Association between Fluid Balance and Outcome Variables in Mechanically Ventilated Children

Eman G. Abdelrahman ,Reda S. Afifi, Ahlam E. Baraka, Marwa E. Hassan

Abstract:

Background: Intravenous (IV) fluid therapy is often required in patients undergoing mechanical ventilation (MV) to restore hemodynamics and distal organ perfusion... mechanical ventilation (PMV) in critically ill children is associated with significant complications, including fluid balance disturbances. Understanding the relationship between fluid balance and PMV can improve patient outcomes. This study aimed to evaluate the association between fluid balance and PMV in critically ill children, as well as other outcomes like pediatric mortality index (PIM2), length of PICU stay & outcome of the patients . Methods: This cross sectional study was conducted on 40 mechanically ventilated children admitted to the pediatric intensive care unit (PICU) at Benha University Hospital from January to June 2023. Fluid balance was calculated during the first 48 hours of mechanical ventilation. PIM2 scores and other clinical parameters were recorded. Results: The mean age of patients was 4.1 ± 4.57 years. A significant positive correlation was found between fluid balance in the first 48 hours and PIM2 (r=0.568, P<0.001), as well as with the length of PICU stay (r=0.757, P<0.001). Fluid balance was significantly higher in non-survivors compared to survivors (P=0.003). Logistic regression identified high-risk diagnosis, diastolic blood pressure, fluid balance, PIM2, and duration of MV as significant predictors of mortality. Conclusion: Positive fluid balance in the first 48 hours is significantly associated with PMV and higher mortality in critically ill children. Early fluid management may improve outcomes in this population.

Keywords: Fluid Balance; Prolonged Mechanical Ventilation, PICU, PIM2, Mortality.

Pediatrics Department, Faculty of Medicine Benha University, Egypt.

Corresponding to: Dr. Ahlam E. Baraka. Pediatrics Department, Faculty of Medicine Benha University, Egypt. Email: ahlambaraka998@gmail.com

Received: Accepted:

Introduction

Assisted mechanical ventilation (AMV) is a frequently used life-support system which, in spite of its benefit, might cause damage (1).

With the widespread application of mechanical ventilation technology, the survival rate of critically ill patients is constantly increasing. In recent years, numerous studies evaluating the duration of mechanical ventilation of patients with critical illnesses ^(2, 3).

Prolonging the duration of mechanical ventilation causes many challenging complications, such as ventilatorassociated pneumonia (VAP), pulmonary hemorrhage, tracheal diaphragm injury, atrophy, neuromuscular disorders, an increased length of ICU stay and an unfavorable discharge destination. Moreover, there are no specialized weaning units for patients requiring PMV. Most children with PMV stay in the hospital indefinitely and are separated from their families, which adversely affects children's physical and emotional development (4).

Different strategies such as sedation and ventilator weaning protocols including spontaneous breathing trials and decreasing duration of AMV are under trial to decrease Ventilatorassociated lung injury (VALI) (5, 6). Fluid balance is one of the cardinal outcome measures related to exposure time of AMV ⁽⁷⁾. Fluid balance is a term used to describe the balance of the input and output of fluids in the body to allow metabolic processes to function correctly (8). It was shown that fluid balance accumulation in the first 3-7 days was associated with more days on AMV among adult patients with acute pulmonary injury and also to a higher mortality rate in patients with sepsis (9, 10), and with acute respiratory distress (11).

In children, it was shown that the balance accumulated in the first 72

hours was associated with more days on AMV in patients with acute lung injury (7, 12), and in those in the cardiovascular postoperative period (13). A cumulative balance higher than 15% of the body weight was demonstrated to be associated with impaired oxygenation and prolonged AMV (14). Patients requiring AMV for more than 7 days were considered to have PMV (15). The purpose of this study is to exhibit the association between fluid balance and PMV as well as other associated outcome variables as pediatric mortality index (PIM2), VAP, lung injuries and other system dysfunction.

