

Print ISSN

1110-7642

**Online ISSN** 2735-5039

# **AIN SHAMS DENTAL JOURNAL**

Official Publication of Ain Shams Dental School June2025 • Vol. 38

# Methods of enhancing resilient liners' adhesion to denture base resin: A systematic review

# Noor D. Majeed<sup>1</sup>, Bayan S. Khalaf <sup>1</sup>

Aim: Various methods were developed to enhance the bond between denture base and liners, for instance: mechanical (laser, sandblasting, sandpapering) and chemical (monomer, acid etching, plasma). This systematic review studies the methods of surface treatment used in literature and their effect on soft liner adhesion and registered on INPLASY: INPLASY2024120042. Materials and methods: Online search was performed in PubMed, EBSCOhost and Research Gate databases for free articles published between January 2010 and January 2025 to determine the studies concerning the subject. Further manual search was performed for studies mentioned in the reference list of the selected articles, in addition to articles discussed in literature reviews.

**Results**: A total of 102 articles were found by the online search in addition to 20 articles obtained from the manual search. Only 49 articles were included in this review by following the inclusion criteria. This review revealed that twelve of 13 articles proved the effectiveness of laser in improving bonding strength, 10 articles showed that plasma caused a rise in bonding strength, 15 articles advocated that chemicals like monomer, primers and acids can increase the strength of adhesion, while one article claimed that silica coating followed by silanization did not improve the bond. Fourteen of 19 studies showed an improvement in bonding strength following sandblasting. Nine of 12 articles revealed the reduction in bonding strength following thermocycling.

**Conclusion**: Laser, plasma, monomers, primers, acid etching and sometimes sandblasting are considered successful methods for enhancing the bond of soft liners, while thermocycling deteriorate it.

Keywords: soft liner, bond strength, surface treatment, laser, plasma

1. Prosthodontic department, Dentistry college/ University of Baghdad, Baghdad, Iraq Corresponding author: Noor D. Majeed, email: noor.diaa2301m@codental.uobaghdad.edu.iq

#### Introduction

The low cost and non-invasive treatment procedures of the polymethyl methacrylate movable dentures (PMMA) contributed to their widespread usage. Yet, wearing removable dentures is usually associated with the loss of jaw bone due to extensive pressure, resulting in a loose prosthesis.<sup>1</sup> Removable denture retention has a vital role in assessing how long the denture can serve; however, age-related resorption of alveolar bone can occur. It can cause an ill-fitting prosthesis, leading to pain and discomfort for the patient.<sup>2</sup> In an attempt to improve the fit of the denture underlying supporting to the structures, relining the denture base can be used. It is a routine clinical procedure that helps extend the service life of the prosthesis, considering its simplicity and low cost in comparison to fabricating a new denture. It can also aid in improving patient comfort and ability to chew. 3 Soft liners are materials that are applied to the tissue surface of the denture, allowing injured tissues to recover, thus relieving pain and discomfort.4 In addition, they assist in equally distributing the occlusal loads, thus transferring fewer stresses to the supporting tissues.<sup>5</sup> They may be beneficial in cases of bruxism, delicate mucosa, undercuts and after surgeries.<sup>6</sup>

Denture relining materials can be temporary or long-term, and auto- or heatpolymerized. Based on their chemical composition, five types of soft liners are available: chemical or heat-polymerized acrylic resins, vinyl resins, polyurethane, polyphosphazene, and heat-cured or roomtemperature-vulcanized silicone rubbers.<sup>7</sup> Despite their numerous benefits, soft liners have some drawbacks, such as gradual loss of softness, porosity and low tearing strength that subsequently lead to bonding failure with denture base.8 Dentures fabricated from two distinctive materials have their success related to the strength of the interface between them. The scanty bonding qualities of relining materials lead to improper adaptation and subsequently

reliner delamination that induces microbial contamination of the prosthesis and prohibits proper denture hygiene.<sup>9</sup>

Two types of bonding can be identified depending on the chemical content of the materials, which are chemical mechanical bond. 10 The similarity in chemical structure between denture bases and acrylic soft liners eliminates the need for adhesives or primers, and the bond is chemical. However, silicone soft liners involve a different composition that makes using adhesive essential, and the liner bonds mechanically to the denture base. In such a case, debonding is thought to be more commonly expected.<sup>11</sup> Researcher reported that a (0.44 MPa) bond strength and (2-3mm) thickness of liner are clinically enough for the relined denture to work properly. 12 Three generally accepted methodologies are adopted to measure the bond strength between denture base resin and soft lining material: peel, shear and tensile bond strength tests. The tensile test is preferred by the American Society for Testing and Materials (ASTM)<sup>13</sup>; however, Al-Athel and Jagger<sup>14</sup> stated that the shear test is better at simulating the liner function inside the oral cavity.

