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ABSTRACT

Modern exogenous and endogenous-based stimuli-responsive drug delivery systems
(DDSs) for temporal and spatial drug release were examined aiming to focus on the shortcomings
of traditional treatment approaches. This review addresses the mechanism of action and smart
chemistry of numerous stimuli-responsive polymeric carriers, which are important in both the
exogenous and endogenous domains of sick cells or tissues. Research is being conducted globally
to build new stimuli-responsive DDSs, both internal and external, for biomedical, and/or
pharmaceutical applications. A crucial component of designing so-called "smart" DDSs, which

sophisticatedly regulates drug loading, adjusts the mechanism of drug release, controls individual
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variability, and offers targeted drug delivery, is the polymeric carriers' dual/multi-responsive,
internal, and even external behavior. Numerous DDSs have been invented, proposed, and used
thus far. These systems include electrical, photo/light, pH, magnetic, temperature, ultrasonic,
redox responsive DDSs, and multi-responsive DDSs (linking two or more from any of the
aforementioned). To close the research gap, several difficult issues still need to be resolved despite
the tremendous advancements made in the DDSs field. The drug release mechanisms and the uses
of exogenous and endogenous stimuli-responsive DDSs in therapeutic settings were therefore

highlighted.

Keywords: Drug delivery systems, drug release kinetics, stimuli-responsive targeting, exogenous
stimuli, and endogenous stimuli.
1. Introduction

DDSs are devices or formulations fabricated to introduce an active pharmaceutical
substance to the body, thereby improving its safety and effectiveness through controlling the site,
and time of drug release [1]. This encompasses the delivery of the pharmaceutical formula, the
regulated liberation of its active constituents, and the consequent conveyance of these active
constituents to the intended site of activity [2].

Traditional DDSs are restricted by their incapability to precisely control dosing, and attain
site targeting [3]. Conventional approaches of drug delivery encounter difficulties in sustaining
optimal drug levels while minimizing side effects and preventing drug toxicity [4,5].

To cope with the restrictions of traditional DDSs, and to improve the patients’ care quality,
the pharmaceutical research field addresses the necessity for the development and design of novel
DDSs (NDDSs) [6]. The necessity for elevated performance, and modified drug release is triggered
by the paramount importance of enhancing patient compliance, achieving superior clinical
efficacy, and extending product lifespan via controlled drug release systems [7]. Additionally, these
systems offer the distinct economic advantage of reduced frequency and expenses of
administration. Furthermore, the evolution from conventional to NDDSs can lead to significant
improvements in therapeutic efficacy, safety profile, and patient compliance. Consequently,
NDDSs might be one of the most rapidly expanding sectors in the pharmaceutical industry [8].

NDDSs are meticulously fabricated to optimize the delivery and efficiency of existing

medications in comparison with traditional systems. These innovative systems employ advanced
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techniques and novel dosage forms to precisely achieve targeted, regulated, and modulated drug
delivery [4,9—11]. Ideally, NDDSs strive to fulfill two key prerequisites: site-specific drug delivery
at rate and extent dictated via the body's requirements, and monitoring of the drug level throughout
the treatment period [12]. The core impetus behind the progression of NDDSs lies in enabling
sustained and controlled drug release, thereby maintaining optimal therapeutic drug levels along
with concurrent reduction of adverse effects [13,14].

Recently, advancements in nanoparticle-based DDSs, have gained the attention of
pharmaceutical and biomedical researchers. This is primarily attributed to their potential to
significantly enhance the effectiveness of various drugs, particularly those targeting cancer,
viruses, and microbial infections [15-19].

In addition to their usage in drug delivery, nanoparticles have found extensive application
in biomedical imaging due to their capacity for targeted augmentation. This feature permits the
integration of contrast ants and allows for the tuning of pharmacokinetic profiles [20].
Furthermore, theranostic nano-carriers provide synchronized diagnosis, therapy, and medication
response monitoring [21].

Notably, the remarkable advancements in materials science and pharmaceutics have
facilitated the development of a diverse array of nano-carriers with varying surface properties,
sizes, and structures [22].

Moreover, the tremendous progress in drug delivery has addressed the formulation of on-
demand (switch on/off) mechanisms. These innovative systems offer tailored drug release
mechanisms with exceptional temporal and spatial drug delivery [23]. The paradigm of on/off drug
delivery is made possible by the formulation of stimuli-responsive systems which possess the
ability to detect their microenvironment and dynamically respond, imitating the inherent
responsiveness observed in living organisms [24]. Nevertheless, the implementation of this
approach exhibits a considerable challenge for its complexity [25].