Patients and methods:

Patients:

This cross sectional study was conducted over all mechanically ventilated children in the pediatric intensive care unit (PICU) of Benha University hospital in the period from 1 January to 30 June 2023.

An informed written consent was obtained from the patients. Every patient received an explanation of the purpose of the study and had a secret code number.

Inclusion criteria were patients of both sexes aged between 29 days to 15 years and mechanically ventilated patients who admitted in the PICU.

Exclusion criteria were children previously admitted in the PICU of any other hospital and referred from those hospitals, patients whose medical records had incomplete information, with congenital patients anomalies and malformations, patients who had received renal function replacement therapy and burn patients, and patients who had evidence of left atrial hypertension either clinically or echocardiogram or had echocardiographic evidence of intracardiac shunt.

An informed written consent was obtained from patients' caregivers.

Every parent received an explanation of the purpose of the study and had a secret code number. The study was done after being approved by the Research Ethics Committee, Faculty of Medicine, Benha University. (MS 5-9-2022)

Methods:

All studied cases were subjected to the following:

Detailed history taking, including name, age, gender and body mass index (BMI), present history showing course of the disease and duration, date of admission, provisional clinical diagnosis, PIM2 score.

Full clinical examination: General examination including general comment on children conscious and mental state, vital signs as pulse, blood capillary filling pressure, time, respiratory rate and temperature. Systemic examination including: cardiovascular system for detection of abnormal heart sounds or murmurs, respiratory system detection of any abnormal breath adventitious sound, sounds respiratory distress, gastrointestinal tract (GIT) and abdomen for presence of organomegaly or ascites, central system nervous (CNS) and musculoskeletal system.

The assessment included Glasgow Coma Score, pupillary reaction, and motor system examination (power, tone, reflexes). Blood investigation results, including arterial blood gases (PaO2, base excess, FiO2), were recorded. Fluid intake and output during the first 48 hours of mechanical ventilation were documented, covering blood products, nutrition, intravenous fluids, medications, urine output, blood loss, and other outputs. Insensible losses were excluded because in all ventilated patients active humidification and heating systems are Daily fluid balance used. calculated per kilogram using actual

body weight, as 24-hour intake minus output. Maintenance fluid intake was determined using the Holliday-Segar method ⁽¹⁶⁾. Percent fluid overload was calculated using the formula, (Total Fluid Intake in Liters – Total Fluid Output in Liters) / Admission Weight in Kilograms] × 100, described by **Goldstein et al.** ⁽¹⁷⁾.

Fluid balance definitions:

Fluid balance was assessed using daily weights, a reliable method consistent with guidelines. At admission, it was calculated as (fluid input – fluid output) /weight \times 100 during the first 48 hours of AMV.

The Pediatric Index of Mortality 2 (PIM2) score was determined based on admission type and underlying conditions like cardiac arrest and immune deficiencies.

The PIM2 score, with a 99.8 cutoff and 95% confidence interval, was used to predict outcomes. A PaO2/FiO2 ratio <200 indicated hypoxic respiratory failure if no cyanotic heart disease or left ventricular dysfunction was present. Cardiovascular failure was defined by arterial hypotension (below the 5th percentile for age) or the need for vasoactive drugs (dopamine, epinephrine, norepinephrine).

Duration of mechanical ventilation , duration of PICU stay, and outcome were recorded subsequently and analyzed with precision. $^{(18)}$.

Approval code: MS 5-9-2022

Statistical analysis

Statistical analysis was done by SPSS v28 (IBM Inc., Chicago, IL, USA). Shapiro-Wilks test and histograms were used to evaluate the normality of the distribution of data. Quantitative parametric data were presented as mean and standard deviation (SD). Quantitative non-parametric data were presented as median and interquartile range (IQR). Qualitative variables were presented as frequency and percentage (%). Pearson and spearman

correlation were done to estimate the degree of correlation between two quantitative variables. Logistic regression is also used to estimate the relationship between a dependent variable and one (univariate) or more (multivariate) independent variables.

