

Sphinx Journal of Pharmaceutical and Medical Sciences

e-mail: sjpms@sphinx.edu.eg

A COMPREHENSIVE REVIEW OF PYRAZOLO[3,4-d]PYRIMIDINE SCAFFOLD BIOLOGICAL ACTIVITIES

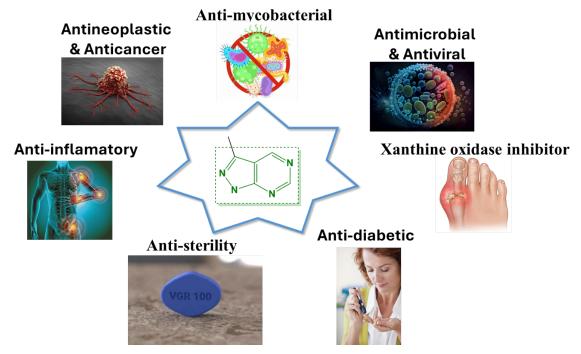
Ibrahim M. Salem¹, Sally A. El Zohny¹, Mai Alaa Hayallah² and Alaa M. Hayallah^{1,3*}

Pyrazolo[3,4-d]pyrimidine represents a fused bicyclic scaffold formed by the condensation of pyrazole and pyrimidine rings. Initially synthesized as an analog of purine nucleosides for anticancer therapy, this structural motif has since demonstrated a wide spectrum of biological properties, including antimicrobial, antiviral, antimycobacterial, anti-inflammatory, antimalarial, antidiabetic, anti-sterility effects, as well as xanthine oxidase inhibition for the treatment of gout. In recent years, the incorporation of the pyrazolo[3,4-d]pyrimidine pharmacophore into drug design has garnered significant interest among medicinal chemists and pharmacologists, prompting extensive exploration of its biological potential. This review provides a comprehensive survey of the literature on this nucleus derivatives published between 2012 and 2024, highlighting recent advancements and emerging trends in their therapeutic applications. This review may open the door for medicinal chemists and pharmacologists to emphasis the importance of this nucleus as probable future drug candidates for different diseases. Also, may encourage the researchers to improve physical and chemical letterings and modify their pharmacological properties.

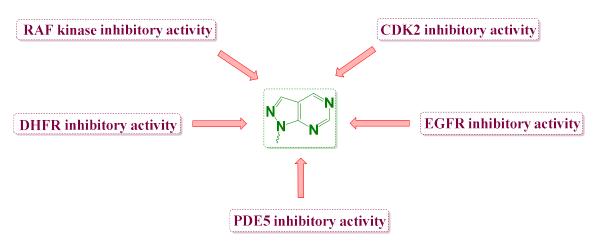
Keywords: Pyrazolo[3,4-*d*]pyrimidines, Synthetic methodologies, Pyrazole derivatives, Pyrimidine frameworks, Pharmacological properties.

1. INTRODUCTION

This heterocyclic structure has a bicyclic framework that garnered significant scientific interest due to its potential role as a purine isostere. Structurally, it comprises a pyrazole ring fused with a pyrimidine nucleus, replacing the imidazole ring typically found in purine systems. Owing to this structural analogy, compounds based on this scaffold were initially characterized as adenosine receptor antagonists, primarily explored for their anticancer and antiviral properties. In recent years, derivatives of this nucleus have attracted


increasing attention within the field of medicinal chemistry, owing to their diverse pharmacological activities. These include antimicrobial, antiviral, anticancer, antimycoanti-inflammatory, bacterial. antimalarial. antidiabetic, anti-sterility effects, and their application as xanthine oxidase inhibitors in the management of gout. This review provides a comprehensive summary of the wide range of biological investigations carried out on the privilege scaffold and highlights recent advances in the pharmaceutical formulations of compounds derived from this chemical class (Fig. 1).

Received in 26/5/2025 & Accepted in 12/7/2025


¹Department Pharmaceutical Chemistry, Faculty of Pharmacy, Sphinx University, New Assiut 10, Egypt

²Department of Pharmacy Practice, Faculty of Pharmacy, Sphinx University, New Assiut 10, Egypt

³Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt

Fig. 1: The therapeutic potential of pyrazolo[3,4-d]pyrimidine as antineoplastic, anti-inflammatory, antimicrobial, antiviral, antimycobacterial, xanthine oxidase inhibitor, anti-diabetic and anti-sterility.

Fig. 2: Diverse molecular targets associated with pyrazolo[3,4-*d*]pyrimidine derivatives under investigation as prospective antineoplastic agents.

2. Biological inspection

2.1. Antineoplastic activity

The pyrazolo[3,4-d]pyrimidine scaffold exhibits significant antineoplastic potential through multiple well-characterized mechanistic pathways, as extensively documented in figure 2.

The chemistry core present in compound 1 represents a prominent fused heterocyclic

framework that has attracted considerable interest within the field of medicinal chemistry, largely owing to its diverse biological properties and pronounced anticancer potential. Structurally analogous to purines, this scaffold exhibits isosteric characteristics that enable it to engage with a range of enzymatic and receptor targets implicated in oncogenic signalling pathways¹⁻³.

2.1.1. Mechanisms of antineoplastic activity

These chemical scaffold derivatives exert potent anticancer effects primarily through the targeted inhibition of several key kinases integral to oncogenic processes. A prominent class of these targets includes:

2.1.1.1. Cyclin-dependent kinases (CDKs) inhibition

CDKs are essential regulators of cell cycle progression. Pharmacological inhibition of CDKs disrupts the orderly transition between cell cycle phases, leading to cell cycle arrest. This disruption is often followed by the induction of apoptosis — an outcome particularly desirable in oncological therapeutics due to its role in eliminating malignant cells.

Targeting CDKs thus represents a strategic approach to impede tumor cell proliferation. Notably, multiple fused rings analogs have demonstrated significant efficacy as CDK inhibitors. Compounds 2 and 3 have exhibited pronounced inhibitory activity against CDK2 and related isoforms. Mechanistically, these derivatives interact with the CDK active site in a manner that closely resembles the binding of endogenous ligands or classical inhibitors, thereby competitively obstructing kinase function. This mode of action underscores the therapeutic promise of these scaffolds in the design of next-generation anticancer agents⁴.