The pioneering inception of stimuli-responsive DDSs was initially proposed in the 1970s,
sparking a surge of research activity focused on the development of such materials for targeted
therapeutic delivery [26]. Stimuli-responsive systems may demonstrate sensitivity to particular
endogenous stimuli, including reduced interstitial pH, elevated concentrations of glutathione, or

heightened activity of specific enzymes [27,28]. Additionally, the application of exogenous
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physical stimuli, such as electric fields, magnetic changes, temperature variations, ultrasound, and
light, can also be employed [29,30].

In this Review, we elucidate the substantial advancements achieved in the realm of stimuli-
responsive nanocarriers for drug delivery.

2. Exogenous stimuli-responsive drug delivery systems

Exogenous stimuli-responsive DDSs have been reported to be advantageous over
endogenous stimuli-responsive DDSs for their potential to circumvent inter-individual variability
in drug release. This advantage stems from the ability to precisely control these external stimuli
compared to the inherent variability of internal physiological factors (e.g., pH, enzyme levels).
Various external stimuli have been demonstrated to be effective in regulating drug release. Since
the majority of these stimuli result in the liberation of heat, thermo-responsive polymers may
perform a crucial role in developing these DDSs. Through temperature-sensitive materials, this
temperature rise can promote the release of drugs [31].

2.1. Thermoresponsive systems

Thermoresponsive DDSs stand as one of the extensively researched approaches,
particularly in the field of oncology. The responsiveness to temperature is typically dictated by a
nonlinear and abrupt alteration in the characteristics of at least one constituent of the system
components along with changes in temperature. These abrupt changes instigate the drug release in
response to fluctuations in the surrounding temperature [32].

Two approaches for the formulation of thermoresponsive drug release have been described:
one uses external stimuli to generate hyperthermia to facilitate thermal-based therapy; the other
responds to higher temperatures of the diseased tissues for burst release. Approaches based on
external stimuli seem more promising for controlling drug delivery when compared to techniques
based on internal stimuli because of their exact control and production feasibility [33].

Thermoresponsive polymers exert a pivotal part in these systems due to their ability to
react to temperature variations. Two distinct behaviours have been observed for thermoresponsive
materials, namely the upper critical solution temperature (UCST) and the lower critical solution
temperature (LCST) [34]. For polymers exhibiting UCST characteristics, increasing temperature
above the UCST results in enhanced hydrophilicity, that governs the swelling performance of the

carriers, thereby modulating the drug release. Conversely, for polymers exhibiting LCST
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characteristics, decreasing temperature below the LCST results in increased swelling, while
increased temperature results in decreased swelling [35].

Liposomes, polymer micelles, or nanoparticles with a LCST are examples of
thermoresponsive systems [36]. Thermoresponsiveness in liposomes is often caused by the shift
of the lipid components phase and the corresponding changes in the bilayer structure. Heat is often
employed in-vivo via radiofrequency oscillators, tiny annular-phased array microwaves, or
temperature-controlled water sacks [37]. Thermosensitive liposomes arguably represent the most
well-developed class of thermoresponsive nano-systems, a fact evidenced by their successful
implementation in various clinical trials [38].

Currently, doxorubicin-loaded thermoresponsive liposomes, are undergoing phase II
clinical investigation for their efficacy in treating breast cancer, and advanced to phase III
investigations for treatment of hepatocellular carcinoma [39,40]. Furthermore, smith et al.,
developed specifically targeted thermosensitive liposomes, for the treatment of breast cancer [41].

Thermoresponsiveness can also be triggered by transient decrease in temperature, a
phenomenon known as cold shock or cryotherapy. This rapid temperature shift triggers reversible
swelling or deswelling of the nanocarrier, resulting in enhanced drug release through increased
porosity. For instance, nano-capsules composed of Pluronic F127 and polyethyleneimine were
employed for the efficient delivery of small interfering RNA (siRNA) into the cytosol,
subsequently leading to the suppression of a specific messenger RNA [42].