Results:

Table2

In our study, regarding demographic data of the studied patients, age ranged from 0.12 to 15 years with a mean of 4.1 ± 4.57 years and a median of 2.75 (0.33-6) years. There were 18 (45%) males and 22 (55%) females.

The SBP of the studied patients ranged from 75 to 168 mmHg with a mean of 110.5 ± 21.62 mmHg and the DBP ranged from 70 to 110 mmHg with a mean of 92.4 \pm 11.11 mmHg. **Table1** The base excess ranged from -16.3 to 20.31 mEq/L with a mean of -5.2 \pm 7.22 mEq/L. The PaO₂ ranged from 50 to 110 mmHg with a mean of 84.2 \pm 18.2 mmHg. The FiO₂ ranged from 0.04 to 1 % with a mean of 0.4 ± 0.22 %. The FiO₂/ PaO₂ ranged from 0.04 to 1.72 with a mean of 0.5 ± 0.32 . The fluid balance of the studied patients in the 1st 48 hours ranged from -2803 to 2418 with a mean of 582.4 ± 785.79 .

PIM2 of the studied patient ranged from 1.16-100 with a mean of 43.8 ± 35.29 . **Table3** The duration of MV of the studied patient ranged from 2 to 30 days with a mean of 7.97 ± 6.12 days. The length of PICU stay ranged from 3 to 45 days with a mean of 14.4 ± 11.43

days. Regarding the outcome, 17 (42.5%) patients were discharged (survivors) and 23 (57.5%) patients were arrested (non-survivors). **Table 4** There was a significant positive correlation between the PIM2 and fluid balance at 1st 48 hours (r= 0.568, P<0.001). There was insignificant correlation between the PIM2 and different parameters (age, SBP, DBP, base excess, PaO₂, FiO₂, FiO₂/ PaO₂).

Figure 1

There was a significant positive correlation between the PIM2 and length of PICU stay (r= 0.757, P<0.001). **Figure 2**

There were significant relations between PMV and fluid balance at 1st 48 hours and PIM2 (P=0.011, <0.001 respectively). Table 5 Also, there were a significant relation between fluid balance at 1st 48 hours and outcome, being better in survivors group compared to non-survivors (P=0.003). The univariate logistic regression analysis revealed that sex, high risk diagnosis, DBP, fluid balance at 1st 48 hours, PIM2 and duration of MV were significant predictors of mortality of the studied patients.

The multivariate logistic regression analysis revealed that high risk diagnosis, DBP, fluid balance at 1st 48 hours, PIM2 and duration of MV were the only significant predictors of mortality of the studied patients. **Table** 6

Table 1: Demographic data and BP of the studied patients.

		N=40	
Age (years)	Mean ± SD	4.1 ± 4.57	
	Range	0.12 - 15	
	Median (IQR)	2.75 (0.33-6)	
Sex	Male	18 (45%)	
	Female	22 (55%)	
SBP (mmHg)	Mean ± SD	110.5 ± 21.62	
_	Range	75 - 168	
DBP (mmHg)	Mean ± SD	92.4 ± 11.11	
	Range	70 - 110	

SBP; Systolic Blood Pressure, DBP; Diastolic Blood Pressure.

Table 2: Base excess and ventilation parameters, and fluid balance at 1st 48 hours of the studied patients.

		N=40
	Mean ± SD	-5.2 ± 7.22
Base excess (me/L)	Range	-16.3 - 20.31
	Median (IQR)	-4.3 (-9.72.55)
DoO (mmHa)	$Mean \pm SD$	84.2 ± 18.2
PaO ₂ (mmHg)	Range	50 - 110
	$Mean \pm SD$	0.4 ± 0.22
FiO ₂ (%)	Range	0.04 - 1
	Median (IQR)	0.3 (0.29 - 0.4)
	$Mean \pm SD$	0.5 ± 0.32
FiO ₂ / PaO ₂	Range	0.04 - 1.72
	Median (IQR)	0.47 (0.27 - 0.63)
Fluid balance at 1 st 48 hours	$Mean \pm SD$	582.4 ± 785.79
	Range	-2803 to 2418
(ml)	Median (IQR)	500.45 (204.65 - 868.5)

SBP: systolic blood pressure, DBP: diastolic blood pressure, IQR: interquartile range. PaO₂: partial pressure of oxygen, FiO₂: fraction of inspired oxygen, IQR: interquartile range.