2.1.1.2. Epidermal growth factor receptor (EGFR) inhibition

EGFR represents pivotal molecular target in oncological research, owing to its integral involvement in key signaling cascades that govern cellular proliferation, survival, and metastatic progression. Aberrant expressions or activating mutations of EGFR are frequently correlated with enhanced tumor aggressiveness and unfavorable clinical outcomes. Consequently, EGFR has emerged as a prominent focus in the development of targeted cancer therapeutics.

The inhibition of epidermal growth factor receptor (EGFR) has emerged as a critical therapeutic strategy for attenuating tumor progression and metastatic dissemination by interfering with key oncogenic signaling pathways. Clinically, multiple classes of EGFR-targeted agents, including monoclonal antibodies and small-molecule tyrosine kinase inhibitors. have been developed implemented. these, compounds Among incorporating the pyrazolopyrimidine core such as compound 4. have demonstrated notable efficacy in preclinical and clinical models, significantly suppressing tumor cell proliferation and hindering metastatic potential. These agents exert their therapeutic effect by either obstructing ligand-EGFR interactions or by directly inhibiting the receptor's intrinsic kinase activity, thereby prominent contacting elucidation such as, hydrogen bonding donor effect with Gln791 residue, along with two significant hydrogen bond acceptor interactions with the critical Met793 and Cys797 amino acid. The robust preclinical and clinical data supporting these outcomes underscore the therapeutic relevance of EGFR as a molecular target in the design of next-generation anticancer interventions⁵.

Due to its significant role in tumorigenesis, EGFR has become a primary target for cancer therapy. Several strategies have been hired to inhibit EGFR activity, including:

- 1. Monoclonal antibodies specifically target the extracellular domain of the epidermal growth factor receptor (EGFR), thereby inhibiting the binding of endogenous ligands and subsequent receptor activation. Clinically approved agents in this category include cetuximab and panitumumab, both of which have demonstrated efficacy in various EGFR-expressing malignancies.
- 2. Tyrosine Kinase Inhibitors (TKIs) are low-molecular-weight compounds designed to interfere with the tyrosine kinase activity within the intracellular domain of EGFR. By obstructing this enzymatic function, these agents effectively disrupt downstream signalling cascades critical for tumor cell proliferation and survival. Prominent examples include gefitinib, erlotinib, and afatinib, all of which are employed in the targeted therapy of EGFR-mutant cancers⁶.

2.1.1.3. Src family kinases (SFKs) inhibition

The Src family kinases (SFKs) constitute a class of non-receptor tyrosine kinases that are critically involved in the regulation of diverse cellular functions such as proliferation, survival. differentiation, migration, programmed cell death. This kinase family comprises several structurally related members. with Src serving as the archetype. Prominent additional members include Yes, Fyn, Lyn, Lck, and Hck. SFKs participate in a wide array of intracellular signaling cascades frequently associate with various membranebound receptors, including growth factor

receptors and integrins, thereby modulating key physiological and pathological processes⁷.

In compound 5, they disclosed substantial inhibition of SRC kinase family (SFKs), leading to a significant reduction in cell viability and induction of apoptosis, while sparing non-tumor cells such as primary human skin fibroblasts and differentiated C2C12 myoblasts. In addition, compound 5 impaired in-vitro cell migration and invasion, and suppressed tumor growth rhabdomyosarcoma (RMS) xenograft model. inhibition also promoted muscle differentiation in RMS cells by modulating the NOTCH3 receptor-p38 MAPK signalling axis, which governs the balance between cellular proliferation and differentiation⁸.

- 1. Cell proliferation and survival: Src family kinases (SFKs) are critical regulators of cellular proliferation and survival, primarily through the activation of key downstream signalling cascades, including the RAS–RAF–MEK–ERK and PI3K–AKT pathways, which collectively promote cell cycle progression and suppress apoptotic mechanisms².
- **2.** Cell migration and invasion: SFKs are critical in processes such as cell motility, which is essential for normal physiological functions and the metastatic spread of cancer cells. They modulate cytoskeletal dynamics and integrin signaling to facilitate these processes⁹.
- **3. Signal transduction:** SFKs act as critical nodes in transducing signals from various extracellular stimuli, including growth factors and adhesive signals from the extracellular matrix¹⁰.

Src family kinases (SFKs) are frequently overexpressed or aberrantly activated in a broad spectrum of malignancies, where they play a critical role in promoting oncogenic processes. Dysregulated SFK signalling has been associated with enhanced tumor proliferation, metastatic potential, and evasion of apoptosis, underscoring their relevance as promising therapeutic targets in cancer treatment. Among the SFKs, c-Src is particularly well-characterized and has been extensively implicated in the pathogenesis and progression of several major cancers, including those of the breast, prostate, and colon¹¹.

Due to their significant roles in cancer progression, SFKs are considered promising targets for therapeutic intervention. Several small-molecule inhibitors targeting SFKs have been developed, showing promise in preclinical and clinical settings. This strategy aims to inhibit SFK activity to reverse or prevent the malignant behaviors influenced by these kinases¹².

In summary, SFKs are essential regulatory proteins involved in various cellular mechanisms and disease processes, particularly in cancer, and represent a viable target for novel therapeutic strategies.

2.1.1.4. m-TOR and JAK kinases inhibition

They are critical signaling pathways involved in cell growth, proliferation, and survival, and they play significant roles in cancer biology¹³.

mTOR is a serine/threonine kinase that functions as a central regulator of cellular metabolism, growth, proliferation, and survival. It integrates signals from nutrients, growth factors, and cellular energy status to control processes such as:

- **Protein synthesis:** mTOR promotes the translation of mRNA into proteins, which is important for cell growth and propagation.
- **Autophagy:** It inhibits autophagy under nutrient-rich conditions, which is a process that degrades and recycles cellular components⁷.
- Cell cycle progression: mTOR signaling influences cell cycle progression, particularly the transition from the G1 phase to the S phase¹⁴.

mTOR was identified as a therapeutic target in various cancers, leading to the

development of mTOR inhibitors, such as rapamycin and its analogs, which aim to halt cancer growth and proliferation¹⁵.