2.2. Magnetic responsive systems

The inherent ability of magnetic fields to penetrate biological tissues resulted in its
utilization in magnetic resonance imaging (MRI) [43]. Beyond imaging purposes, controlled drug
release can be achieved via the utilization of magnetic field-responsive carriers. These carriers
have the ability to modify drug release through the application of an exogenous magnetic stimulus.
Moreover, there is a potential for integrating diagnostics and therapy within a unified system,
commonly referred to as the theranostic approach [44—46].

The potentials of magnetically responsive nanomaterials are their chemical stability, large
surface area, high loading capacity rate, and minimal intraparticle diffusion, which make them
appealing for use in a variety of industries [47,48]. There are four categories of magnetic-

responsive nanomaterials: metallic, coated metal, oxides, and coated oxides [49]. The most studied

3184



ERURJ 2025, 4, 4, 3180-3211

group consists of iron oxides, also known as ferrite nanoparticles, arranged in a crystalline form
as magnetite or maghemite [50].

Following the administration of magnetically responsive DDSs, drug targeting is
commonly achieved through directing an exogenous magnetic field toward the target tissue. This
approach has shown significant promise in pre-clinical cancer treatment. Mesoporous silica shell
nanocapsules [51], magnetic nanoparticle-based delivery systems [52], superparamagnetic
Liposomes [53], and porous metallic nano-capsules [54] have been emerged as potential delivery
systems.

Thirunavukkarasu et al., formulated superparamagnetic iron oxide nanoparticles
(SPIONs), where doxorubicin (DOX) and SPIONs have been loaded in a temperature-sensitive
matrix for a theranostic purpose [45].

2.3. Ultrasound-responsive systems

Ultrasound, traditionally known for diagnostic imaging, has emerged as a multifaceted tool
in therapeutic medicine, particularly in drug delivery systems. Beyond its role in inducing
hyperthermia, ultrasound energy offers nonthermal effects, enhancing drug release mechanisms
through various physical actions. From triggering cavitation phenomena to facilitating vessel
permeability, ultrasound's versatility enables precise spatiotemporal control over drug delivery,
mitigating side effects on healthy tissues [55-59].

2-Tetrahydropyranyl methacrylate (THPMA), is a mechano-labile functional group that
can hydrolyze in response to Ultrasonic exposure. It is an ultrasound-responsive hydrophobic
monomer that is present in the polymeric gate. The acetal group of this initially hydrophobic unit;
was broken after exposure to ultrasound, producing the hydrophilic product of methacrylic acid
(MAA). Gates could be opened and closed by hydrophobic-hydrophilic transformation. The
hydrophobic THPMA units changed into a hydrophilic MAA when ultrasound was applied,
increasing the polymeric nano-gate's total solubility. Ultrasound-induced drug release behavior

was caused by the dissolved polymer gate losing its blocking ability [60].

2.4. Light/Photo responsive systems
To create intricate scaffolding for regulating cellular behaviour inducing the release of
entrapped chemicals, the construction of light-responsive smart biomaterials is an appealing

approach [61,62]. Compared to other stimuli, the light stimulus has the advantage of being quickly

3185



ERURJ 2025, 4, 4, 3180-3211

imposed and precisely given in precise amounts, allowing for less intrusive methods to control
both space and time [63,64].

Wide range of UV to NIR wavelengths have been used as light stimuli. However, UV light
is frequently used as a stimulus, yet it may not be safe and can't enter tissues deeply. NIR, on the
other hand, is more suited for biomedical purposes, particularly for being less energetic, causing
less damage to biological tissues, and capable of entering tissues more deeply [62].

For instance, when photo-responsive micelles of polyglycerol-containing spiropyran were
exposed to UV light, the breakdown of the hydrophobic spiropyran resulted in the formation of
hydrophilic merocyanine [65]. Additionally, Petriashvili et al., fabricated spiropyran doped liquid
crystal microspheres [66]. Advanced photopolymerizable linear or crosslinked polymers [67] and
hydrogels [68] have been fabricated for tissue engineering, cell encapsulation, and drug delivery.

Moreover, Photo-switchable polyacrylamide hydrogels containing an azobenzene
molecule have been thoroughly investigated for their application in regenerative medicine [69].
Gold nanoparticles-based photoresponsive liposomes are widely used for controlled drug delivery
[70]. Because of its customizable optical and photothermal properties, inertness, and lack of
toxicity, gold nanoparticles are widely used based on their surface chemistry, size, and form [71].