Table 3: Items of PIm2 score.

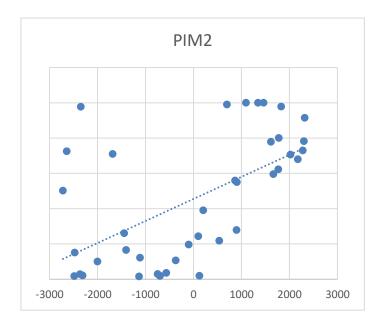
		N=40
Post cardiac surgery		1 (2.5%)
Pneumonia		17 (42.5%)
CNS infection		3 (7.5%)
Asthmatic		1 (2.5%)
Convulsions (CP)		1 (2.5%)
Elective		1 (2.5%)
FB aspiration		1 (2.5%)
Guillain-Barré syndrome		3 (7.5%)
Hypernatremic dehydration		1 (2.5%)
Polytrauma		5 (12.5%)
Pulmonary hemorrhage		2 (5%)
Sepsis		2 (5%)
TAPVR		1 (2.5%)
TB &Acute kidney injury		1 (2.5%)
Elective admission		3 (7.5%)
Cardiac bypass		1 (2.5%)
High risk diagnosis		21 (52.5%)
Low risk diagnosis		0 (0%)
Mechanical ventilation (1st hour	•)	24 (60%)
Response of pupils to light (<3m	1)	7 (17.5%)
M	lean ± SD	43.8 ± 35.29
PIM2 Ra	ange	1.16 - 100
M	(ledian (IQR)	42.04 (6.54 - 83.75)

Table 4: Duration of mechanical ventilation, length of PICU stay and outcome of the studied patients.

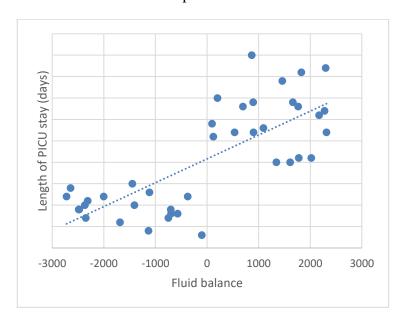
		N=40
	Mean ± SD	7.97 ± 6.12
Duration of MV (days)	Range	2 - 30
	Median (IQR)	6.5(4-9)
	Mean \pm SD	14.4 ± 11.43
Length of PICU stay (days)	Range	3 - 45
	Median (IQR)	10(7-17)
Ontoomo	Survivors	17 (42.5%)
Outcome Non-survivors	Non-survivors	23 (57.5%)

IQR: interquartile range, IQR: interquartile range. MV: mechanical ventilation, PICU: Pediatric intensive care unit.

Table5: Relation between prolonged mechanical ventilation and different parameters


	Prolonged mechanical ventilation	P value
Age (years)	4.1 ± 4.57	0.296
SBP (mmHg)	110.5 ± 21.62	0.070
DBP (mmHg)	92.76 ± 11.216	0.451
Base excess (mEq/L)	-5.40 ± 7.53	0.152
PaO ₂ (mmHg)	84.40 ± 18.91	0.445
FiO ₂ (%)	0.04 - 1	0.093
FiO ₂ / PaO ₂	0.5 ± 0.32	0.159
Fluid balance at 1 st 48 hours	582.4 ± 785.79	0.011*
Predicted death rate	43.8 ± 35.29	<0.001*

SBP: systolic blood pressure, DBP: diastolic blood pressure, PaO2: partial pressure of oxygen, FiO2: fraction of inspired oxygen, *: statistically significant as P value <0.05


Table 6: Multivariate logistic regression analysis for prediction of mortality.