Verheijen *et al.*¹⁶ combined 4-morpholino-IH pyrazolopyrimidines with alkylureidophenyl groups at the C-3 position of the pyrazolo[3,4-d]pyrimidine ring to produce target compound **6**.

2.1.1.5. JAK Kinases inhibition

JAKs are a family of non-receptor tyrosine kinases that associate with cytokine receptors and are critical for the signaling pathways of many growth factors and hematopoietic cytokines. They are involved in mediating the effects of cytokines and growth factors through the JAK/STAT (Signal Transducer and Activator of Transcription) signaling pathway, which regulates various biological processes, including ¹⁷:

- **Immune response:** JAKs play a key role in mediating responses to cytokines involved in the immune system.
- Cell proliferation and differentiation: They are involved in the proliferation and differentiation of hematopoietic cells.
- **Inflammation:** JAK signaling is implicated in inflammatory responses.

Deregulation of JAK activity is associated with several cancers, including leukemia and lymphomas. JAK inhibitors, such as ruxolitinib and tofacitinib, are being utilized to treat certain hematological malignancies and autoimmune disorders¹⁸.

Yin *et al.*¹⁹ designed new pyrazole-based derivatives using a structure-based drug design strategy. This study resulted in compound 7. In summary, JAK kinase is critical for cell signaling and contributes to cancer progression. Compound 7 exhibited an exceptional binding

inhibition of the JAK Kinase of 6.5 nM. Targeting this kinase represents a promising therapeutic strategy in oncology, with ongoing research aimed at optimizing their inhibition and overcoming resistance mechanisms.

2.1.1.6. DHFR inhibition

In 2022, Salem et al.20 reported the design and synthesis of a novel glutamic acidconjugated pyrazolo[3,4-d]pyrimidine derivative (Compound 8), structurally analogous to methotrexate. This structural mimicry was achieved by substituting the pteridine moiety of methotrexate with the isosteric pyrazolo[3,4-d]pyrimidine scaffold. The biological evaluation of compound 8 revealed potent anti-proliferative activity across various human cancer cell lines, primarily attributed to its inhibition of dihydrofolate reductase (DHFR). Notably, compound 8 demonstrated a significantly enhanced DHFR inhibitory effect, with an IC50 value of 0.24 uM, markedly surpassing that of the reference drug methotrexate (IC₅₀ = $5.57 \mu M$).

$$NH_2$$
 NH_2 NH_2 NH_3 NH_2 NH_3 NH_4 NH_5 NH_5

Methotrexate

Besides, Nassar et al.21 carried out a novel glutamic acid-conjugated of this heterocyclic scaffold (designated as compound 9) was designed and synthesized, exhibiting structural similarity to methotrexate through the strategic replacement of the pteridine core with an isosteric pyrazolo[3,4-d]pyrimidine scaffold. This rational design approach aimed to preserve key pharmacophoric features while potentially enhancing biological activity. Comprehensive in-vitro evaluations demonstrated that compound 9 possesses robust antiproliferative efficacy against a spectrum of human cancer cell lines, predominantly mediated through potent inhibition dihydrofolate reductase (DHFR).

Furthermore, Wang *et al.*²² developed a series of pyrazolo[3,4-d]pyrimidine derivatives incorporating a benzimidazole moiety (Compound **10**) and assessed their antiproliferative efficacy against A375 and H-29 cell lines, both of which express the oncogenic BRAF^ 0600E mutation known to drive aberrant cellular signaling. Among the synthesized compounds, compound **10** exhibited significant cytotoxic activity, demonstrating half-maximal inhibitory concentration (IC50) values of 1.74 μ M and 6.92 μ M against A375 and H-29 cells, respectively.

In a recent 2024 study, Hassaballah *et al.*²³, reported the synthesis of a novel pyrazolo[3,4-*d*]pyrimidine/pyrazole hybrid compound, designated as compound 11, and evaluated its cytotoxic properties across the National Cancer Institute's panel of 60 human cancer cell lines. The compound demonstrated potent and broad-spectrum antiproliferative activity, as evidenced by its performance in the NCI 5-log dose screening assay. Notably, the growth inhibition (GI₅₀) values ranged from 0.018 to 9.98 μM, suggesting a strong correlation between its cytotoxic effects and epidermal growth factor receptor (EGFR) inhibitory activity.

Furthermore, in 2020, Ibrahim et al.²⁴ developed a new compound linked to a quinoline moiety (Compound 12), which was subsequently evaluated for its potential as a phosphodiesterase type 5 (PDE-5) inhibitor and pro-apoptotic agent. Compound 12 exhibited marked PDE-5 inhibitory potency, with an IC₅₀ value of 1.57 nM, indicating strong enzymatic suppression. Mechanistic investigations revealed that the compound triggered the intrinsic apoptotic pathway, as evidenced by a significant downregulation of the anti-apoptotic Bcl-2 protein, thereby affirming its role in promoting programmed cell death.

2.1.1.7. Targeting multidrug resistance (MDR)

A major impediment to the efficacy of chemotherapy is the development of multidrug resistance (MDR), frequently mediated by ATP-binding cassette (ABC) transporters such as P-glycoprotein (P-gp). Recent studies have demonstrated that pyrazolo[3,4-d]pyrimidinebased tyrosine kinase inhibitors (TKIs), particularly compound 13, exhibit significant potential in circumventing MDR mechanisms. This compound effectively inhibits the ATPase activity of P-gp, thereby impeding drug efflux processes. As a result, it enhances the intracellular accumulation of chemotherapeutic agents, contributing to the restoration of drug sensitivity to agents such as doxorubicin and paclitaxel²⁵.

2.2. Anti-inflammatory activity

Numerous scientific investigations have highlighted the significant anti-inflammatory potential of the pyrazolo-pyrimidine scaffold²⁶. In a study by Tageldin et al.27, novel thiazolidinone-substituted pyrazolo[3,4-d]pyrimidine derivatives, specifically compounds 14 and 15, were synthesized and evaluated for their in-vitro cyclooxygenase-1 (COX-1) and cvclooxvgenase-2 (COX-2)activities. The findings demonstrated that both compounds exhibited superior antiinflammatory efficacy compared to standard drug diclofenac, as assessed using the formalin-induced paw edema model.