2.5.Electrical responsive systems

After administering electro-responsive drug carriers, a mild electric field can be
administered over the targeted tissue to achieve regulated on-site drug release. Different methods,
such as the oxidation-reduction process, carrier structural disruption, and activation of thermo-
responsive carriers, have been shown to control drug release through electrical stimulation [72].
Neumann et al., have disclosed a novel approach for drug delivery that is electro-responsive. They
controlled the release of the medication through a pH-sensitive substance by using the local pH
change brought on by an electrochemical reaction [73]. They used a pH-sensitive copolymer,
poly(methyl methacrylate-co-methacrylic acid), to create drug-loaded nanofilms. Additionally,
they discovered that buffer action stopped the drug release in the off-state by causing the pH drop
caused by the electrical signal to rebound fast when the stimulus was removed [74].

Electrical signals can be effective in potentially delivering drugs in a controlled manner
[75,76], regenerating damaged tissues [77,78], and modulating cell proliferation and
differentiation [79,80]. Polyvinylidene fluoride (PVDF) is one of the polymers that has been

utilized extensively in tissue engineering, for example, to treat neurological illnesses. In place of
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traditional neurotrophin treatments, Hoop and colleagues [81] have created a PVDF membrane to
encourage neuronal differentiation, resulting in neurite outgrowth uniform in all directions. This
is likely because the cells' calcium channels were activated by the piezoelectric stimulation, which
raised the Ca®* content of the cells and started the adenylyl cyclase (AC) pathway.

One of the examples of electrical responsive drug delivery is hydrogels; including
polyelectrolytes, which are polymers with comparatively large concentrations of ionizable groups
along the backbone chain, representing the basis for electrically-responsive hydrogels, which are
also pH-responsive [82]. Although polycations and an amphoteric polyelectrolyte [83] have also
been employed, polyanions have accounted for the majority of the polymers examined. Both
artificial and naturally occurring polymers have been utilized, either singly or in combination.
Examples of polymers that occur naturally Hydrogels' reaction to an electric field. Numerous
researchers have examined how polyelectrolyte hydrogels react to an applied electric field using
various experimental setups. The gel may or may not be submerged in a buffer, saline solution, or
other electroconductive media.

3. Endogenous stimuli-responsive drug delivery systems

These DDSs initiate drug delivery through tissue regulation in the microenvironment,
interaction between antibodies and antigens, and over-expression of enzymes.
3.1. pH-responsive systems

The extracellular organelles and bloodstream typically maintain a pH of 7.4, while the
stomach exhibits a pH range of 1-3 and the duodenum and ileum of the gastrointestinal tract
maintain pH levels between 6.6—7.5. Intracellular sub-endosomal and lysosomal organelles
maintain pH ranges of 5.5-6.8 and 4.5-5.5, respectively. This wide range of pH values is crucial
to consider during the fabrication of pH-responsive systems [77].

Variations in pH can impact crosslinking processes, especially significant for injectable
hydrogels and self-healing materials. Additionally, protonation or deprotonation of acidic or basic
groups can influence release profiles, and potentially target specific tissues or cells. Furthermore,
engineered hydrogels can modulate physicochemical properties, directly affecting the fate of
encapsulated cells [84].

The pH responsiveness observed in such systems primarily arises from the acid hydrolysis
of chemical bonds, the ionizable groups’ protonation, and through conformational or chemical

alterations within the used polymeric materials. Notably, in comparison to small molecule sensors,
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responsive nano-systems exhibit remarkably high sensitivity in their response, owing to a positive
synergy characteristic of supramolecular self-assembly systems. At a molecular level, the pH
sensitivity of these nanosystems may be attributed to various factors such as ionic bonds, hydrogen
bonds, n-x stacking, or hydrophobic interactions within the nanocarrier structure [85].

pH variations have been ingeniously harnessed to regulate the targeted distribution of
medications within distinct bodily regions, including vagina, GIT, and intracellular locales as
lysosomes or endosomes. Additionally, these variations in pH serve as pivotal cues to initiate the
release of drugs precisely when subtle alterations in the environment are indicative of pathological
conditions [86,87].