Scientists suggested various approaches to roughen the acrylic surface through mechanical and chemical methods in an attempt to enhance bonding strength, even though the effectiveness of surface roughening is still questionable. For example, Craig et al<sup>15</sup> supported the idea of surface roughening to improve adhesive bond, while Amin et al<sup>16</sup> stated that pretreating the acrylic surface with sandblasting prior to applying soft liner had weakened the bond. Furthermore, laser-treated denture bases had a lower bonding strength to relining materials, as stated by Jacobsen.<sup>17</sup>

This systematic review aims to evaluate the efficiency of numerous denture base surface treatment techniques in improving the liner bonding strength to denture bases, such as abrasion with airborne particles, laser treatment, chemical pretreatments, plasma and thermocycling. This review intends to give the clinicians a thorough understanding of the various ways of enhancing adhesive strength between liners and denture bases, allowing them to choose the most appropriate method of surface modification.

#### Materials and methods

This review study was performed following the preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) and registered on INPLASY database: INPLASY2024120042. In order to determine which study is qualified to be included in this review, a thorough searching plan was established. The search included databases: three PubMed. EBSCOhost and Research Gate. The keywords "soft liner bond strength" were systematic review This performed to answer the following research question: (Does the surface modification of denture base material affect the bonding strength with soft liner?). Additional manual search was conducted using the references list of the selected articles in addition to studies mentioned in review articles to check for possible inclusions. Articles were included or excluded according to criteria listed in Table 1 after reading their title and abstract. If they were unable to provide sufficient details, the full text article was reviewed. The included articles varied in terms of methodology, type of materials used, type of surface treatment and the testing methods, therefore it was not possible to perform a metaanalysis and the studies were analyzed and described in a qualitative manner.

The quality assessment and the risk of bias were analyzed by the modified Consolidated Standards of Reporting Trials (CONSORT). It consists of seven items and parameters (Sample Size Calculation, Sample Randomization, Control Group, Stating Clear Testing Method, Statistical Analyses Carried Out, Reliable Analytical Methods). A "yes" or "no" were used according to the presence or absence of

each item. The number of "yes" answers were calculated for each article and the risk of bias were classified according to the following: 1–3, high; 4–5, medium; 6–7, low risk of bias. The included studies in this systematic review ranged from low to medium risk of bias. The articles with high risk of bias were not included.

Table 1: Inclusion and exclusion criteria

|            | Inclusion criteria                                                                                                                                                                                                           | Exclusion criteria                                                                                |  |
|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|--|
|            | Articles published between January 2010 and January 2025.                                                                                                                                                                    | Articles published before January 2010.                                                           |  |
|            | Articles with available full text.                                                                                                                                                                                           | Articles with no full text available.                                                             |  |
| The second | Articles in English language.                                                                                                                                                                                                | Articles in languages other than English language.                                                |  |
|            | Articles studying peel, shear and tensile bond strength of silicone- or acrylic based auto- or heat-polymerized soft liners to auto-, heat-, light polymerized PMMA, polyamide, milled and 3d-printed denture base material. | Articles studying<br>other properties of<br>soft liners or using<br>reinforced or hard<br>liners. |  |
|            | Articles concerning with the effect of mechanical ,chemical treatment or thermocycling of denture base material on bond strength.                                                                                            | Articles studying the effect of antimicrobial agents, beverages or denture                        |  |
| 4          | DE                                                                                                                                                                                                                           | cleansers on bond<br>strength.                                                                    |  |
| 5          | In vitro studies.                                                                                                                                                                                                            | Case reports,<br>systematic reviews<br>and meta-analysis.                                         |  |

### Results

The searching process is summarized in Figure 1. The database search yielded a total of 102 articles (28 articles in PubMed, 25 in EBSCO and 49 in Research Gate) after searching with the keywords (soft liner bond strength) for free articles published between January 2010 and January 2025. Another 20 articles were obtained from the manual search for studies mentioned in systematic reviews and in the reference list of the selected articles. After excluding duplicated papers, 69 studies were checked for inclusion criteria and 20 studies were eliminated according to the reasons mentioned in Table 2. In two of the included articles, the authors used hard liners in addition to soft ones, which is considered an exclusion criteria according to this review; therefore, only the results of soft liner groups will be discussed. The final number of included studies was

49 and are discussed in this review. In the 49 included studies, 27 types of denture base materials (2 auto-polymerized, 1 lightpolymerized, 20 heat-polymerized, 3 milled and one 3d printed denture base materials) and 22 types of soft liners (12 siliconebased and 10 acrylic-based) were used (Tables 3 and 4 respectively). All studies evaluated bond strength by using Universal Testing machine, albeit with varying crosshead speeds (3 articles used 20 mm/min, 8 articles used 10 mm/min, 22 articles used 5 mm/min, 1 article used 2 mm/min, 5 articles used 1 mm/min,6 articles used 0.5 mm/min, while 4 articles did not mention the used speed).