Similarly, in a study conducted by Lee et al. in 2019¹⁰, compound 16, was reported. The experimental findings demonstrated that compound 16 significantly upregulated intracellular Nrf2 levels and exhibited high binding affinity toward Keap1, a negative key regulator of Nrf2. By effectively disrupting the Keap1–Nrf2 interaction, this compound showed potential neuroprotective properties. These results suggest that compound 16 may serve as a promising therapeutic candidate for the management of oxidative stress and inflammation-associated neurodegenerative diseases, including Parkinson's disease.

2.3. Antimicrobial activity

The pyrazolo[3,4-d]pyrimidine scaffold has been extensively documented for its significant antibacterial and antifungal properties²⁸. In a study conducted by El-Sayed *et al.*²⁹ novel derivatives bearing a 1-phenyl-

1H-pyrazolo[3,4-d]pyrimidine synthesized, incorporating both pyrazole 17 and 1,3,4-oxadiazole 18 moieties. The resulting exhibited a broad-spectrum compounds antimicrobial profile, demonstrating potent against Gram-positive activity bacteria (Streptococcus pneumoniae), Gram-negative bacteria (Pseudomonas aeruginosa and Escherichia coli), as well as fungal strains including Aspergillus fumigatus and Candida albicans.

Furthermore, Beyzaei *et al.*³⁰ synthesized the 4-amino-1-phenylpyrazolo[3,4-*d*]pyrimidine derivative, designated as compound 19, which demonstrated notable antibacterial activity against *Streptococcus pyogenes* and *Pseudomonas aeruginosa*, exhibiting a minimum inhibitory concentration (MIC) of 32 µg/mL.

Additionally, Hassaneen *et al.*³¹, synthesized a novel pyrazolo[3,4-*d*]pyrimidine derivative conjugated with a hydrazone moiety

(Compound **20**). The antimicrobial properties of this compound were systematically evaluated against *Bacillus subtilis* and *Pseudomonas aeruginosa*. Notably, compound **20** exhibited significant inhibitory activity, with minimum inhibitory concentration (MIC) values recorded at 40 μg/mL and 60 μg/mL for *B. subtilis* and *P. aeruginosa*, respectively.

2.4. Anti-mycobacterial activity

Moukha-Chafiq *et al.*³², reported the synthesis of a benzylthiopyrazolo[3,4-*d*]pyrimidine derivative, designated as compound **21**. Subsequent biological evaluation demonstrated that this compound **21** exhibited notable anti-tubercular activity.

Too, in 2010 Trivedi et al.33, synthesized a novel phenothiazine-conjugated pyrazolo[3,4d|pyrimidine derivative, designated compound 22. The in-vitro evaluation of its antimycobacterial potential demonstrated significant inhibitory activity against Mycobacterium tuberculosis, with a minimum inhibitory concentration (MIC) of less than 6.25 µg/mL, highlighting its promise as a potent anti-tubercular agent.

2.5. Anti-malarial activity

The pyrazolo[3,4-d]pyrimidine scaffold been validated as a promising pharmacophore exhibiting notable antimalarial activity. Klein et al.34, synthesized a series 1,2,3-triazole moieties incorporating generate compounds 23 and 24. This analog subsequently evaluated for antimalarial efficacy against Plasmodium falciparum, with a specific focus on their inhibitory effect on Plasmodium falciparum protein kinase 7 (PfPK7). Both compounds demonstrated selective inhibitory activity against PfPK7, exhibiting IC50 values in the range of 10-20 µM, thereby indicating their potential as lead candidates for further optimization in antimalarial drug development.

Similarly, Silveira *et al.*³⁵ synthesized pyrazolo[3,4-*d*]pyrimidine derivatives, specifically compounds **25** and **26**, incorporating a benzene sulfonamide moiety via a flexible butyl linker. These analogs were subjected to *in-vitro* evaluation for antimalarial efficacy against *Plasmodium falciparum*. Notably, both compounds demonstrated inhibitory activity against chloroquine-resistant *P. falciparum* strains, with half-maximal inhibitory concentration (IC₅₀) values ranging from 5.13 to 43.40 μM.

2.6. Anti-viral activity

Due to its structural resemblance to purine bases, the pyrazolo[3,4-d]pyrimidine scaffold has garnered considerable attention for its potential as an antiviral pharmacophore. El-Sayed *et al.*³⁶ synthesized N4- β -D-glycosidic derivatives (Compounds 27 and 28) and assessed their efficacy against the hepatitis B virus. The findings demonstrated that both compounds exhibited pronounced antiviral activity, with a notably low minimum inhibitory concentration (MIC) of 0.2 μ M, indicating strong therapeutic potential.

In a study conducted by Wang *et al.*³⁷ a novel pyrazolo[3,4-*d*]pyrimidine derivative incorporating a Schiff base moiety (Compound **29**) was successfully synthesized and subsequently evaluated for its antiviral efficacy against the tobacco mosaic virus (TMV). The findings revealed that compound **29** exhibited remarkable antiviral activity, demonstrating an effective concentration (EC₅₀) of 53.65 μg/mL, significantly surpassing the performance of the standard antiviral agent ribavirin, which showed an EC₅₀ of 150.45 μg/mL.

2.7. Xanthine oxidase inhibitory activity

The pyrazolo[3,4-d]pyrimidine scaffold constitutes the fundamental structural motif of allopurinol (Fig. 3), which was the first xanthine oxidase inhibitor to receive approval from the U.S. Food and Drug Administration (FDA) for the sustained treatment of chronic gout-related conditions³⁸.

Fig. 3: The structure of the first FDA approved pyrazolo[3,4-*d*]pyrimidine containing drug Allopurinol as xanthine oxidase inhibitor.

Oliveira-Campos *et al.*³⁹, 1-phenyl-pyrazolo[3,4-*d*]pyrimidine derivatives 30 and 31 were synthesized and subsequently assessed for their inhibitory activity against xanthine oxidase, with allopurinol employed as the reference standard.