The buffering capacity of polyethyleneimine arises from its diverse amine groups with
varying pKa values. These groups undergo protonation to various extents depending on the pH
conditions [88]. This phenomenon primarily stems from the abnormal angiogenesis observed in
rapidly growing tumors, resulting in a swift depletion of nutrients and oxygen. Consequently, there
is a metabolic shift towards glycolysis, resulting in the accumulation of acidic metabolites in the
tumor. Thus, effective pH-responsive systems have to swiftly respond to even subtle changes in
pH within the tumor extracellular microenvironment. For instance, chitosan exhibits swelling upon
protonation of its amino groups, facilitating the release of entrapped tumor necrosis factor-alpha
in tumor tissues. Additionally, the abrupt dismantlement of PEG—poly(B-amino ester) micelles
triggers the leak of encapsulated camptothecin. This pH-mediated triggered delivery approach has
also demonstrated successful protein delivery into the ischemic area [89].

In infected tissues, the acidic environment poses a challenge, although it's noteworthy that
cutaneous wound pH dynamically correlates with wound healing stages [29]. For instance, the
inflammation stage tends to be acidic, while granulation shifts pH to alkaline range, and the
remodeling phase restores the skins’ initial pH. pH-responsive wound dressings can be developed
by crosslinking materials using various polymerization methods. These hydrogels exhibit tunable
properties, making them promising for stage-responsive wound dressings [90].

Cell recruitment, infiltration, and vascularization are critical challenges in wound healing.
pH-responsive scaffolds, such as HEMA/DMAEMA scaffolds photopolymerized at different
molar ratios, demonstrate pH-dependent swelling behavior, with increased oxygen penetration and

cell infiltration under acidic conditions. These scaffolds promote a pro-healing environment,
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fostering significant levels of tissue formation and vascularization, thus holding the potential for
enhancing wound healing processes [91].
3.2. Redox responsive systems

Redox-responsive materials may exert a key function in the intracellular and extracellular
regions of diseased cells or tissues [92]. Notably, a considerable redox potential difference exists
between the extracellular and the reducing intracellular environments. The cellular nuclei and
cytosol show a much higher concentration of a reducing agent, such as glutathione (GSH), than
the extracellular and intercellular fluids [93,94]. The greater concentration of GSH inside cells
determines the reduced microenvironment in the cytoplasm [95]. Therefore, redox-sensitive
nanocarriers have gained more attention [96]. Moreover, glutathione-responsive DDSs were
fabricated for on-demand and responsive intracellular drug release [97].

The mechanism of endocytosis allows nanocarriers to enter the cell. As it gets closer to the
cytosol, GSH breaks down the disulfide bonds, explodes, and releases the medication [96]. The
vast majority of glutathione-responsive block copolymers have the ability to form "Shell-
Sheddable" micelles because of the disulfide connection that unites hydrophilic and hydrophobic
blocks. These micelles provide the therapeutic substance when they destabilize upon encountering
glutathione. In-vitro and in-vivo studies shown that disulfide linkers in GSH-responsive micelles
were quickly destabilized after cell penetration, releasing the ingredients of thiols, which bind to
the micelle's core or shell or adhere to the Drug molecules by disulfide bonding. Increased
concentrations of reducing agents inside intracellular regions support the disulfide-containing
polymers [94].

Ren et al., fabricated self-assembled nanostructures by exploiting solubility changes
caused by oxidation in selenium block copolymers [98]. The spherical micelles with hydrophobic
selentum centers were made using copolymers. The micelles were disintegrated, and the
hydrophilicity was increased when selenium was converted from hydrogen peroxide to selenoxide.
Upon the addition of reductants, spherical micelles could be replicated. It was shown that these
selenium-containing nano ampules may easily form spherical micelles in both oxidizing and
reducing environments. Thus, redox-responsive characteristics fully recovered [98].

A vesicle composed of layer-by-layer construction has been utilized to deliver drug
medications. This process involves alternatingly depositing polyelectrolytes onto a template to

form nanocarriers. The Caruso group used a disulfide crosslinker in combination with poly(N-
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vinyl pyrrolidone) and poly(methyl methacrylate) to develop redox-responsive capsules that were
capable of enclosing DOX and plasmid DNA [99,100] The DOX-loaded capsules demonstrated a
5000-times increase in cytotoxicity compared to DOX alone [99]. Up until now, the disulfide bond
has been frequently used to create reduction-susceptible nanocarriers. The primary problem was
in-vivo stability because the extracellular compartment contains cysteine and GSH, which might
lead to an early outburst [100]. This could be solved by using multiple disulfide connections, which
would change the number of disulfide cross-links [101,102].

