical 

efficacy, and extending product lifespan via controlled drug release systems [7]. Additionally, these 

systems offer the distinct economic advantage of reduced frequency and expenses of 

administration. Furthermore, the evolution from conventional to NDDSs can lead to significant 

improvements in therapeutic efficacy, safety profile, and patient compliance. Consequently, 

NDDSs might be one of the most rapidly expanding sectors in the pharmaceutical industry [8]. 

NDDSs are meticulously fabricated to optimize the delivery and efficiency of existing 

medications in comparison with traditional systems. These innovative systems employ advanced 



ERURJ 2025, 4, 4, 3180-3211 
 

3182 

techniques and novel dosage forms to precisely achieve targeted, regulated, and modulated drug 

delivery [4,9–11]. Ideally, NDDSs strive to fulfill two key prerequisites: site-specific drug delivery 

at rate and extent dictated via the body's requirements, and monitoring of the drug level throughout 

the treatment period [12]. The core impetus behind the progression of NDDSs lies in enabling 

sustained and controlled drug release, thereby maintaining optimal therapeutic drug levels along 

with concurrent reduction of adverse effects [13,14]. 

Recently, advancements in nanoparticle-based DDSs, have gained the attention of 

pharmaceutical and biomedical researchers. This is primarily attributed to their potential to 

significantly enhance the effectiveness of various drugs, particularly those targeting cancer, 

viruses, and microbial infections [15–19]. 

In addition to their usage in drug delivery, nanoparticles have found extensive application 

in biomedical imaging due to their capacity for targeted augmentation. This feature permits the 

integration of contrast ants and allows for the tuning of pharmacokinetic profiles [20]. 

Furthermore, theranostic nano-carriers provide synchronized diagnosis, therapy, and medication 

response monitoring [21]. 

Notably, the remarkable advancements in materials science and pharmaceutics have 

facilitated the development of a diverse array of nano-carriers with varying surface properties, 

sizes, and structures [22]. 

Moreover, the tremendous progress in drug delivery has addressed the formulation of on-

demand (switch on/off) mechanisms. These innovative systems offer tailored drug release 

mechanisms with exceptional temporal and spatial drug delivery [23]. The paradigm of on/off drug 

delivery is made possible by the formulation of stimuli-responsive systems which possess the 

ability to detect their microenvironment and dynamically respond, imitating the inherent 

responsiveness observed in living organisms [24]. Nevertheless, the implementation of this 

approach exhibits a considerable challenge for its complexity [25]. 

The pioneering inception of stimuli-responsive DDSs was initially proposed in the 1970s,  

sparking a surge of research activity focused on the development of such materials for targeted 

therapeutic delivery [26]. Stimuli-responsive systems may demonstrate sensitivity to particular 

endogenous stimuli, including reduced interstitial pH, elevated concentrations of glutathione, or 

heightened activity of specific enzymes [27,28]. Additionally, the application of exogenous 



ERURJ 2025, 4, 4, 3180-3211 
 

3183 

physical stimuli, such as electric fields, magnetic changes, temperature variations, ultrasound, and 

light, can also be employed [29,30]. 

In this Review, we elucidate the substantial advancements achieved in the realm of stimuli-

responsive nanocarriers for drug delivery. 

2. Exogenous stimuli-responsive drug delivery systems 

Exogenous stimuli-responsive DDSs have been reported to be advantageous over 

endogenous stimuli-responsive DDSs for their potential to circumvent inter-individual variability 

in drug release. This advantage stems from the ability to precisely control these external stimuli 

compared to the inherent variability of internal physiological factors (e.g., pH, enzyme levels). 

Various external stimuli have been demonstrated to be effective in regulating drug release. Since 

the majority of these stimuli result in the liberation of heat, thermo-responsive polymers may 

perform a crucial role in developing these DDSs. Through temperature-sensitive materials, this 

temperature rise can promote the release of drugs [31]. 

2.1. Thermoresponsive systems 

Thermoresponsive DDSs stand as one of the extensively researched approaches, 

particularly in the field of oncology. The responsiveness to temperature is typically dictated by a 

nonlinear and abrupt alteration in the characteristics of at least one constituent of the system 

components along with changes in temperature. These abrupt changes instigate the drug release in 

response to fluctuations in the surrounding temperature [32]. 