Most of the studies assessed the tensile bond strength (38 articles), while only 9 articles tested shear bond strength and 3 articles tested peel bond strength. Considering tensile and shear tests, the following equation was employed:

Bond strength N/mm = Maximum load (N)/cross sectional area (mm<sup>2</sup>)

While for peel bond strength, the formula below was applied:

$$PS = \frac{F}{W} \left( \frac{1+\lambda}{2} + 1 \right)$$

where F is the maximum force recorded (N), W is the width of the specimens (mm), and  $\lambda$  is the extension ratio of the liner (the ratio of the stretched to the unstretched length). Supplemental Tables 1-5 summarize the included articles that investigate the change in bonding strength after treatment with laser, plasma, sandblasting, chemicals and thermocycling, respectively.

Generally, the majority of studies included in this review concluded that treating the PMMA surface with laser, plasma, primer, acids, and monomer application enhanced the adhesion between acrylic denture base and soft liner. Whereas thermocycling resulted in a decline in adhesive strength of the liner. Regarding sandblasting, its effect on liner adhesion was controversial, while some studies suggested that sandblasting can improve liner bonding, others confirmed that it has a deteriorating effect.

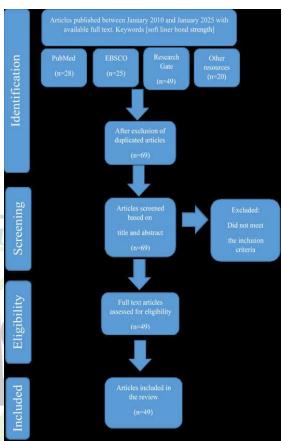



Figure 1: PRISMA flow chart of the selection process

Table 2: Reasons of exclusion

| Reasons of exclusion                       | Number of excluded articles |
|--------------------------------------------|-----------------------------|
| Not using soft liner                       | 4                           |
| Not performing acrylic surface treatment   | 12                          |
| Not providing enough information           | 2                           |
| Using other types of denture base material | 1                           |
| No control group                           | 1                           |

Table 3: Types of denture base resin used

| No. | Name of denture<br>base resin       | Mode of polymerization | Composition                      | Manufacturer                                            |
|-----|-------------------------------------|------------------------|----------------------------------|---------------------------------------------------------|
|     |                                     |                        |                                  |                                                         |
| 1.  | Vertex Rapid<br>Simplified<br>(VRS) | Heat-<br>polymerized   | PMMA                             | VertexTM, Zeist,<br>Netherlands                         |
| 2.  | Vertex<br>Self-Curing<br>(VSC)      | Auto-<br>polymerized   | PMMA                             | VertexTM, Zeist,<br>Netherlands                         |
| 3.  | DPI heat cure                       | Heat-<br>polymerized   | PMMA                             | Dental Products of<br>India Ltd                         |
| 4.  | Meliodent                           | Heat-<br>polymerized   | PMMA                             | Bayer Dental                                            |
| 5.  | Paladent                            | Heat-<br>polymerized   | PMMA                             | Heraeus Kulzer,<br>Hanau, Germany                       |
| 6.  | Triplex                             | Heat-<br>polymerized   | PMMA                             | Ivoclar Vivadent,<br>Schaan,<br>Liechtenstein           |
| 7.  | Superacryl plus                     | Heat-<br>polymerized   | PMMA                             | SpofaDental                                             |
| 8.  | Implacryl                           | Heat-<br>polymerized   | high impact<br>PMMA              | Vertex                                                  |
| 9.  | Acron Duo                           | Heat-<br>polymerized   | PMMA                             | associated Dental Products Ltd., Kemdent, Wiltshire, UK |
| 10. | QC-20                               | Heat-<br>polymerized   | PMMA                             | Dentsply International INC, New York, EUA               |
| 11. | Deflex                              | Heat-<br>polymerized   | Polyamide based                  | Nuxen SRL, Buenos<br>Aires, Argentina                   |
| 12. | Rodex                               | Heat-<br>polymerized   | PMMA improved with cross-linking | Rodont, Srl Milan,<br>Italy                             |
| 13. | Trevalon                            | Heat-<br>polymerized   | PMMA                             | Dentsply,USA                                            |
| 14. | Acralyn-H                           | Heat-<br>polymerized   | PMMA                             | Asian acrylates India                                   |
| 15. | Eclipse                             | Light-<br>polymerized  | UDMA                             | Dentsply Trubyte,<br>York, USA                          |
| 16. | Acron Duo                           | Heat-<br>polymerized   | PMMA                             | Kemdent, UK                                             |
| 17. | Pyrax                               | Heat-<br>polymerized   | PMMA                             | Pyrax Polymars                                          |
| 18. | Zi Ran                              | Heat-<br>polymerized   | PMMA                             | Nissin, Kunshan,<br>China                               |
| 19. | Ivocap                              | Heat-<br>polymerized   | PMMA                             | Ivoclar Vivadent,<br>Schaan,<br>Liechtenstein,          |
| 20. | Ashvin                              | Heat-<br>polymerized   | PMMA                             | Ashvin,India                                            |
| 21. | Denture base<br>resin               | Heat-<br>polymerized   | PMMA                             | Dura Dent, Erk<br>Dental,<br>Izmir, Turkey              |
| 22. | Major. Base 20                      | Heat-<br>polymerized   | PMMA                             | Major, Moncalieri,<br>Italy                             |
| 23. | Palapress                           | Auto-<br>polymerized   | PMMA                             | Haraeus Kulzer,<br>Hanau,<br>Germany                    |
| 24. | NextDent<br>Denture3D+              | 3D printed             | PMMA                             | NextDent,<br>Soesterberg,<br>Netherlands                |
| 25. | XT-Cera                             | Milled denture<br>base | PMMA                             | China                                                   |
| 26. | Smile CAM total prosthesis          | Milled denture<br>base | PMMA                             | Pressing Dental, San<br>Marino                          |
| 27. | Opera System                        | Milled denture<br>base | PMMA                             | Principauté de<br>Monaco, Monaco                        |