3.3. Enzyme responsive systems

Enzyme-dependent drug delivery system is a system whose physicochemical
characteristics change macroscopically as a result of the enzyme’s biocatalytic activity [16]. The
fabrication of a uniquely promising responsive element for DDS is largely dependent on the
regulation and/or dysregulation of enzymes in the intracellular microenvironment. Enzyme-
responsive DDSs show tremendous qualities that are highly beneficial in bio-nanomedicine,
including process efficacy, biorecognition, catalytic activity, selectivity, and sensitivity [16,103].

Diseases’ different pathological states can be identified and monitored utilizing novel ultra-
sensitive in-vivo DDSs, prompted by enzyme-mediated dysregulation in diseased organelles.
Regarding enzyme-responsive DDS, the enzyme-mediated degradation of a polymeric moiety
resulted in controlled drug release out of the carriers [16].

Antibody-directed enzyme prodrug therapy and polymer-directed enzyme prodrug therapy
are two widely utilized strategies for the enzyme-specific release of conjugated medicines at the
tumor site [104]. The majority of invasive diseases, such as cancer, are typified by the
overexpression and upregulation of several secreted or membrane-bound enzymes, such as
proteases, cathepsins, and matrix metalloproteinases [105]. Various novel DDSs are fabricated
based on the altered expression of certain enzymes in infectious diseases, wherein active drugs are
accumulated at the intended biological target [106].

The vast majority of enzyme-mediated DDSs rely on the enzyme’s expression in the
extracellular environment. According to modern research, modified liposomes [107],
bioresponsive mesoporous silica nanoparticles [108], or dextran-coated iron oxide nanoparticles
[109] can be linked with surface PEG chains by short peptide chains that are then broken down by

matrix metalloproteinases.
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Enzymes can also be employed to transport medications into intracellular compartments.
For example, the selective delivery of DOX utilizing mesoporous silica scaffolds joined with
polysaccharide derivatives, following lysosomal enzyme-mediated breakage of the glycoside
linkages and reduction of the polysaccharide chain lengths [110]. Similarly, drug release was
achieved by the rapid enzymatic degradation of polymersomes by the lysosomal enzyme cathepsin
B, which was overexpressed in numerous malignant tumors [111].

Polymer-based delivery systems bearing a cationic peptide as the substrate of intracellular
proteases (or kinases) that are exclusively produced in human immunodeficiency virus-infected
cells [112] or inflammatory cells [113] have been used to enable transgene expression with great
cell specificity. Gene release and transcription were promoted by the disintegration of polymer—
DNA electrostatic interactions by enzymes [114]. Developed lipase-sensitive polymeric triple-
layered nanogel for the on-demand release of vancomycin antibiotics. This system dramatically
inhibited Staphylococcus aureus growth and effectively terminated intracellular bacteria [115].

4. Dual / multi stimuli-responsive drug delivery systems

Multi-stimuli responsive DDSs represent a significant advancement in the field of targeted
therapeutics. Unlike conventional stimuli-responsive systems that respond to a single stimulus,
multi-stimuli-responsive DDS is designed to respond to two or more stimuli [116]. These smart
carriers are emerging as game-changers, responding to specific triggers in the body, and releasing
their cargo only when certain conditions are met [117]. This enhances targeting and reduces side
effects [118].

Multi-stimuli responsive DDSs are engineered to react to various endogenous and
exogenous stimuli [118]. Zhang et al., fabricated a pH/reduction dual-responsive and folate-
decorated polymeric micelles for targeted chemo-photothermal combination therapy [119]. DOX
and indocyanine green were co-encapsulated into those carriers for enhanced imaging and chemo-
photothermal combination therapy.

You et al., employed redox/NIR light dual stimulus-responsive polymeric nanoparticles for
targeted delivery of cisplatin [120]. These nanoparticles revealed in-vitro drug release of 99.35%
after 72 hours at pH 7.4, compared to 73.46% in systems responsive to NIR alone, 58.45% for
glutathione-responsive systems, and 12.35% without any stimulus. Cui et al., employed pH and
temperature dual responsive ionically self-assembled nanoparticles utilizing doxorubicin as a

model drug [121]. While enhanced DOX delivery through thermosensitive liposomes utilizing
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temperature-responsive N-isopropylacrylamide and pH-responsive propylacrylic acid was
fabricated by Ta et al. [122].