In a study conducted by Khammas *et al.*⁴⁰, the xanthine oxidase inhibitory potential of a derivative incorporating a 1,3,4-oxadiazole

31

moiety (designated as compound 32) was systematically evaluated. The compound demonstrated significant inhibitory activity against xanthine oxidase, with an IC50 value of $1.32\pm0.05~\mu M$. This potency is notably comparable to that of the standard inhibitor allopurinol, which exhibited an IC50 of $2.61\pm0.07~\mu M$ under the same experimental conditions.

2.8. Anti-diabetic activity

Reddy and colleagues synthesized a novel compound, designated as compound 33, which incorporates a pyrazolo[3,4-d]pyrimidine core connected with a bicyclic moiety and a benzanilide functional group. This compound demonstrated superior anti-diabetic activity, exhibiting an IC₅₀ value of 1.60±0.48 μM, thereby outperforming the standard reference drug acarbose, which showed an IC₅₀ of 1.73±0.05 μM.

2.9. Anti-sterility activity

Sildenafil, the first FDA-approved agent targeting infertility through the inhibition of guanosine monophosphate-specific cyclic phosphodiesterase type 5 (PDE5), has been extensively utilized in the clinical management of erectile dysfunction. Structurally, sildenafil is characterized by a pyrazolo[4,3-d]pyrimidine core conjugated to a benzene sulfonamide moiety (Fig. 4). Notably, structural modifications - specifically the substitution of the N4-methyl group on the piperazine ring with an ethyl group, while preserving both the pyrazolo[4,3-d]pyrimidine and benzene sulfonamide motifs – have led to the development of a more potent analog, Vardenafil, representing a novel chemical entity with enhanced pharmacological efficacy (Fig. 4)⁴¹.

Fig. 4: The chemical structure pyrazolo[4,3-*d*]-pyrimidine dependant anti-sterility drug Sildenafil and Vardenafil.

In a related study, Shaaban *et al.*⁴² employed a combination of virtual screening and pharmacophore modeling to design and synthesize a series including compounds 34 and 35. These molecules demonstrated significant relaxant activity on isolated rat corpus cavernosum tissue, exhibiting pEC₅₀ values between 8.31 and 5.16 μM. Notably, their pharmacological efficacy was comparable to that of the reference drug sildenafil, achieving a response equivalent to 100%.

3. Conclusion

The pyrazolo[3,4-d]pyrimidine scaffold has emerged as a prominent structural motif in medicinal chemistry, owing to its extensive range of pharmacological properties, which encompass anti-inflammatory, antimycobacterial, antimicrobial, anticancer, antiviral, antidiabetic, antimalarial, xanthine oxidase inhibitory, and antifertility activities. This review critically examines the therapeutic relevance of this heterocyclic framework, emphasizing lead compounds that integrate this nucleus. The objective is to support the rational design and synthesis of innovative bioactive molecules derived from this core structure, thereby promoting systematic biological assessments aimed at optimizing pharmacological efficacy and specificity. Furthermore, these interesting findings this review may open the door towards this privilege skeleton to develop new pharmacological leads of potential therapeutic applications.

REFERENCES

- 1- A. A. Gaber, A. M. El-Morsy, F. F. Sherbiny, A. H. Bayoumi, K. M. El-Gamal, K. El-Adl, A. A. Al-Karmalawy, R. R. Ezz Eldin, M. A. Saleh, H. S. Abulkhair, "Pharmacophore-linked pyrazolo[3,4-d]pyrimidines as EGFR-TK inhibitors: Synthesis, anticancer evaluation, pharmacokinetics, and *in-silico* mechanistic studies", *Archiv Der Pharmazie*, 2021, 358, 1-16, https://doi.org/10.1002/ardp.202100258.
- 2- P. Singla, V. Luxami, R. Singh, V. Tandon, K. Paul, "Novel pyrazolo[3,4-d]pyrimidine with 4-(1H-benzimidazol-2-yl)-phenylamine as broad spectrum anticancer agents: Synthesis, cell based assay, topoisomerase inhibition, DNA intercalation and bovine serum albumin

- studies", *European Journal of Medicinal Chemistry*, 2017, 126, 24-35, https://doi.org/https://doi.org/10.1016/j.ejmech.2016. 09.093.
- 3- A. M. Abdelhamed, R. A. Hassan, H. H. Kadry, A. A. Helwa, "Novel pyrazolo[3,4-d]pyrimidine derivatives: Design, synthesis, anticancer evaluation, VEGFR-2 inhibition, and antiangiogenic activity", *RSC Medicinal Chemistry*, 2023, 14, 2640-2657, https://doi.org/10.1039/d3md00476g.
- 4- M. T. M. Nemr, A. Elshewy, M. L. Ibrahim, A. M. El Kerdawy, P. A. Halim, "Design, synthesis, antineoplastic activity of new pyrazolo[3,4-d]pyrimidine derivatives as dual CDK2/GSK3β kinase inhibitors; molecular docking study, and ADME prediction", *Bioorganic Chemistry*, 2024, 150, 107566.
- 5- J. Engel, S. Smith, J. Lategahn, H. L. Tumbrink, L. Goebel, C. Becker, E. Hennes, M. Keul, A. Unger, H. Müller, M. Baumann, C. Schultz-Fademrecht, G. Günther, J. G. Hengstler, D. Rauh, development "Structure-guided covalent and mutant-selective pyrazolopyrimidines to target T790M drug resistance in epidermal growth factor receptor". Journal of Medicinal Chemistry, 2017, 60, 7725-7744, https://doi.org/10.1021/acs.jmedchem.7b0 0515.
- 6- A. A. Gaber, M. Sobhy, A. Turky, H. G. Abdulwahab, A. A. Al-Karmalawy, Mostafa A. Elhendawy, Mohamed M. Radwan, E. B. Elkaeed, I. M. Ibrahim, H. S. A. Elzahabi, I. H. Eissa, "Discovery of new 1H-pyrazolo[3,4-d]pyrimidine derivatives as anticancer agents targeting EGFRWT and EGFRT790M", Journal of Enzyme Inhibition and Medicinal Chemistry, 2022, 37, 2283-2303, https://doi.org/10.1080/14756366.2022.2112575.
- 7- M. A. Abdelgawad, N. A. A. Elkanzi, A. A. Nayl, A. Musa, N. H. Alotaibi, W. A. A. Arafa, S. M. Gomha, R. B. Bakr, "Targeting tumor cells with pyrazolo[3,4-d]pyrimidine scaffold: A literature review on synthetic approaches, structure activity relationship, structural and target-based mechanisms", *Arabian Journal of Chemistry*, 2022, 15, 1-23, https://doi.org/10.1016/j.arabjc.2022.103781.