Two approaches for the formulation of thermoresponsive drug release have been described: 

one uses external stimuli to generate hyperthermia to facilitate thermal-based therapy; the other 

responds to higher temperatures of the diseased tissues for burst release. Approaches based on 

external stimuli seem more promising for controlling drug delivery when compared to techniques 

based on internal stimuli because of their exact control and production feasibility [33]. 

Thermoresponsive polymers exert a pivotal part in these systems due to their ability to 

react to temperature variations. Two distinct behaviours have been observed for thermoresponsive 

materials, namely the upper critical solution temperature (UCST) and the lower critical solution 

temperature (LCST) [34]. For polymers exhibiting UCST characteristics, increasing temperature 

above the UCST results in enhanced hydrophilicity, that governs the swelling performance of the 

carriers, thereby modulating the drug release. Conversely, for polymers exhibiting LCST 
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characteristics, decreasing temperature below the LCST results in increased swelling, while 

increased temperature results in decreased swelling [35]. 

Liposomes, polymer micelles, or nanoparticles with a LCST are examples of 

thermoresponsive systems [36]. Thermoresponsiveness in liposomes is often caused by the shift 

of the lipid components phase and the corresponding changes in the bilayer structure. Heat is often 

employed in-vivo via radiofrequency oscillators, tiny annular-phased array microwaves, or 

temperature-controlled water sacks [37]. Thermosensitive liposomes arguably represent the most 

well-developed class of thermoresponsive nano-systems, a fact evidenced by their successful 

implementation in various clinical trials [38]. 

Currently, doxorubicin-loaded thermoresponsive liposomes, are undergoing phase II 

clinical investigation for their efficacy in treating breast cancer, and advanced to phase III 

investigations for treatment of hepatocellular carcinoma [39,40]. Furthermore, smith et al., 

developed specifically targeted thermosensitive liposomes, for the treatment of breast cancer [41]. 

Thermoresponsiveness can also be triggered by transient decrease in temperature, a 

phenomenon known as cold shock or cryotherapy. This rapid temperature shift triggers reversible 

swelling or deswelling of the nanocarrier, resulting in enhanced drug release through increased 

porosity. For instance, nano-capsules composed of Pluronic F127 and polyethyleneimine were 

employed for the efficient delivery of small interfering RNA (siRNA) into the cytosol, 

subsequently leading to the suppression of a specific messenger RNA [42]. 

2.2. Magnetic responsive systems 

The inherent ability of magnetic fields to penetrate biological tissues resulted in its 

utilization in magnetic resonance imaging (MRI) [43]. Beyond imaging purposes, controlled drug 

release can be achieved via the utilization of magnetic field-responsive carriers. These carriers 

have the ability to modify drug release through the application of an exogenous magnetic stimulus. 

Moreover, there is a potential for integrating diagnostics and therapy within a unified system, 

commonly referred to as the theranostic approach [44–46]. 

The potentials of magnetically responsive nanomaterials are their chemical stability, large 

surface area, high loading capacity rate, and minimal intraparticle diffusion, which make them 

appealing for use in a variety of industries [47,48]. There are four categories of magnetic-

responsive nanomaterials: metallic, coated metal, oxides, and coated oxides [49]. The most studied 
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group consists of iron oxides, also known as ferrite nanoparticles, arranged in a crystalline form 

as magnetite or maghemite [50]. 

Following the administration of magnetically responsive DDSs, drug targeting is 

commonly achieved through directing an exogenous magnetic field toward the target tissue. This 

approach has shown significant promise in pre-clinical cancer treatment. Mesoporous silica shell 

nanocapsules [51], magnetic nanoparticle-based delivery systems [52], superparamagnetic 

Liposomes [53], and porous metallic nano-capsules [54] have been emerged as potential delivery 

systems. 

Thirunavukkarasu et al., formulated superparamagnetic iron oxide nanoparticles 

(SPIONs), where doxorubicin (DOX) and SPIONs have been loaded in a temperature-sensitive 

matrix for a theranostic purpose [45]. 