Light and pH dual responsive mesoporous silica was fabricated by exploiting the resonance
surface properties of palladium and silver for enhanced targeting of the anticancer drug,
doxorubicin [103]. Other hybrid mesoporous silica nanoparticles showed a response to
temperature and magnetic field for remotely controlled release of methotrexate to skeletal muscles
[123]. Hegazy et al., constructed magnetic, reductive, and thermos-sensitive triple stimuli
responsive mesoporous silica nanoparticles loaded with indocyanine green and DOX [124]. These
systems represent a promising candidate in the formulation of targeted delivery of therapeutic
agents to temperature and more reductive environment tissues, such as tumors and inflammatory

sites.

5. Novel Approaches in stimuli-responsive drug delivery systems
4D Printing stimuli-responsive drug delivery systems

Four-dimensional printing is an interesting field of study that integrates intelligent
materials into three-dimensional printing. Using this method, objects that can gradually change
form in response to environmental stimuli, such as moisture, electric or magnetic fields, UV light,
temperature swings, pH variations, or alterations in the composition of ions, can be created
[125,126]. Intelligent materials, such as shape memory polymers, alloys, hydrogels, ceramics, and
composites, which can react to external stimuli, are essential for 4D printing. Unlike traditional
3D printing, the ability of 4D printed materials to undergo structural and/or property alterations
expands their applications across industries such as aerospace, biomedical, soft robotics,
engineering, and fashion, potentially revolutionizing manufacturing [127-129]. In biomedical
applications, however, 3D printed constructs fell short of expectations mainly due to their inability
to adequately mimic dynamic human tissues. To date, most of the 3D printed biomedical structures
are largely static and inanimate as they lack the time-dependent dimension. To adequately address
the dynamic healing and regeneration process of human tissues, 4D printing emerges as an
important development where “time” is incorporated into the conventional concept of 3D printing

as the fourth dimension [130].
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6. Applications

Over the last decades, DDSs have been developed and improved to increase the efficacy
and safety of drugs aiming to improve health and decrease side effects. Applications of stimuli
responsive DDS are applied in many fields of medicine like diagnosis, treatment, and imaging.
5.1. Exogenous stimuli-responsive drug delivery systems

Exogenous responsive DDSs are at the forefront of pharmaceutical innovation, employing
external stimuli to precisely control drug release. Table 1 shows examples of thermos-responsive,
electrical-responsive, ultrasound-responsive, light/Photo-responsive, and magnetic-responsive
DDS:s.
5.2. Endogenous stimuli-responsive drug delivery systems

Endogenous responsive DDSs represent a groundbreaking approach in pharmaceuticals,
leveraging the body's physiological cues for precise drug targeting and release. Table 2 shows

examples of pH-responsive, enzyme-responsive, and redox-responsive DDSs.

Table 1: Applications of Exogenous stimuli-responsive drug delivery systems

Drug Type of stimuli Outcome Ref.
o Thermo- Drug-loaded liposomes were prepared with enhanced
Doxorubicin ) o ] [131]
responsive localization of the drug in tumor cells
) Thermo- Chitosan nanogels were developed with enhanced intracellular
Curcumin _ [132]
responsive drug delivery
o Thermo- Thermos-sensitive vesicles were created and were effective
Doxorubicin ‘ ‘ ‘ ‘ [133]
responsive against multidrug resistant cancer cells
' Magnetic nanoparticles were prepared to release drug in
. Magnetic- : . . . .
Geldanamycin _ response to an alternating magnetic field, inducing effective | [134]
responsive .
apoptosis of cancer cells
. Polymeric micelles of doxorubicin were developed which
Magnetic- ) ) )
Doxorubicin ' could generate magnetic hyperthermia leading to controlled [135]
responsive .
drug release against breast cancer cells
Ultrasound- Enhanced uptake of topotecan-loaded liposomes into cancer
Topotecan ) [136]
responsive cells because of a targeted focused ultrasound waves
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‘ Ultrasound- Combining paclitaxel-liposomes with ultrasound waves for
Paclitaxel . ' [137]
responsive treatment of glioblastoma
Light/Photo- Combining photothermal processes under near-infrared light
Doxorubicin ‘ ‘ _ . [138]
responsive with chemotherapy resulted in tumor ablation
o Light/Photo- Photochemical cellular internalization was achieved with
Zoledronic acid . . . [139]
responsive simultaneous intracellular drug release
Electro- Drug is released in linear profile in response to voltage
Dexamethasone ‘ ‘ ‘ [140]
responsive stimulation
Diclofenac Electro- Faster release of the anionic drug was achieved by external 41]
sodium responsive electric voltage application
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Table 2: Applications of Endogenous stimuli-responsive drug delivery systems