- 8- N. Casini, I. M. Forte, G. Mastrogiovanni, F. Pentimalli, A. Angelucci, C. Festuccia, V. Tomei, E. Ceccherini, D. Di Marzo, S. Schenone, M. Botta, A. Giordano, P. Indovina, G. Pascale, "SRC family kinase inhibition (SFK) reduces rhabdomyosarcoma cell growth in-vitro and in-vivo and triggers p38 MAP kinasemediated differentiation", Oncotarget, 2015, 12421-12435. www. 6, impactjournals.com/oncotarget.
- 9- D. J. Baillache, A. Unciti-Broceta, "Recent developments in anticancer kinase inhibitors based on the pyrazolo[3,4-d]pyrimidine scaffold", **RSC Medicinal Chemistry**, 2020, 11, 1112-1135, https://doi.org/10.1039/d0md00227e.
- 10- J. A. Lee, Y.-W. Kwon, H. R. Kim, N. Shin, H. J. Son, C. S. Cheong, D. J. Kim, O. Hwang, "A novel pyrazolo[3,4-d]pyrimidine induces heme oxygenase-1 and exerts anti-inflammatory and neuroprotective effects", *Molecules and Cells*, 2022, 45, 134-147.
- 11- A. Kumar, G. Ye, X. Gu, Y. Wang, G. Sun, K. Parang, "Synthesis of pyrazolo[3,4-d]pyrimidine derivatives and evaluation of their Src kinase inhibitory activities", *Chemistry & Biology Interface*, 2013, 3, 264-269, https://consensus.app/papers/synthesis-of-pyrazolo34dpyrimidine-derivatives-and-kumar
 - ye/f3b8fe1f3fc855c7b01d0340f15d8f9d/.
- 12- E. Ceccherini, P. Indovina, C. Zamperini, E. Dreassi, N. Casini, O. Cutaia, I. Forte, F. Pentimalli, L. Esposito, M. Polito, S. Schenone, M. Botta, A. Giordano, "SRC family kinase inhibition through a new pyrazolo[3,4-d]pyrimidine derivative as a feasible approach for glioblastoma treatment", **Journal** Cellular of *Biochemistry*, 2015, 116, 856-863, https:// doi.org/10.1002/jcb.25042.
- 13- W. Lee, D. Ortwine, P. Bergeron, K. Lau, L. Lin, S. Malek, J. Nonomiya, Z. Pei, K. Robarge, S. Schmidt, S. Sideris, J. Lyssikatos, "A hit to lead discovery of novel N-methylated imidazolo-, pyrrolo-, and pyrazolo-pyrimidines as potent and selective mTOR inhibitors", *Bioorganic & Medicinal Chemistry Letters*, 2013, 23 (18), 5097-5104, https://doi.org/10.1016/j.bmcl.2013.07.027.

- 14- M. Zhang, W. Wei, C. Peng, Xiaodong, X. He, H. Zhang, M. Zhou, "Discovery of novel pyrazolopyrimidine derivatives as mTOR/HDAC potent bi-functional inhibitors via pharmacophore-merging Bioorganic & strategy", Medicinal Chemistry Letters, 2021, 49. 1-8. https://doi.org/10.1016/j.bmcl.2021.12828
- 15- K. Curran, J. Verheijen, J. Kaplan, D. Richard, L. Toral-Barza, I. Hollander, J. Lucas, S. Ayral-Kaloustian, K. Yu, A. Zask, "Pyrazolopyrimidines as highly potent and selective, ATP-competitive inhibitors of the mammalian target of rapamycin (mTOR): Optimization of the 1-substituent", *Bioorganic & Medicinal Chemistry Letters*, 2010, 20 (4), 1440-1444,

https://doi.org/10.1016/j.bmcl.2009.12.086

- 16- J. C. Verheijen, D. J. Richard, K. Curran, J. Kaplan, M. Lefever, P. Nowak, D. J. Malwitz, N. Brooijmans, L. Toral-Barza, W.-G. Zhang, J. Lucas, I. Hollander, S. Ayral-Kaloustian, T. S. Mansour, K. Yu, A. Zask, "Discovery of 4-morpholino-6aryl-1H-pyrazolo[3,4-d]pyrimidines highly potent and selective ATPcompetitive inhibitors of the mammalian target of rapamycin (mTOR): Optimization of the 6-aryl substituent", Journal of Medicinal Chemistry, 2009, 8010-8024, https://doi.org/10.1021/jm9013828.
- 17- Y. Yin, C. Chen, R.-N. Yu, L. Shu, Z.-J. Wang, T.-T. Zhang, D.-Y. Zhang, "Novel 1H-pyrazolo[3,4-d]pyrimidin-6-amino derivatives as potent selective Janus kinase 3 (JAK3) inhibitors: Evaluation of their improved effect for the treatment of rheumatoid arthritis", *Bioorganic Chemistry*, 2020, 98, 1-16, https://doi.org/10.1016/j.bioorg.2020.1037
- 18- A. Faris, I. Cacciatore, R. Alnajjar, A. Aouidate, M. Al Mughram, M. Elhallaoui, "Computational insights into rational design and virtual screening of pyrazolopyrimidine derivatives targeting Janus kinase 3 (JAK3)", *Frontiers in Chemistry*, 2024, 12, 1425220, https://doi.org/10.3389/fchem.2024.1425220.
- 19- Y. Yin, C.-J. Chen, R.-N. Yu, L. Shu, T.-T. Zhang, D.-Y. Zhang, "Discovery of