**Table 4: Types of soft liners used** 

| No. | Name of soft liner                          | Mode of polymerization | Composition            | Manufacturer                                 |
|-----|---------------------------------------------|------------------------|------------------------|----------------------------------------------|
| 1.  | Ufi Gel SC<br>(UGS)                         | Auto-<br>polymerized   | Silicone-<br>based     | VOCO GmbH                                    |
| 2.  | Silagum-<br>Comfort<br>(SLC)                | Auto-<br>polymerized   | Silicone-<br>based     | DMG Dental                                   |
| 3.  | Mucopren<br>Soft                            | Auto-<br>polymerized   | Silicone-<br>based     | Kettenbach<br>GmbH<br>Eschenburg<br>Germany  |
| 4.  | Molloplast-                                 | Heat-<br>polymerized   | Silicone-<br>based     | Detax GmbH<br>& Co. KG                       |
| 5.  | Luci-Sof                                    | Heat-<br>polymerized   | Silicone-<br>based     | Dentsply,<br>International                   |
| NI  | VA                                          |                        |                        | Inc.,Usa                                     |
| 6.  | Mollosil                                    | Auto-<br>polymerized   | Silicone-<br>based     | Detax                                        |
| 7.  | Permaflex                                   | Heat-<br>polymerized   | Silicone-<br>based     | Kohler,<br>Neuhausen,<br>Germany             |
| 8.  | GC Reline<br>soft                           | Auto-<br>polymerized   | Silicone-<br>based     | GC Corp.,<br>Tokyo, Japan                    |
| 9.  | Softliner                                   | Auto-<br>polymerized   | Silicone-<br>based     | Promedica/<br>Germany                        |
| 10. | Elite soft                                  | Auto-<br>polymerized   | Silicone-<br>based     | zhermack                                     |
| 11. | Sofreliner<br>Tough M                       | Auto-<br>polymerized   | Silicone-<br>based     | Tokuyama<br>Dental Corp.,                    |
| D   | (ST)                                        |                        |                        | Tokyo, Japan                                 |
| 12. | Dinabase                                    | Auto-<br>polymerized   | Silicone-<br>based     | Italy                                        |
| 13. | Vertex Soft<br>(VTS)                        | Heat-<br>polymerized   | Acrylic resin-based    | Vertex-Dental<br>B.V.                        |
| 14. | Permasoft                                   | Heat-<br>polymerized   | Acrylic resin-based    | DENTSPLY<br>GmbH,<br>Germany.                |
| 15. | GC soft<br>liner                            | Auto-<br>polymerized   | Acrylic resin-based    | GC Corp.,<br>Tokyo, Japan                    |
| 16. | Coe-soft                                    | Auto-<br>polymerized   | Acrylic<br>resin-based | Coe<br>Laboratories<br>Inc, Chicago,<br>EUA. |
| 17. | Acrasoft                                    | Heat-<br>polymerized   | Acrylic resin-based    | Henry Schein,<br>USA                         |
| 18. | Super-soft                                  | Heat-<br>polymerized   | Acrylic resin-based    | G.C. America<br>Inc., USA                    |
| 19. | Visible<br>light cure<br>reline<br>material | Light-<br>polymerized  | Acrylic<br>resin-based | Motloid Co.,<br>Chicago, USA                 |
| 20. | Acropars                                    | Auto-<br>polymerized   | Acrylic resin-based    | Marlic Co.<br>Iran                           |
| 21. | Soft<br>Reverse                             | Heat-<br>polymerized   | Acrylic<br>resin-based | Nissin, Kyoto,<br>Japan                      |
| 22. | Dura Rely-<br>A-Soft                        | Auto-<br>polymerized   | Acrylic resin-based    | Dura<br>Dent.USA                             |
|     |                                             |                        |                        |                                              |