2.3. Ultrasound-responsive systems 

Ultrasound, traditionally known for diagnostic imaging, has emerged as a multifaceted tool 

in therapeutic medicine, particularly in drug delivery systems. Beyond its role in inducing 

hyperthermia, ultrasound energy offers nonthermal effects, enhancing drug release mechanisms 

through various physical actions. From triggering cavitation phenomena to facilitating vessel 

permeability, ultrasound's versatility enables precise spatiotemporal control over drug delivery, 

mitigating side effects on healthy tissues [55–59]. 

2-Tetrahydropyranyl methacrylate (THPMA), is a mechano-labile functional group that 

can hydrolyze in response to Ultrasonic exposure. It is an ultrasound-responsive hydrophobic 

monomer that is present in the polymeric gate. The acetal group of this initially hydrophobic unit; 

was broken after exposure to ultrasound, producing the hydrophilic product of methacrylic acid 

(MAA). Gates could be opened and closed by hydrophobic-hydrophilic transformation. The 

hydrophobic THPMA units changed into a hydrophilic MAA when ultrasound was applied, 

increasing the polymeric nano-gate's total solubility.  Ultrasound-induced drug release behavior 

was caused by the dissolved polymer gate losing its blocking ability [60]. 

 

2.4. Light/Photo responsive systems 

To create intricate scaffolding for regulating cellular behaviour inducing the release of 

entrapped chemicals, the construction of light-responsive smart biomaterials is an appealing 

approach [61,62]. Compared to other stimuli, the light stimulus has the advantage of being quickly 
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imposed and precisely given in precise amounts, allowing for less intrusive methods to control 

both space and time [63,64]. 

Wide range of UV to NIR wavelengths have been used as light stimuli. However, UV light 

is frequently used as a stimulus, yet it may not be safe and can't enter tissues deeply. NIR, on the 

other hand, is more suited for biomedical purposes, particularly for being less energetic, causing 

less damage to biological tissues, and capable of entering tissues more deeply [62].  

For instance, when photo-responsive micelles of polyglycerol-containing spiropyran were 

exposed to UV light, the breakdown of the hydrophobic spiropyran resulted in the formation of 

hydrophilic merocyanine [65]. Additionally, Petriashvili et al., fabricated spiropyran doped liquid 

crystal microspheres [66]. Advanced photopolymerizable linear or crosslinked polymers [67] and 

hydrogels [68] have been fabricated for tissue engineering, cell encapsulation, and drug delivery. 

Moreover, Photo-switchable polyacrylamide hydrogels containing an azobenzene 

molecule have been thoroughly investigated for their application in regenerative medicine [69]. 

Gold nanoparticles-based photoresponsive liposomes are widely used for controlled drug delivery 

[70]. Because of its customizable optical and photothermal properties, inertness, and lack of 

toxicity, gold nanoparticles are widely used based on their surface chemistry, size, and form [71]. 

2.5.Electrical responsive systems 

After administering electro-responsive drug carriers, a mild electric field can be 

administered over the targeted tissue to achieve regulated on-site drug release. Different methods, 

such as the oxidation-reduction process, carrier structural disruption, and activation of thermo-

responsive carriers, have been shown to control drug release through electrical stimulation [72]. 

Neumann et al., have disclosed a novel approach for drug delivery that is electro-responsive. They 

controlled the release of the medication through a pH-sensitive substance by using the local pH 

change brought on by an electrochemical reaction [73]. They used a pH-sensitive copolymer, 

poly(methyl methacrylate-co-methacrylic acid), to create drug-loaded nanofilms. Additionally, 

they discovered that buffer action stopped the drug release in the off-state by causing the pH drop 

caused by the electrical signal to rebound fast when the stimulus was removed [74]. 

Electrical signals can be effective in potentially delivering drugs in a controlled manner 

[75,76], regenerating damaged tissues [77,78], and modulating cell proliferation and 

differentiation [79,80]. Polyvinylidene fluoride (PVDF) is one of the polymers that has been 

utilized extensively in tissue engineering, for example, to treat neurological illnesses. In place of 
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traditional neurotrophin treatments, Hoop and colleagues [81] have created a PVDF membrane to 

encourage neuronal differentiation, resulting in neurite outgrowth uniform in all directions. This 

is likely because the cells' calcium channels were activated by the piezoelectric stimulation, which 

raised the Ca2+ content of the cells and started the adenylyl cyclase (AC) pathway. 