Drug Type of stimuli Outcome Ref.
pH-sensitive hydrogels were used and the variations in their
Insulin pH-responsive swelling ratios in the stomach and intestine led to the control | [142]
in the drug release rate
Drug-loaded calcium alginate beads were prepared and the
Ketoprofen pH-responsive cross-linking degree changes with variations in pH leading to | [143]
controlled drug release
Chitosan/poly vinyl alcohol pH-sensitive hydrogels were
Naproxen pH-responsive developed with maximum swelling occurring at neutral pH [144]
overcoming the negative impact of naproxen on GI epithelium
) Modified trimethyl chitosan nanoparticles were prepared with
Methotrexate pH-responsive [145]
prolonged drug release over 72 hours at pH 7.4
Doxorubicin Redox-responsive | Faster drug release of the drug from redox-sensitive liposomes | [146]
PEG-functionalized liposomes were prepared with enhanced
Paclitaxel Redox-responsive cellular uptake into tumor cells due to tumor-reductive [147]
environment
Chitosan-cystamine-methoxy poly(ethylene glycol) redox
) ) sensitive polymeric nanoparticles were developed and the
5-Fluorouracil | Redox-responsive ) ) . [148]
reduction of the disulfide bond of the cystamine accelerate
drug release.
Nanoparticles containing cystamine, as a crosslinker having
Cisplatin Redox-responsive disulfide bonds, were prepared and a fast drug release was [149]
achieved through the reduction of these bonds
Enzyme- Matrix Metalloproteinase-2/9 (MMP-2/9)-responsive micelles
Docetaxel . were developed and conjugated to an oligopeptide that when | [150]
responsive

exposed to the enzyme led to micelle collapse and drug release
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5.3. Multistimuli-responsive drug delivery systems

Table 3 shows examples of multistimuli-responsive DDSs.

Table 3: Applications of multistimuli-responsive drug delivery systems

Drug apd/or Stimulus Outcome Ref.
carrier
Triblock copolymer has been developed and applied as a
Micelleplexes Light/pH carrier for gene delivery in which the release was triggered | [151]
by the protonation and degradation of micelleplexes
o Tumor-specific dendrimeric nano-assemblies in which the
Dendrimeric
‘ Enzyme/pH/Redox drug release is activated through multiple stimuli was [152]
nano-assemblies ‘ ‘
developed to overcome tumor multidrug resistance
A biodegradable PEG-based micelles were developed with a
_ particle size that increases after exposure to acidic pH and
Micelles pH/Redox _ ‘ ‘ _ [153]
reactive oxygen species (ROS) in tumor environment
leading to drug release
o The release of curcumin was achieved through dual-stimuli-
Curcumin/ Silver . . .
_ pH/Redox responsive mechanisms (pH and ROS) thus reducing the [154]
nanoparticles _
side effects of non-controlled drug release
Doxorubicin-loaded nanoparticles with pH and GSH dual
Doxorubicin/ ' o
_ pH/Redox responsiveness were prepared that exhibited tumor-targeted | [155]
nanoparticles
controlled drug release

7. Conclusion

In recent years, considerable efforts have been made to create DDSs that can adapt to
changes in the environment, whether internal or external, with precision and control. Thanks to
major advances in science, stimuli-responsive polymeric carriers have arisen as a promising

solution for targeted medication administration. In this work, we have highlighted the unique

properties of these carriers and their potential applications in drug delivery.

The article discusses various stimuli-responsive DDSs and provides appropriate examples.
These DDSs include temperature-responsive, magnetic-responsive, pH-responsive, photo/light-

responsive, redox-responsive, electrical-responsive, ultrasound-responsive, and/or all-in-one

dual/multi-responsive DDSs.
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Although there has been significant progress in the field of DDSs, there are still many
unanswered questions in the biomedical and pharmaceutical industry. When creating drug delivery
systems, it is important to consider essential limiting factors such as non-toxicity, biodegradability,
biocompatibility, and safe removal of the smart carriers from the biological system. Additionally,
the size of the carrier plays a crucial role in facilitating a quick response. Thus, further work is
needed to manipulate these factors in order to achieve full control over the developed drug delivery
systems.
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