- novel selective Janus kinase 2 (JAK2) inhibitors bearing a 1H-pyrazolo[3,4-d]pyrimidin-4-amino scaffold", **Bioorganic & Medicinal Chemistry**, 2019, 27, 1562-1576, https://doi.org/https://doi.org/10.1016/j.bmc.2019.02.054.
- 20- I. M. Salem, S. M. Mostafa, I. Salama, O. I. El-Sabbagh, W. A. H. Hegazy, T. S. Ibrahim, "Human dihydrofolate reductase inhibition effect of 1-phenylpyrazolo[3,4-d]pyrimidines: Synthesis, antitumor evaluation and molecular modeling study", *Bioorganic Chemistry*, 2022, 129, 106207.
- 21- I. F. Nassar, M. T. A. Aal, W. A. El-Sayed, M. A. E. Shahin, E. G. E. Elsakka, M. M. Mokhtar, M. Hegazy, M. Hagras, A. A. Mandour, N. S. M. Ismail, "Discovery of pyrazolo[3,4-d]pyrimidine and pyrazolo[4,3-e][1,2,4]triazolo[1,5-c] pyrimidine derivatives as novel CDK2 inhibitors: Synthesis, biological and molecular modeling investigations", RSC Advances, 2022, 12, 14865-14882.
- 22- Y. Wang, S. Wan, Z. Li, Y. Fu, G. Wang, J. Zhang, X. Wu, "Design, synthesis, biological evaluation and molecular modeling of novel 1H-pyrazolo[3,4-d]pyrimidine derivatives as BRAFV600E and VEGFR-2 dual inhibitors", European Journal of Medicinal Chemistry, 2018, 155, 210-228.
- 23- A. I. Hassaballah, A. M. AboulMagd, M. M. Hemdan, M. H. Hekal, A. A. El-Sayed, P. S. Farag, "New pyrazolo[3,4-d]pyrimidine derivatives as EGFR-TK inhibitors: Design, green synthesis, potential antiproliferative activity and P-glycoprotein inhibition", *RSC Advances*, 2024, 14, 1995-2015.
- 24- T. S. Ibrahim, M. M. Hawwas, E. S. Taher, N. A. Alhakamy, M. A. Alfaleh, M. Elagawany, B. Elgendy, G. M. Zayed, M. F. A. Mohamed, Z. K. Abdel-Samii, "Design and synthesis of novel pyrazolo[3,4-d]pyrimidin-4-one bearing quinoline scaffold as potent dual PDE5 inhibitors and apoptotic inducers for cancer therapy", *Bioorganic Chemistry*, 2020, 105, 104352.
- 25- A. Podolski-renić, J. Dinić, T. Stanković, I. Tsakovska, I. Pajeva, T. Tuccinardi, L. Botta, S. Schenone, M. Pešić, "New therapeutic strategy for overcoming multidrug resistance in cancer cells with

- pyrazolo[3,4-d]pyrimidine tyrosine kinase inhibitors", *Cancers*, 2021, 13, 1-17, https://doi.org/10.3390/cancers13215308.
- 26- N. Atatreh, A. M. Youssef, M. A. Ghattas, M. Al Sorkhy, S. Alrawashdeh, K. B. Al-Harbi, I. M. El-Ashmawy, T. I. Almundarij, A. A. Abdelghani, A. S. Abd-El-Aziz, "Anti-inflammatory drug approach: Synthesis and biological evaluation of novel pyrazolo[3,4-d]pyrimidine compounds", *Bioorganic Chemistry*, 2019, 86, 393-400.
- 27- G. N. Tageldin, S. M. Fahmy, H. M. Ashour, M. A. Khalil, R. A. Nassra, I. M. Labouta, "Design, synthesis and evaluation of some pyrazolo[3,4-d]pyrimidines as anti-inflammatory agents", *Bioorganic Chemistry*, 2018, 78, 358-371.
- 28- T. E.-S. Ali, "Synthesis of some novel pyrazolo[3,4-b]pyridine and pyrazolo[3,4-d]pyrimidine derivatives bearing 5,6-diphenyl-1,2,4-triazine moiety as potential antimicrobial agents", *European Journal of Medicinal Chemistry*, 2009, 44, 4385-4392.
- 29- A. M. El-Sayed, S. M. Ibrahim, M. K. Soltan, M. E. Abo-Kul, "Synthesis and antimicrobial activity of newly synthesized 4-substituted-pyrazolo[3,4-d]-pyrimidine derivatives", *Medicinal Chemistry Research*, 2017, 26, 1107-1116.
- 30- H. Beyzaei, M. Moghaddam-Manesh, R. Aryan, B. Ghasemi, A. Samzadeh-Kermani, "Synthesis and *in-vitro* antibacterial evaluation of 6-substituted 4-amino-pyrazolo[3,4-d]pyrimidines", *Chemical Papers*, 2017, 71, 1685-1691.
- 31- H. M. Hassaneen, F. M. Saleh, T. A. Abdallah, Y. S. Mohamed, E. M. Awad, "Synthesis, reactions, and antimicrobial activity of some novel pyrazolo[3,4-d]-pyrimidine, pyrazolo[4,3-e][1,2,4]triazolo-[1,5-c] pyrimidine, and pyrazolo[4,3-e]-[1,2,4]triazolo[3,4-c]pyrimidine derivatives", *Journal of Heterocyclic Chemistry*, 2020, 57, 892-912.
- 32- O. Moukha-Chafiq, M. L. Taha, H. B. Lazrek, J.-L. Barascut, J.-L. Imbach, "Synthesis of some acyclonucleosides with the alkylating chain of acyclovir", Comptes Rendus de l'Académie Des Sciences-Series IIC-Chemistry, 2000, 3, 639-641.