One of the examples of electrical responsive drug delivery is hydrogels; including 

polyelectrolytes, which are polymers with comparatively large concentrations of ionizable groups 

along the backbone chain, representing the basis for electrically-responsive hydrogels, which are 

also pH-responsive [82]. Although polycations and an amphoteric polyelectrolyte [83] have also 

been employed, polyanions have accounted for the majority of the polymers examined. Both 

artificial and naturally occurring polymers have been utilized, either singly or in combination. 

Examples of polymers that occur naturally Hydrogels' reaction to an electric field. Numerous 

researchers have examined how polyelectrolyte hydrogels react to an applied electric field using 

various experimental setups. The gel may or may not be submerged in a buffer, saline solution, or 

other electroconductive media. 

3. Endogenous stimuli-responsive drug delivery systems 

These DDSs initiate drug delivery through tissue regulation in the microenvironment, 

interaction between antibodies and antigens, and over-expression of enzymes. 

3.1. pH-responsive systems 

The extracellular organelles and bloodstream typically maintain a pH of 7.4, while the 

stomach exhibits a pH range of 1–3 and the duodenum and ileum of the gastrointestinal tract 

maintain pH levels between 6.6–7.5. Intracellular sub-endosomal and lysosomal organelles 

maintain pH ranges of 5.5–6.8 and 4.5–5.5, respectively. This wide range of pH values is crucial 

to consider during the fabrication of pH-responsive systems [77]. 

Variations in pH can impact crosslinking processes, especially significant for injectable 

hydrogels and self-healing materials. Additionally, protonation or deprotonation of acidic or basic 

groups can influence release profiles, and potentially target specific tissues or cells. Furthermore, 

engineered hydrogels can modulate physicochemical properties, directly affecting the fate of 

encapsulated cells [84]. 

The pH responsiveness observed in such systems primarily arises from the acid hydrolysis 

of chemical bonds, the ionizable groups’ protonation, and through conformational or chemical 

alterations within the used polymeric materials. Notably, in comparison to small molecule sensors, 
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responsive nano-systems exhibit remarkably high sensitivity in their response, owing to a positive 

synergy characteristic of supramolecular self-assembly systems. At a molecular level, the pH 

sensitivity of these nanosystems may be attributed to various factors such as ionic bonds, hydrogen 

bonds, π-π stacking, or hydrophobic interactions within the nanocarrier structure [85]. 

pH variations have been ingeniously harnessed to regulate the targeted distribution of 

medications within distinct bodily regions, including vagina, GIT, and intracellular locales as 

lysosomes or endosomes. Additionally, these variations in pH serve as pivotal cues to initiate the 

release of drugs precisely when subtle alterations in the environment are indicative of pathological 

conditions [86,87]. 

The buffering capacity of polyethyleneimine arises from its diverse amine groups with 

varying pKa values. These groups undergo protonation to various extents depending on the pH 

conditions [88]. This phenomenon primarily stems from the abnormal angiogenesis observed in 

rapidly growing tumors, resulting in a swift depletion of nutrients and oxygen. Consequently, there 

is a metabolic shift towards glycolysis, resulting in the accumulation of acidic metabolites in the 

tumor. Thus, effective pH-responsive systems have to swiftly respond to even subtle changes in 

pH within the tumor extracellular microenvironment. For instance, chitosan exhibits swelling upon 

protonation of its amino groups, facilitating the release of entrapped tumor necrosis factor-alpha 

in tumor tissues. Additionally, the abrupt dismantlement of PEG–poly(β-amino ester) micelles 

triggers the leak of encapsulated camptothecin. This pH-mediated triggered delivery approach has 

also demonstrated successful protein delivery into the ischemic area [89]. 

In infected tissues, the acidic environment poses a challenge, although it's noteworthy that 

cutaneous wound pH dynamically correlates with wound healing stages [29]. For instance, the 

inflammation stage tends to be acidic, while granulation shifts pH to alkaline range, and the 

remodeling phase restores the skins’ initial pH. pH-responsive wound dressings can be developed 

by crosslinking materials using various polymerization methods. These hydrogels exhibit tunable 

properties, making them promising for stage-responsive wound dressings [90]. 