#### **Discussion**

Various types of lasers have been used in several studies in an attempt to provide a better bond of adhesion between the denture relining material and the denture base. This review has found that laser impact varies according to the type of laser, its power and the type of denture base material and liner. Additionally, it varies according to the test performed, whether it is a tensile, shear or peel bond strength test. Akin et al<sup>18</sup> reported that treating the surface of UDMA denture base material with an Er:YAG laser with a frequency of 10 Hz, energy of 300 mJ, power of 3 W, and pulse duration of 700 µs for 20 s is an effective way to increase the tensile bond strength of silicone-based soft liner. It is suggested that the Er:YAG laser created tiny pits and imperfections on the acrylic surface in which the soft lining material can easily penetrate, thus improving the bond. However, increasing the laser power to 4W and 400mJ resulted in damage to the adhesive surface by producing large cavities rather than pits. The same effective parameters used by Akin et al<sup>18</sup> were also used by Kumari et al <sup>19</sup> but for 3 different pulse durations (10, 20 and 30 s), and they reported a significant increase in tensile bond strength in all study groups, especially with the (30 s) pulse duration, where the tensile strength increased from (1.020 MPa) for the control group to (1.400 MPa). Gorler et al<sup>20</sup> advocated that irradiating the PMMA surface with an Er:YAG laser caused a significant increase in tensile bond strength with silicone based soft liner. The applied parameters were: pulse energy of 0.2J, 20Hz, 4W output power, and 2940nm wavelength. Laser energy was applied for 20 sec. They also investigated the effect of lasers and Ho:YAG Nd:YAG concluded that both types of lasers had a lowering effect on tensile bond strength in comparison to samples that were not subjected to laser irradiation.

Moreover, Yildirim et al<sup>21</sup> and Nakhaei et al<sup>22</sup> have also proved the effectiveness of lasing denture base material with Er:YAG laser in enhancing tensile bonding strength to silicone-based denture reliner after using the same parameters as given by Akin et al. 18 Similar results were obtained by Shaikh et al.<sup>23</sup> Al-Shakaki and Al-Essa <sup>24</sup> modified the PMMA resin surface with three different powers of the Er:YAG laser (100, 200 and 300 mJ) at a pulse frequency of 10 Hz. The greatest mean value of tensile strength was recorded in the study group of 300 mj, while the control group had the lowest values. This indicates that treating acrylic surface with Er:YAG is an effective approach for strengthening liner adhesive efficiency. Comparable findings were also observed by Brahmandabheri et al.<sup>25</sup> Contrary results were obtained by Haghi et al<sup>26</sup>, as they stated that Er:YAG laser was unable to improve the tensile bonding strength of the soft liner with the treated samples.

Another type of laser has been used by Aziz <sup>27</sup>to treat acrylic surface which is the CO2 laser. She observed a significant raise in shear bond strength in lased acrylic samples when compared to untreated ones. Korkmaz et al<sup>28</sup> modified the surface of three different types of denture base material (Paladent, Rodex and Deflex) with an Er, Cr: YSGG laser in two different powers and frequencies (2,3 W and 20,30 Hz). They discovered the great influence of the testing procedures and materials on the values obtained from the peel bond strength test. In the Paladent groups, the greatest level of peel bonding strength  $(4.74 \pm 0.74)$ was for the group with a 3 W and 20 Hz) laser. While for the Rodex denture base material, the group of (3W and 30 Hz) laser showed the highest values  $(4.81\pm 1.32)$ Regarding Deflex, MPa). which thermoplastic injectable denture base material, it showed a higher peel bond strength at the group with (2 W and 20 Hz) than other groups. The SEM evaluation of the samples' surfaces after laser treatment showed that the Er, Cr: YSGG laser with parameters (3 W-20 Hz) had the greatest impact on the PMMA morphology, where

it formed a uniform distribution of microporosities. While SEM examination of Deflex specimens showed a more irregular distribution of smaller holes on the surface. The same type of laser was utilized by Ramakrishnan et al <sup>29</sup> and proved its effectiveness in increasing the shear bonding strength of silicone-based soft liners at 3W power and 10 Hz frequency. Alabady and Khalaf <sup>30</sup> proved the effectiveness of the Nd:YAG laser in enhancing the tensile bonding strength of an acrylic-based soft liner to thermoplastic denture base material.

Plasma treatment was found to be in enhancing extremely effective wettability of denture base materials, hence increasing bonding to soft liners. Oanber Hamad<sup>31</sup> used plasma with combination of oxygen and argon gases in a ratio of 1:1 to modify the surface of conventional and high-impact heatpolymerized denture base resins. They observed a significant rise in shear strength of acrylic-based soft liner to both conventional and high-impact specimens treated with plasma. Similar results were obtained by Zhang et al<sup>32</sup> who used oxygen plasma to treat denture base resin before performing tensile bond strength, and the outcomes revealed an improvement in adhesion strength from 2.8 MPa for the control group to (5.2 MPa) for the 1-day exposure group and (4.1 MPa) for the 2-day exposure group. The possible explanation for this is that oxygen gas in plasma chemically removes surface particles and promotes an etching process. thus Furthermore, new groups containing oxygen, such as O-H, C-O, and C=O, are formed on the surface of the material that improve its hydrophilic nature, hence permitting the flow of soft liner material into the deep irregularities, which in turn increases the bond.