	OR	95% CI	P value
Age (years)	0.9164	0.7204 to 1.1658	0.477
Sex	0.4088	0.0446 to 3.7436	0.428
Elective admission	1.3766	0.0696 to 27.240	0.833
Cardiac bypass	1.0501	0.9062 to 1.2168	0.515
High risk diagnosis	51.8816	6.605 to 407.468	<0.001*
Response of pupils to light (<3m)	7.0783	0.6569 to 76.273	0.106
SBP (mmHg)	1.0146	0.9814 to 1.0490	0.391
DBP (mmHg)	1.0732	1.0045 to 1.1467	0.036*
Base excess (mEq/L)	0.9368	0.8424 to 1.0419	0.229
PaO ₂ (mmHg)	1.0040	0.9225 to 1.0926	0.926
FiO ₂ (%)	1.0672	0.9140 to 1.2460	0.411
FiO ₂ / PaO ₂	3.2702	0.3536 to 30.241	0.296
Fluid balance at 1 st 48 hours (ml)	0.9990	0.9981 to 0.9999	0.032*
PIM2	1.1333	1.0355 to 1.2404	0.006*
Duration of MV (days)	1.5361	1.0907 to 2.1635	0.014*
Length of PICU stay (days)	0.9245	0.8199 to 1.0425	0.200

OR: odds ratio, CI: confidence interval, SBP: systolic blood pressure, DBP: diastolic blood pressure, PaO2: partial pressure of oxygen, FiO2: fraction of inspired oxygen, MV: mechanical ventilation, PICU: Pediatric intensive care unit, *: statistically significant as p value <0.05.

Figure 1: Correlation between the PIM2 and Fluid balance at 1st 48 hours of the studied patients.

Figure 2: Correlation between the Fluid balance at 1st 48 hours and length of PICU stay of the studied patients.

Discussion:

In our study, regarding demographic data of the studied patients, age ranged from 0.12 to 15 years with a mean of 4.1 ± 4.57 years and a median of 2.75 (0.33-6) years. There were 18 (45%) males and 22 (55%) females. Flori, et al. who analyzed a database of 320 pediatric patients with acute lung injury (ALI), to test the

hypothesis that positive fluid balance is associated with worse clinical outcomes in children with ALI. It was observed that median age was 3.4 yrs (1d–18 yrs) and male represented (56%) ⁽¹⁹⁾. Furthermore, Vidal et al. evaluated whether fluid balance in the first 48 hours of assisted mechanical ventilation initiation was associated with a prolonged duration of

this process among children in the PICU. Their results found that median age of this population was 1.2 years old (0.4-3.3) and Male sex represented (52.7%)(20) Regarding the provisional diagnosis of the studied patients, the most common was pneumonia in 17(42.5%) patient, followed by polytrauma in 5(12.5%) patient then CNS infection in 3(7.5%) patient and less commonly FB aspiration in 1(2.5%) in2(5%) patient patient, sepsis and Guillian-Barre`syndrome in 3(7.5%) patient.In the same line with our study, Vidal et al. reported that the decision to initiate AMV was respiratory in 47 (28.83%) of cases, cardiovascular in 45 (27.61%) of cases, neurological in 19 (11.66%) of cases, liver in 19 (11.66%) of cases, septic shock in 16 (9.82%) and others in 17 (10.43%) (20). Valentine et al. identified 168 patients with ALI meeting eligibility criteria. Five PICUs. Mechanically ventilated children (age ≥1 month to <18 years) with ALI admitted 2007-2010. ALI was triggered by direct pulmonary injury in 71% of the patients. Fifty-eight percent (58%) of the patients had at least one chronic condition on admission and 71% were admitted for a pulmonary reason ⁽⁷⁾. So there are different reporting respiratory studies system involvement as the main cause for initiation of mechanical ventilation in PICU and this is in the same line with our study. In the present study, regarding the clinical data of the studied patients, 3 (7.5%) patients had an elective admission, 1 (2.5%) patient had previous cardiac bypass, 21 (52.5%) patients had a highrisk diagnosis (post cardiac arrest & neurodegenerative disorders), no patient had a low-risk diagnosis. Among the 24 (60%) patients studied patients, required mechanical ventilation (at the 1st hour) and 7 (17.5%) showed a response of pupils to light (<3m). In the same line with our study, Costa et al. utilized PRISM and determination of mortality risk factors in a tertiary PICU. They noted that the patients who required the use of mechanical