Cell recruitment, infiltration, and vascularization are critical challenges in wound healing. 

pH-responsive scaffolds, such as HEMA/DMAEMA scaffolds photopolymerized at different 

molar ratios, demonstrate pH-dependent swelling behavior, with increased oxygen penetration and 

cell infiltration under acidic conditions. These scaffolds promote a pro-healing environment, 
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fostering significant levels of tissue formation and vascularization, thus holding the potential for 

enhancing wound healing processes [91]. 

3.2. Redox responsive systems 

Redox-responsive materials may exert a key function in the intracellular and extracellular 

regions of diseased cells or tissues [92]. Notably, a considerable redox potential difference exists 

between the extracellular and the reducing intracellular environments. The cellular nuclei and 

cytosol show a much higher concentration of  a reducing  agent, such as glutathione (GSH), than 

the extracellular and intercellular fluids  [93,94]. The greater concentration of GSH inside cells 

determines the reduced microenvironment in the cytoplasm [95]. Therefore, redox-sensitive 

nanocarriers have gained more attention [96]. Moreover, glutathione-responsive DDSs were 

fabricated for on-demand and responsive intracellular drug release [97]. 

The mechanism of endocytosis allows nanocarriers to enter the cell. As it gets closer to the 

cytosol, GSH breaks down the disulfide bonds, explodes, and releases the  medication [96]. The 

vast majority of glutathione-responsive block copolymers have the ability to form "Shell-

Sheddable" micelles because of the disulfide connection that unites hydrophilic and hydrophobic 

blocks. These micelles provide the therapeutic substance when they destabilize upon encountering 

glutathione. In-vitro and in-vivo studies shown that disulfide linkers in GSH-responsive micelles 

were quickly destabilized after cell penetration, releasing the ingredients of thiols, which bind to 

the micelle's core or shell or adhere to the Drug  molecules by disulfide bonding. Increased 

concentrations of reducing agents inside intracellular regions support the disulfide-containing 

polymers [94]. 

Ren et al.,  fabricated self-assembled nanostructures by exploiting solubility changes 

caused by oxidation in selenium block copolymers [98]. The spherical micelles with hydrophobic 

selenium centers were made using copolymers. The micelles were disintegrated, and the 

hydrophilicity was increased when selenium was converted from hydrogen peroxide to selenoxide. 

Upon the addition of reductants, spherical micelles could be replicated. It was shown that these 

selenium-containing nano ampules may easily form spherical micelles in both oxidizing and 

reducing environments. Thus, redox-responsive characteristics fully recovered [98]. 

A vesicle composed of layer-by-layer construction has been utilized to deliver drug 

medications. This process involves alternatingly depositing polyelectrolytes onto a template to 

form nanocarriers. The Caruso group used a disulfide crosslinker in combination with poly(N-
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vinyl pyrrolidone) and poly(methyl methacrylate) to develop redox-responsive capsules that were 

capable of enclosing DOX and plasmid DNA [99,100] The DOX-loaded capsules demonstrated a 

5000-times increase in cytotoxicity compared to DOX alone [99]. Up until now, the disulfide bond 

has been frequently used to create reduction-susceptible nanocarriers. The primary problem was 

in-vivo stability because the extracellular compartment contains cysteine and GSH, which might 

lead to an early outburst [100]. This could be solved by using multiple disulfide connections, which 

would change the number of disulfide cross-links [101,102]. 

3.3. Enzyme responsive systems 

Enzyme-dependent drug delivery system is a system whose physicochemical 

characteristics change macroscopically as a result of the enzyme’s biocatalytic activity [16]. The 

fabrication of a uniquely promising responsive element for DDS is largely dependent on the 

regulation and/or dysregulation of enzymes in the intracellular microenvironment. Enzyme-

responsive DDSs show tremendous qualities that are highly beneficial in bio-nanomedicine, 

including process efficacy, biorecognition, catalytic activity, selectivity, and sensitivity [16,103]. 

Diseases’ different pathological states can be identified and monitored utilizing novel ultra-

sensitive in-vivo DDSs, prompted by enzyme-mediated dysregulation in diseased organelles. 

Regarding enzyme-responsive DDS, the enzyme-mediated degradation of a polymeric moiety 

resulted in controlled drug release out of the carriers [16]. 