- 33- A. Trivedi, S. Vaghasiya, B. Dholariya, D. Dodiya, V. Shah, "Synthesis and antimycobacterial evaluation of various 6-substituted pyrazolo[3,4-d]pyrimidine derivatives", Journal of Enzyme Inhibition and Medicinal Chemistry, 2010, 25, 893-899.
- 34- M. Klein, P. Dinér, D. Dorin-Semblat, C. Doerig, M. Grøtli, "Synthesis of 3-(1,2,3-triazol-1-yl)-and 3-(1,2,3-triazol-4-yl)-substituted pyrazolo[3,4-d]pyrimidin-4-amines via click chemistry: Potential inhibitors of the Plasmodium falciparum PfPK7 protein kinase", *Organic & Biomolecular Chemistry*, 2009, 7, 3421-3429.
- 35- F. F. Silveira, L. M. Feitosa, J. C. M. Mafra, M. de L. G. Ferreira, K. R. Rogerio, L. J. M. Carvalho, N. Boechat, L. C. S. Pinheiro, "Synthesis and antiplasmodium falciparum evaluation of novel pyrazolopyrimidine derivatives", *Medicinal Chemistry Research*, 2018, 27, 1876-1884.
- 36- W. A. El-Sayed, M. M. M. Ramiz, A. A.-H. Abdel-Rahman, "Anti-Hepatitis B virus activity of new N4-β-D-Glycoside pyrazolo[3,4-d]pyrimidine derivatives", **Zeitschrift Für Naturforschung C**, 2009, 64, 323-328.
- 37- Y.-Y. Wang, F.-Z. Xu, Y.-Y. Zhu, B. Song, D. Luo, G. Yu, S. Chen, W. Xue, J. Wu, "Pyrazolo[3,4-d]pyrimidine derivatives containing a Schiff base moiety as potential antiviral agents", *Bioorganic & Medicinal Chemistry Letters*, 2018, 28, 2979-2984.
- 38- I. Chu, B. M. Lynch, "Synthesis and biological evaluation of xanthine oxidase inhibitors: Pyrazolo[3,4-d]pyrimidines and pyrazolo[3,4-b]pyridines", *Journal of Medicinal Chemistry*, 1975, 18, 161-165.
- 39- A. M. F. Oliveira-Campos, A. Sivasubramanian, L. M. Rodrigues, J. A. Seijas, M. Pilar Vázquez-Tato, F. Peixoto, C. G. Abreu, H. Cidade, A. E. Oliveira, M. Pinto, "Substituted pyrazolo[3,4-d]pyrimidines: Microwave-Assisted, solvent-free synthesis and biological evaluation", *Helvetica Chimica Acta*, 2008, 91, 1336-1345.
- 40- S. J. Khammas, A. J. Hamood, "Synthesis, cytotoxicity, xanthine oxidase inhibition, antioxidant of new pyrazolo[3,4-d]pyrimi-

- dine derivatives", *Baghdad Science Journal*, 2019, 16, 1003-1009.
- 41- H. A. Flores Toque, F. B. M. Priviero, C. E. Teixeira, E. Perissutti, F. Fiorino, B. Severino, F. Frecentese, R. Lorenzetti, J. S. Baracat, V. Santagada, "Synthesis and pharmacological evaluations of sildenafil analogues for treatment of erectile dysfunction", *Journal of Medicinal Chemistry*, 2008, 51, 2807-2815.
- 42- M. A. Shaaban, Y. A. M. M. Elshaier, A. H. Hammad, N. A. Farag, H. H. Haredy, A. A. AbdEl-Ghany, K. O. Mohamed, "Design and synthesis of pyrazolo[3,4-d]pyrimidinone derivatives: Discovery of selective phosphodiesterase-5 inhibitors", Bioorganic & Medicinal Chemistry Letters, 2020, 30, 127337.

Sphinx Journal of Pharmaceutical and Medical Sciences, Vol. 10, Issue 1, 2025, pp. 19-35.

Sphinx Journal of Pharmaceutical and Medical Sciences

e-mail: sjpms@sphinx.edu.eg

بحث مرجعى شامل للأنشطة البيولوجية لهيكل بيريزولو [4،3-د]بيريميدين

ابراهیم سالم 1 – سالی الذهنی 1 – می علاء حیالله 2 – علاء حیالله $^{3\cdot 1}$

 1 قسم الكيمياء الصيدلية ، كلية الصيدلة ، جامعة سفنكس ، أسيوط الجديدة 1 0 ، مصر 2 قسم الممارسة الصيدلية ، كلية الصيدلة ، جامعة سفنكس ، أسيوط الجديدة 1 0 ، مصر 3 قسم الكيمياء العضوية الصيدلية ، كلية الصيدلة ، جامعة أسيوط ، أسيوط 1 0 ، مصر

يُمثل بيرازولو [4،3-د]بيريميدين هيكلًا ثنائي الحلقة مُلتحمًا ، مُكوّنًا من تكثف حلقات البيرازول والبيريميدين. صنع هذا الهيكل في البداية كنظير لنوكليوسيدات البيورين لعلاج السرطان ، وقد أظهر منذ ذلك الحين طيفًا واسعًا من الخصائص البيولوجية ، بما في ذلك تأثيرات مضادة للميكروبات ، ومضادة للفيروسات ، ومضادة للفطريات ، ومضادة للالتهابات ، ومضادة للملاريا ، ومضادة لمرض السكري ، ومضادة للعقم ، بالإضافة إلى تثبيط أوكسيديز الزانثين لعلاج النقرس. في السنوات الأخيرة ، حظي دمج فار ماكوفور بيرازولو [4،3-د]بيريميدين في تصميم الأدوية باهتمام كبير بين الكيميائيين وعلماء الصيدلة ، مما دفع إلى استكشاف واسع لإمكانياته البيولوجية. يقدم هذا البحث المرجعي مسحًا شاملاً للأبحاث المنشورة حول مشتقات هذه النواة بين عامي 2012 و 2024 ، مُسلّطة الضوء على التطورات الحديثة والاتجاهات الناشئة في تطبيقاتها العلاجية. قد يفتح هذا البحث الباب أمام الكيميائيين الطبيين وعلماء الأدوية لتأكيد أهمية هذه النواة كمرشحات محتملة للأدوية في المستقبل لعلاج أمراض مختلفة. كما قد تشجع الباحثين على تحسين الخواص الفيزيائية والكيميائية وتعديل خصائصها الدوائية.