ventilation were (63%). The majority of patients was clinical (78%) and had underlying disease (86%), the most frequent were hepatological (23%) and oncological (19%), required the use of mechanical ventilation (63%) vasoactive drugs (35%) (22). The SBP of the studied patients ranged from 75 to 168 mmHg with a mean of 110.5 ± 21.62 mmHg and the DBP ranged from 70 to 110 mmHg with a mean of 92.4 \pm 11.11 mmHg. The base excess ranged from -16.3 to 20.31 mEq/L with a mean of -5.2 ± 7.22 mEq/L. The PaO2 ranged from 50 to 110 mmHg with a mean of 84.2 ± 18.2 mmHg. The FiO2 ranged from 0.04 to 1 % with a mean of 0.4 ± 0.22 %. The FiO2/ PaO2 ranged from 0.04 to 1.72 with a mean of 0.5 ± 0.32 .In the current study, the fluid balance of the studied patients in the 1st 48 hours ranged from -2803 to 2418 with a mean of 582.4 ± 785.79. PIM2 of the studied patient ranged from 1.16 – 100 with a mean of 43.8 ± 35.29 . Andriamuri et al. showed the association of fluid balance and duration of mechanical ventilation in the PICU. PIM was ranged from 0.82-96.8 with median of $23.4^{(23)}$.

Chen et al. enrolled 202 children in a PICU with severe sepsis. Their study noted that the median [interquartile range] of PIM2 was 4.2 [2.1–22.0] ⁽²⁴⁾. Valentine et al. concluded that the mortality rate in their pediatric cohort was 11.3% ⁽⁷⁾.

Hannegård Hamrin et al. quantified excess mortality in children after admission to a PICU, compared to the age and sex matched general Swedish population. PICU death rate for the study cohort was 2.93% (25). The difference in PIM2 in our study and other studies may be due to small sample size increased incidence of sepsis and bad clinical condition of most of our patients at the time of our study as most of them (52%) had high risk in the form of post cardiac arrest needing inotropes and neurodegenerative disorders in the form of CP ,SMA and Werdinghoffman with very poor prognosis and under nutrition, requiring PMV and more

IVF and subsequently increased PIM2. There was a significant positive correlation between the PIM2 and fluid balance at 1st 48 hours (r= 0.568, P<0.001). There was insignificant correlation between the PIM2 and different parameters (age, SBP, DBP, base excess, PaO2, FiO2, FiO2/PaO2).

PaO2, FiO2, FiO2/PaO2). On applying the Pearson chi-square test, it was found a significant association between positive fluid balance and PMV (P value = $2.25 \times 10-7$ (<0.05)). Likewise, a statistically significant association was found between PIM2 score and prolonged ventilation (P value = $1.19 \times 10-5$ (<0.05)) (26). The sex had no significant difference in survival in the ICU or the mortality at 28 days. Logistic regressions for outcome revealed that the following parameters were independently associated with ICU survival: wave, SOFA day1, remdesivir use, AKI, enteral insufficiency, sepsis, duration of **ICU** stay and WBC (27). Furthermore, Chen et al. concluded that there was a weak correlation between age and PIM2 (r = 0.197, P = 0.005) ⁽²⁴⁾.In the current work, there were significant relations between PMV and fluid balance at 1st 48 hours and PIM2 (P=0.011, < 0.001 respectively), whereas there were insignificant relations between PMV and other variables.Comparable findings, Loss et al. established the incidence of PMV in four intensive care units and reported different characteristics, hospital outcomes, and the impact of costs and services of PMV patients (mechanical ventilation dependency \geq 21 non-PMV compared with patients (mechanical ventilation dependency < 21 days). PMV patients had a significant increase in intensive care unit mortality (absolute difference = 14.2%, p < 0.001) (28). Additionally, Andriamuri et al. showed significant association between balance and duration of mechanical ventilation (p<0.001). Univariate logistic regression analysis showed that fluid balance had no significant association with mortality. Multivariate model also showed that PELOD-2 and PIM2 scores were associated with mortality (p<0.001) (23).