Antibody-directed enzyme prodrug therapy and polymer-directed enzyme prodrug therapy 

are two widely utilized strategies for the enzyme-specific release of conjugated medicines at the 

tumor site [104]. The majority of invasive diseases, such as cancer, are typified by the 

overexpression and upregulation of several secreted or membrane-bound enzymes, such as 

proteases, cathepsins, and matrix metalloproteinases [105]. Various novel DDSs are fabricated 

based on the altered expression of certain enzymes in infectious diseases, wherein active drugs are 

accumulated at the intended biological target [106]. 

The vast majority of enzyme-mediated DDSs rely on the enzyme’s expression in the 

extracellular environment. According to modern research, modified liposomes [107], 

bioresponsive mesoporous silica nanoparticles [108], or dextran-coated iron oxide nanoparticles 

[109] can be linked with surface PEG chains by short peptide chains that are then broken down by 

matrix metalloproteinases. 
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Enzymes can also be employed to transport medications into intracellular compartments. 

For example, the selective delivery of DOX utilizing mesoporous silica scaffolds joined with 

polysaccharide derivatives, following lysosomal enzyme-mediated breakage of the glycoside 

linkages and reduction of the polysaccharide chain lengths [110]. Similarly, drug release was 

achieved by the rapid enzymatic degradation of polymersomes by the lysosomal enzyme cathepsin 

B, which was overexpressed in numerous malignant tumors [111]. 

Polymer-based delivery systems bearing a cationic peptide as the substrate of intracellular 

proteases (or kinases) that are exclusively produced in human immunodeficiency virus-infected 

cells [112] or inflammatory cells [113] have been used to enable transgene expression with great 

cell specificity. Gene release and transcription were promoted by the disintegration of polymer–

DNA electrostatic interactions by enzymes [114]. Developed lipase-sensitive polymeric triple-

layered nanogel for the on-demand release of vancomycin antibiotics. This system dramatically 

inhibited Staphylococcus aureus growth and effectively terminated intracellular bacteria [115]. 

4. Dual / multi stimuli-responsive drug delivery systems 

Multi-stimuli responsive DDSs represent a significant advancement in the field of targeted 

therapeutics. Unlike conventional stimuli-responsive systems that respond to a single stimulus, 

multi-stimuli-responsive DDS is designed to respond to two or more stimuli [116]. These smart 

carriers are emerging as game-changers, responding to specific triggers in the body, and releasing 

their cargo only when certain conditions are met [117]. This enhances targeting and reduces side 

effects [118].  

Multi-stimuli responsive DDSs are engineered to react to various endogenous and 

exogenous stimuli [118]. Zhang et al., fabricated a pH/reduction dual-responsive and folate-

decorated polymeric micelles for targeted chemo-photothermal combination therapy [119]. DOX 

and indocyanine green were co-encapsulated into those carriers for enhanced imaging and chemo-

photothermal combination therapy. 

You et al., employed redox/NIR light dual stimulus-responsive polymeric nanoparticles for 

targeted delivery of cisplatin [120]. These nanoparticles revealed in-vitro drug release of 99.35% 

after 72 hours at pH 7.4, compared to 73.46% in systems responsive to NIR alone, 58.45% for 

glutathione-responsive systems, and 12.35% without any stimulus. Cui et al., employed pH and 

temperature dual responsive ionically self-assembled nanoparticles utilizing doxorubicin as a 

model drug [121]. While enhanced DOX delivery through thermosensitive liposomes utilizing 



ERURJ 2025, 4, 4, 3180-3211 
 

3192 

temperature-responsive N-isopropylacrylamide and pH-responsive propylacrylic acid was 

fabricated by Ta et al. [122]. 

Light and pH dual responsive mesoporous silica was fabricated by exploiting the resonance 

surface properties of palladium and silver for enhanced targeting of the anticancer drug, 

doxorubicin [103]. Other hybrid mesoporous silica nanoparticles showed a response to 

temperature and magnetic field for remotely controlled release of methotrexate to skeletal muscles 

[123]. Hegazy et al., constructed magnetic, reductive, and thermos-sensitive triple stimuli 

responsive mesoporous silica nanoparticles loaded with indocyanine green and DOX [124]. These 

systems represent a promising candidate in the formulation of targeted delivery of therapeutic 

agents to temperature and more reductive environment tissues, such as tumors and inflammatory 

sites. 