Soygun et al<sup>33</sup> studied the effect of argon and oxygen plasma with three different exposure times (30, 60 and 120 s) on the tensile bond strength of a silicone-based soft liner to a heat-polymerized

acrylic denture base. The authors came to a conclusion that oxygen plasma was highly effective in enhancing bonding strength, and the highest mean (2.570 MPa) was obtained from the group that was treated with oxygen plasma at an exposure time of 120 s. Yet, argon plasma showed a decline in tensile bond strength values, contrasted with the results obtained by Yildirim et al<sup>21</sup> and Yildirim et al<sup>34</sup> who reported an increase in tensile strength following argon plasma treatment for 1 minute from (0.807 MPa) for untreated specimens to (1.149)  $MPa)^{21}$  and from (0.905 MPa) to (1.169 MPa).<sup>34</sup> Additionally, Yildirim et al <sup>34</sup> have also concluded that lengthening the time of surface exposure to plasma can deteriorate the adhesive strength of liners, and shorter periods should be adopted.

The effect of oxygen and argon plasma treatment on shear bond strength of soft liner to heat- and light-polymerized denture bases was studied by Abdullah et al<sup>35</sup> who reported an increase in shear bond strength values of heat-polymerized denture bases treated with both oxygen and argon plasma in contrast to lightpolymerized denture bases, where the effect seemed to be insignificant. Comparable outcomes achieved by Shaikh et al<sup>23</sup> and Xiaoqing et al<sup>36</sup> regarding oxygen plasma. Qanber and Hameed <sup>37</sup> studied the effect of plasma treatment on the bonding of acrylicbased soft liner to CAD-CAM denture base material. The results of this study showed a significant improvement of shear bond strength of denture liner after 5-minutes oxygen-argon plasma treatment of CAD-CAM acrylic material surface.

A new method of surface modification has been recently adopted to alter the denture base surface which is Thermionic Vacuum Arc (TVA). It is one of the most developing procedures for surface alteration that works in a highly vacuumed conditions. It coats the surface at a nanoscale level yielding a homogenous compact surface with a lower values of surface roughness.<sup>38</sup> These surfaces are more resistant to dissolving in the oral

environment and they retain their properties for longer periods. Mumcu et al<sup>38</sup> coated the surface of heat-cured acrylic denture base material by using TVA plasma system with three different coating materials: The Zinc Oxide (ZnO), TinIVoxide (SnO2), and Silver (Ag). Evaluation of the study data showed that surface treatment of denture base material with TVA plasma using ZnO caused a significant increase in tensile bond strength (1.18 MPa) compared to control group (0.83 MPa); however, using SnO<sub>2</sub> and Ag negatively affected the bonding strength.

Using sandblasting as a mechanical method of roughening the surface of denture bases in order to strengthen the liner-base connection is a topic of debate. While some investigators reported an increase in liner adhesion after sandblasting, others stated that it has a weakening effect.<sup>39</sup> According to Khanna et al<sup>40</sup>, the impact of sandblasting treatment is influenced by the type of liner used, whether it is an acrylic- or silicone-based resilient liner. They concluded that sandblasting the PMMA surface is effective in increasing shear bond strength of acrylicbased soft liner; however, the increase was statistically insignificant with siliconebased soft liner. This may be due to the similar chemical composition between acrylic liner and denture base material, in addition to the increased surface area of connection resulted from sandblasting. On the other hand, the little increase in shear bond strength with silicone liners can be the result of frictional forces formed when the two contacting surfaces move relative to each other. 40

The influence of the particle size of aluminum oxide used for sandblasting on bond strength of soft liners was studied by Swapna et al<sup>5</sup>, where they used three different particle sizes (50, 150 and 250 µm) as the sandblasting medium. The authors found that sandblasting led to a decline in the tensile bond strength values of all of the three soft liners used (auto-, heat- and light-polymerized). However, the

shear bond strength was increased which may be caused by the increased force needed to overcome the friction arising from moving the two parts of the specimen. They also found that changing the particle size had no effect of bonding strength, opposing the results of Akay et al<sup>41</sup>, who used three different particle sizes (30,50 and 110 µm) and showed that the maximum tensile bond strength was obtained from the smallest particle size (30 µm). Similarly, Kuźniarski et al<sup>42</sup> reported that the strength of bonding can be compromised after using too large particles (350 µm). Additionally, the study found that sandblasting could have an enhancing or weakening effect on tensile bond strength depending on the type of soft liner used. Similar results were shown by Akin et al<sup>43</sup>, who advocated that the size of Al<sub>2</sub>O<sub>3</sub> particles can affect the strength of bonding and the size of 120 µm is effective in increasing tensile bond strength while 50µm size particles lowered the tensile strength. Atsü and Keskin<sup>44</sup> agree with this result.