This study has some limitations including the relatively small sample size and it was a single center study which may limit the generalizability of the results. The study was limited to the first 48 hours of mechanical ventilation, and longer-term outcomes were not explored other factors affecting fluid balance, such as nutritional status, underlying medical conditions, and specific treatment protocols, were not fully explored or controlled for, which could contribute to confounding effects.

Conclusion:

In conclusion, our study revealed a significant association between balance and PMV in critically ill children. The findings showed the impact of fluid management on crucial outcome variables, including PIM2, VAP, lung injuries, and systemic dysfunction. While no significant correlation was observed with predicted mortality. Our study also highlights the significant role of thorough evaluation in the initial 48 hours of mechanical ventilation.

Sources of funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author contribution

The authors contributed equally to the study.

Conflicts of interest

No conflicts of interest

References:

- 1. McGloin S. The ins and outs of fluid balance in the acutely ill patient. Br J Nurs. 2015;24:14-8.
- 2. Chau SK, Yung AW, Lee SL. Long-Term Management for Ventilator-Assisted Children in Hong Kong: 2 Decades' Experience. Respir Care. 2017;62:54-64.
- 3. Silversides JA, Major E, Ferguson AJ, Mann EE, McAuley DF, Marshall JC, et al. Conservative fluid management or deresuscitation for patients with sepsis or acute respiratory distress syndrome following the resuscitation phase of critical illness: a systematic review and meta-analysis. Intensive Care Med. 2017;43:155-70.

- 4. Liu Y, Wang Q, Hu J, Zhou F, Liu C, Li J, et al. Characteristics and Risk Factors of Children Requiring Prolonged Mechanical Ventilation vs. Non-prolonged Mechanical Ventilation in the PICU: A Prospective Single-Center Study. Front Pediatr. 2022;10:830075.
- 5. Amin R, Sayal P, Syed F, Chaves A, Moraes TJ, MacLusky I. Pediatric long-term home mechanical ventilation: twenty years of follow-up from one Canadian center. Pediatr Pulmonol. 2014;49:816-24
- 6. Gupta K, Gupta VK, Jayashree M, Singhi S. Randomized controlled trial of interrupted versus continuous sedative infusions in ventilated children. Pediatr Crit Care Med. 2012;13:131-5.
- 7. Valentine SL, Sapru A, Higgerson RA, Spinella PC, Flori HR, Graham DA, et al. Fluid balance in critically ill children with acute lung injury. Crit Care Med. 2012;40:2883-9.
- 8. Dellinger RP, Levy MM, Rhodes A, Annane D, Gerlach H, Opal SM, et al. Surviving sepsis campaign: international guidelines for management of severe sepsis and septic shock: 2012. Crit Care Med. 2013;41:580-637.
- 9. Shankar-Hari M, Phillips GS, Levy ML, Seymour CW, Liu VX, Deutschman CS, et al. Developing a New Definition and Assessing New Clinical Criteria for Septic Shock: For the Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). Jama. 2016;315:775-87.
- 10. Fan E, Villar J, Slutsky AS. Novel approaches to minimize ventilator-induced lung injury. BMC Med. 2013;11:85.
- 11. Malbrain ML, Marik PE, Witters I, Cordemans C, Kirkpatrick AW, Roberts DJ, et al. Fluid overload, de-resuscitation, and outcomes in critically ill or injured patients: a systematic review with suggestions for clinical practice. Anaesthesiol Intensive Ther. 2014;46:361-80.
- 12. Evans L, Rhodes A, Alhazzani W, Antonelli M, Coopersmith CM, French C, et al. Surviving sepsis campaign: international guidelines for management of sepsis and septic shock 2021. Intensive Care Med. 2021;47:1181-247.
- 13. Seguin J, Albright B, Vertullo L, Lai P, Dancea A, Bernier PL, et al. Extent, risk factors, and outcome of fluid overload after pediatric heart surgery*. Crit Care Med. 2014;42:2591-9.
- 14. Koonrangsesomboon W, Khwannimit B. Impact of positive fluid balance on mortality and length of stay in septic shock patients. Indian J Crit Care Med. 2015;19:708-13.
- 15. Alhazzani W, Belley-Cote E, Møller MH, Angus DC, Papazian L, Arabi YM, et al. Neuromuscular blockade in patients with ARDS: a rapid practice guideline. Intensive Care Med. 2020;46:1977-86.
- 16.Arikan A., Zappitelli M., Goldstein S., Naipaul A., Jefferson L., and Loftis L., Fluid overload is associated with impaired oxygenation and