 

5. Novel Approaches in stimuli-responsive drug delivery systems 

4D Printing stimuli-responsive drug delivery systems 

Four-dimensional printing is an interesting field of study that integrates intelligent 

materials into three-dimensional printing. Using this method, objects that can gradually change 

form in response to environmental stimuli, such as moisture, electric or magnetic fields, UV light, 

temperature swings, pH variations, or alterations in the composition of ions, can be created 

[125,126]. Intelligent materials, such as shape memory polymers, alloys, hydrogels, ceramics, and 

composites, which can react to external stimuli, are essential for 4D printing. Unlike traditional 

3D printing, the ability of 4D printed materials to undergo structural and/or property alterations 

expands their applications across industries such as aerospace, biomedical, soft robotics, 

engineering, and fashion, potentially revolutionizing manufacturing [127–129]. In biomedical 

applications, however, 3D printed constructs fell short of expectations mainly due to their inability 

to adequately mimic dynamic human tissues. To date, most of the 3D printed biomedical structures 

are largely static and inanimate as they lack the time-dependent dimension. To adequately address 

the dynamic healing and regeneration process of human tissues, 4D printing emerges as an 

important development where “time” is incorporated into the conventional concept of 3D printing 

as the fourth dimension [130]. 
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6. Applications 

Over the last decades, DDSs have been developed and improved to increase the efficacy 

and safety of drugs aiming to improve health and decrease side effects. Applications of stimuli 

responsive DDS are applied in many fields of medicine like diagnosis, treatment, and imaging. 

5.1. Exogenous stimuli-responsive drug delivery systems 

Exogenous responsive DDSs are at the forefront of pharmaceutical innovation, employing 

external stimuli to precisely control drug release. Table 1 shows examples of thermos-responsive, 

electrical-responsive, ultrasound-responsive, light/Photo-responsive, and magnetic-responsive 

DDSs. 

5.2. Endogenous stimuli-responsive drug delivery systems 

Endogenous responsive DDSs represent a groundbreaking approach in pharmaceuticals, 

leveraging the body's physiological cues for precise drug targeting and release. Table 2 shows 

examples of pH-responsive, enzyme-responsive, and redox-responsive DDSs. 

 

Table 1: Applications of Exogenous stimuli-responsive drug delivery systems 

Drug Type of stimuli Outcome Ref. 

Doxorubicin 
Thermo-

responsive  

Drug-loaded liposomes were prepared with enhanced 

localization of the drug in tumor cells 
[131] 

Curcumin 
Thermo-

responsive 

Chitosan nanogels were developed with enhanced intracellular 

drug delivery 
[132] 

Doxorubicin 
Thermo-

responsive 

Thermos-sensitive vesicles were created and were effective 

against multidrug resistant cancer cells 
[133] 

Geldanamycin 
Magnetic-

responsive 

Magnetic nanoparticles were prepared to release drug in 

response to an alternating magnetic field, inducing effective 

apoptosis of cancer cells 

[134] 

Doxorubicin 
Magnetic-

responsive 

Polymeric micelles of doxorubicin were developed which 

could generate magnetic hyperthermia leading to controlled 

drug release against breast cancer cells 

[135] 

Topotecan  
Ultrasound-

responsive 

Enhanced uptake of topotecan-loaded liposomes into cancer 

cells because of a targeted focused ultrasound waves 
[136] 
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Paclitaxel 
Ultrasound-

responsive 

Combining paclitaxel-liposomes with ultrasound waves for 

treatment of glioblastoma 
[137] 

Doxorubicin 
Light/Photo-

responsive 

Combining photothermal processes under near-infrared light 

with chemotherapy resulted in tumor ablation 
[138] 

Zoledronic acid 
Light/Photo-

responsive 

Photochemical cellular internalization was achieved with 

simultaneous intracellular drug release 
[139] 

Dexamethasone 
Electro-

responsive 

Drug is released in linear profile in response to voltage 

stimulation 
[140] 

Diclofenac 

sodium 

Electro-

responsive 

Faster release of the anionic drug was achieved by external 

electric voltage application 
[141] 
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Table 2: Applications of Endogenous stimuli-responsive drug delivery systems 

Drug Type of stimuli Outcome  Ref. 