Brahmandabheri et al<sup>25</sup> and Dastierdi et al<sup>45</sup> used 50μ Al<sub>2</sub>O<sub>3</sub> particles to sandblast the acrylic surface and confirmed the efficiency of such treatment in enhancing positive The bond. effect sandblasting on enhancing the bonding strength was also observed by Mempally et al<sup>46</sup> and Nakhaei et al<sup>22</sup> after using 250 μm and 110 µm particle sizes respectively. Opposing results were showed by Gorler et al<sup>20</sup>, Haghi et al<sup>26</sup> Korkmaz et al<sup>28</sup> Surapaneni et al48 and Kulkarni and Parkhedkar<sup>49</sup>, where they proved that sandblasting has a deteriorating effect on denture liner bond strength. Stresses formed the liner/base iunction. insufficient size of surface irregularities formed by sandblasting and the inability of soft liner to penetrate into irregularities due to its high viscosity are all possible explanations for the reduced bonding strength following sandblasting.<sup>42</sup> The influence of sandblasting of CAD-CAM denture base material surface on the adhesion strength with soft liners was

discussed by Al Taweel et al<sup>50</sup> where they abraded the surface of both conventional and CAD-CAM denture base materials with 110µm alumina particles and tested for tensile bond strength. Testing results showed an improvement in tensile bond for both types of denture base materials. Similar results were obtained by Shaaban et al.<sup>51</sup> Gopal et al<sup>52</sup> investigated the effect of sandpapering with 100 grit sandpaper in addition to mechanical preparation of surface holes (Six holes with dimensions of \*1.00 mm width and height respectively drilled with a No. 14 Tungsten Carbide inverted cone bur) on bonding strength. Both procedures showed an improvement in tensile bond strength of both types of soft liners used (Super-soft and Molloplast B).

Chemical treatment of the acrylic surfaces by monomers, chemical etchant or surface coating has been widely used in literature with the intention of providing a stronger adhesion to soft relining materials. Pradeep et al<sup>53</sup> observed a significant increase in tensile bond strength of two types of soft liners (Molloplast B and Mollosil) to three different denture base materials (DPI, Ashwin and Trevelon) after treating the acrylic specimens monomer combined with sandblasting treatment with 250µm aluminium oxide particles. Khanna et al<sup>40</sup> treated the acrylic specimens of one of their study groups with methyl methacrylate monomer for 180 s. This treatment resulted in highly increased shear bond strength for both acrylic- and silicone-based soft liners. Such an increase can be explained by the fact that the denture base monomer has the ability polymerize; thus, it contributes to the improved bonding by penetration into the denture base and participation in the polymerization process.<sup>40</sup> Almuraikhi <sup>54</sup> studied the impact of monomer treatment of acrylic surface along with surface etching by phosphoric acid. The study showed a superior and significant rise in tensile bond values from 0.94 MPa for untreated samples to 1.88 MPa and 1.16 MPa after

monomer application and phosphoric acid etching, respectively. Comparable outcomes were attained by Al-Shakaki and Al-Essa<sup>24</sup>, Mempally et al<sup>46</sup>, Kulkarni and Parkhedkar<sup>49</sup> and Haghi et al.<sup>26</sup>

Some studies investigated the effect of some surface etching solutions such as chloroform, dichloromethane <sup>55</sup>, methylene chloride 56 and acetone, 46,56 in addition to monomer application. Application acetone and surface wetting by monomer can result in development of surface cracks and the creation of several 2-µm-diameter pits.<sup>57</sup> Upon monomer application, the PMMA resin base swells and expands, hence assisting the primer of liner's adhesive to infiltrate deep into surface cracks and pits, leading to reduced microleakage and enhanced bonding strength.<sup>58</sup> Phosphoric acid and ethyl acetate solutions were utilized in several studies in an effort to enhance the liner bonding strength to the denture base. Sabah and Khalaf 59 and Brahmandabheri et al<sup>25</sup> reported an increase in the bonding strength of soft liners after acrylic surface treatment with ethyl acetate phosphoric acid, respectively. Opposing results in the study of Haghi et showed the ineffectiveness phosphoric acid at improving liner bonding.

Another procedure has been conducted in order to modify denture base resin prior to soft liner application is by coating PMMA surface with particles. This approach was used by Atsü and Keskin. 44 They found that there was no increase in tensile bond strength of siliconebased soft denture liner (Ufi gel P) to the heat-cured denture base resin (QC-20) after surface coating with silica and silanization following coating. This result can be explained by the fact that coating PMMA surface with 30µm silicon-dioxide particles can result in a rough and irregular surface, yet the size of these irregularities may be insufficient to permit the easy flowing of soft liner into base resin, thus reducing bonding strength.<sup>44</sup> Goiato et al<sup>60</sup> treated the surface of heat-cured acrylic resin with a primer containing solvents (99.5%) and agents of union (0.5%) in its composition. A slight increase in tensile bond strength of an acrylic-based soft liner was observed following primer application, however the increase was not statistically significant. SEM images showed a layer of union agents on the surface of the acrylic after primer application. The authors assume that the slight increase in tensile strength values and the majority of cohesive failures are related to the presence of the solvent due to its conditioning effect on the resin surface. Furthermore, the increased percentage of cohesive failures indicates a higher linerforce **PMMA** adhesive than intermolecular forces of soft liner.60 Kümbüloğlu et al<sup>61</sup> proved that primer application and silica coating resulted in an increase in tensile bond strength of PMMAbased soft liner to both PMMA and base Polyamide denture materials. Additionally, a significant increase in the tensile bond strength of silicone-based soft liner was observed by Ariyani et al<sup>47</sup> following primer application and sandblastprimer combination.