- morbidity in critically ill children, Pediatric Critical Care Medicine. (2012)
- 17. Goldstein SL, Currier H, Graf C, Cosio CC, Brewer ED, Sachdeva R. Outcome in children receiving continuous venovenous hemofiltration. Pediatrics. 2001;107:1309-12.
- 18. Schoenfeld DA, Bernard GR. Statistical evaluation of ventilator-free days as an efficacy measure in clinical trials of treatments for acute respiratory distress syndrome. Crit Care Med. 2002;30:1772-7.
- 19. Flori HR, Church G, Liu KD, Gildengorin G, Matthay MA. Positive fluid balance is associated with higher mortality and prolonged mechanical ventilation in pediatric patients with acute lung injury. Crit Care Res Pract. 2011;2011:854142.
- 20. Vidal S, Eulmesekian P. Balance de fluidos y duración de la ventilación mec u nica en niosos internados en una Unidad de Terapia Intensiva Pedi u trica. Archivos argentinos de pediatr a. 2016;114:313-8.
- 21. Kalzén H, Larsson B, Eksborg S, Lindberg L, Edberg KE, Frostell C. Survival after PICU admission: The impact of multiple admissions and complex chronic conditions. PLoS One. 2018;13:e0193294.
- 22. Costa GA, Delgado AF, Ferraro A, Okay TS. Application of the pediatric risk of mortality (PRISM) score and determination of mortality risk factors in a tertiary pediatric intensive care unit. Clinics (Sao Paulo). 2010;65:1087-92.
- 23. Andriamuri P, Aridamurian D. Profile of fluid balance in the first 48 hours and duration of mechanical ventilation in pediatric intensive care unit. Journal of Physics: Conference Series. 2020;1542:012008.
- 24. Chen J, Li X, Bai Z, Fang F, Hua J, Li Y, et al. Association of Fluid Accumulation with Clinical Outcomes in Critically Ill Children with Severe Sepsis. PLoS One. 2016;11:e0160093.
- 25. Hannegård Hamrin T, Eksborg S. Risks for death after admission to pediatric intensive care (PICU)-A comparison with the general population. PLoS One. 2022;17:e0265792.
- 26. Unki P, Save S. Analysis of Fluid Balance as Predictor of Length of Assisted Mechanical Ventilation in Children Admitted to Pediatric Intensive Care Unit (PICU). Int J Pediatr. 2022;2022:2090323.
- 27. Lavrentieva A, Kaimakamis E, Voutsas V, Bitzani M. An observational study on factors associated with ICU mortality in Covid-19 patients and critical review of the literature. Scientific Reports. 2023;13:7804.
- 28. Loss SH, de Oliveira RP, Maccari JG, Savi A, Boniatti MM, Hetzel MP, et al. The reality of patients requiring prolonged mechanical ventilation: a multicenter study. Rev Bras Ter Intensiva. 2015;27:26-35.

To cite this article: Eman G. Abdelrahman, Reda S. Afifi, Ahlam E. Baraka, Marwa E. Hassan. Association between Fluid Balance and Outcome Variables in Mechanically Ventilated Children. BMFJ XXX, DOI: 10.21608/bmfj.2025.364837.2337.