Insulin pH-responsive 

pH-sensitive hydrogels were used and the variations in their 

swelling ratios in the stomach and intestine led to the control 

in the drug release rate 

[142] 

Ketoprofen pH-responsive 

Drug-loaded calcium alginate beads were prepared and the 

cross-linking degree changes with variations in pH leading to 

controlled drug release 

[143] 

Naproxen pH-responsive 

Chitosan/poly vinyl alcohol pH-sensitive hydrogels were 

developed with maximum swelling occurring at neutral pH 

overcoming the negative impact of naproxen on GI epithelium 

[144] 

Methotrexate pH-responsive 
Modified trimethyl chitosan nanoparticles were prepared with 

prolonged drug release over 72 hours at pH 7.4 
[145] 

Doxorubicin Redox-responsive Faster drug release of the drug from redox-sensitive liposomes [146] 

Paclitaxel Redox-responsive 

PEG-functionalized liposomes were prepared with enhanced 

cellular uptake into tumor cells due to tumor-reductive 

environment 

[147] 

5-Fluorouracil Redox-responsive 

Chitosan-cystamine-methoxy poly(ethylene glycol) redox 

sensitive polymeric nanoparticles were developed and the 

reduction of the disulfide bond of the cystamine accelerate 

drug release. 

[148] 

Cisplatin Redox-responsive 

Nanoparticles containing cystamine, as a crosslinker having 

disulfide bonds, were prepared and a fast drug release was 

achieved through the reduction of these bonds  

[149] 

Docetaxel 
Enzyme-

responsive 

Matrix Metalloproteinase-2/9 (MMP-2/9)-responsive micelles 

were developed and conjugated to an oligopeptide that when 

exposed to the enzyme led to micelle collapse and drug release 

[150] 
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5.3. Multistimuli-responsive drug delivery systems 

Table 3 shows examples of multistimuli-responsive DDSs. 

Table 3: Applications of multistimuli-responsive drug delivery systems 

Drug and/or 

carrier 
Stimulus Outcome  Ref. 

Micelleplexes Light/pH 

Triblock copolymer has been developed and applied as a 

carrier for gene delivery in which the release was triggered 

by the protonation and degradation of micelleplexes 

[151] 

Dendrimeric 

nano-assemblies 
Enzyme/pH/Redox 

Tumor-specific dendrimeric nano-assemblies in which the 

drug release is activated through multiple stimuli was 

developed to overcome tumor multidrug resistance  

[152] 

Micelles  pH/Redox 

A biodegradable PEG-based micelles were developed with a 

particle size that increases after exposure to acidic pH and 

reactive oxygen species (ROS) in tumor environment 

leading to drug release 

[153] 

Curcumin/ Silver 

nanoparticles 
pH/Redox 

The release of curcumin was achieved through dual-stimuli-

responsive mechanisms (pH and ROS) thus reducing the 

side effects of non-controlled drug release 

[154] 

Doxorubicin/ 

nanoparticles 
pH/Redox 

Doxorubicin-loaded nanoparticles with pH and GSH dual 

responsiveness were prepared that exhibited tumor-targeted 

controlled drug release 

[155] 

7. Conclusion 
In recent years, considerable efforts have been made to create DDSs that can adapt to 

changes in the environment, whether internal or external, with precision and control. Thanks to 

major advances in science, stimuli-responsive polymeric carriers have arisen as a promising 

solution for targeted medication administration. In this work, we have highlighted the unique 

properties of these carriers and their potential applications in drug delivery. 

The article discusses various stimuli-responsive DDSs and provides appropriate examples. 

These DDSs include temperature-responsive, magnetic-responsive, pH-responsive, photo/light-

responsive, redox-responsive, electrical-responsive, ultrasound-responsive, and/or all-in-one 

dual/multi-responsive DDSs.  
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Although there has been significant progress in the field of DDSs, there are still many 

unanswered questions in the biomedical and pharmaceutical industry. When creating drug delivery 

systems, it is important to consider essential limiting factors such as non-toxicity, biodegradability, 

biocompatibility, and safe removal of the smart carriers from the biological system. Additionally, 

the size of the carrier plays a crucial role in facilitating a quick response. Thus, further work is 

needed to manipulate these factors in order to achieve full control over the developed drug delivery 

systems. 
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