Oral environment is considered a major factor in the deterioration of the relined dentures due to the continuous thermal fluctuations and recurrent flexural stresses that lead to minimizing their clinical life.<sup>25</sup> A simulated oral condition reproduced can be in vitro bv thermocycling, and it is of extreme importance to assess the bonding strength of soft liner under such conditions to estimate the ability of soft liner to resist debonding and intrinsic fractures during clinical service.<sup>55</sup> In the majority of the studies included in this thermocycling led to a decline in bonding strength values of the tested specimens. This result was achieved by Gorler et al<sup>20</sup>, Brahmandabheri et al<sup>25</sup>, Sabah and Khalaf <sup>59</sup>, Nakhaei et al <sup>22</sup>, Ariyani et al <sup>47</sup> and Sreenivasulu and Shyammohan.<sup>62</sup> The types of soft liners used in these studies were silicone-based<sup>20,22,25,47,62</sup> and acrylicbased <sup>59,62</sup> soft liners and were tested for tensile bond strength except for Sabah and

Khalaf<sup>59</sup> who performed a shear bond strength test. This decline is thought to be caused by the massive amount of water ingressed at the liner-denture base junction swelling leads to and concentration at the interface, in addition to changes in viscoelastic features of the relining material.<sup>59</sup> In case of using acrylicbased soft liners, water uptake can indirectly decrease the bonding strength by allowing the plasticizers to leach out of the increasing stiffness liner, its diminishing the elasticity. Consequently, this reduced elasticity leads to increased vulnerability due to transmission of loads at the interface rather than being absorbed by the elastic liner.<sup>63</sup>

Madan and Datta<sup>63</sup> and Demir et al<sup>64</sup> studied the relation between the influence of thermocycling on the liner bonding strength and the type of the soft liner being used. According to Madan and Datta<sup>63</sup>, the heat-temperature vulcanized (HTV) silicone-based soft liner (Molloplast B) showed a significant decrease in tensile bonding strength following thermocycling, while room-temperature vulcanized (RTV) silicone liners exhibited enhanced bonding strength values after being thermocycled. This result contradicts the result obtained by Demir et al<sup>64</sup> who stated that Molloplast B was more stable during thermocycling and its peel strength remained unchanged, while Permaflex showed a decrease in its peel strength values. It is thought that the filler particles in Permaflex absorbed larger amounts of water during thermocycling than Molloplast B, which led to greater dimensional changes and subsequently shear stress concentration at the interface, bonding strength.64 thus weakening  $a1^{65}$ . According to Rajaganesh et thermocycling caused a slight increase in shear bond strength of silicone-based soft liner with a slight decrease in shear bond strength of acrylic-based soft liner, although these changes were statistically insignificant. A study by Goiato et al<sup>60</sup> revealed that thermocycling resulted in a minor yet statistically insignificant increase in the tensile bonding strength of an acrylicbased soft liner. On the other hand,  $a1^{66}$ Geramipanah et stated thermocycling both acrylic- and siliconebased soft liners has no effect on their tensile bond strength; however, acrylicbased soft liner showed a change in the mode of failure after thermocycling from mixed to predominantly adhesive failure. Janyaprasert et al<sup>67</sup> investigated the effect of thermocycling on the adhesive strength of soft liners to four types of denture bases are: autopolymerized, polymerized, milled and 3d printed denture base materials. The results showed that there was no change in tensile bond strength of acrylic-based soft liners (GC soft liner) after thermocycling, while it changed significantly with silicone-based soft liners. Sofreliner tough M soft liner showed an increase in the tensile bond strength with all types of denture bases after thermocycling, in contrast to Ufi gel P soft liners which had a decreased adhesion strength to milled and 3d printed denture base materials.<sup>67</sup>

The authors couldn't find clinical studies that discuss the effect of the surface treatment of the denture base on the bonding strength with soft liners. Thus, it is considered a limitation for this study that it is based only on in vitro studies. Lack of clinical studies makes it difficult to understand the actual behavior of soft liners throughout the clinical use. During function, relined dentures are subjected to a force with different multidirectional magnitudes, while laboratory tests apply a unidirectional force, thus it cannot fully represent the actual conditions in the oral cavity. Therefore, clinical studies concerning with the bonding strength of soft liners should be conducted to support the findings obtained from in vitro studies.

# Conclusion

This systematic review came out with the following conclusions:

1. Treating denture base resin with laser irradiation, plasma, monomers, primers and

- acid etching all are effective methods for enhancing the bonding strength of soft denture liners.
- 2. Sandblasting can have an enhancing or deteriorating effect on soft liner bond strength depending on the particle size and the type of the soft liner being used.
- 3. Thermocycling brought about a decline in bond strength of soft liners in nearly all of the included studies.

# **Competing interest**

The authors declare no competing interest

# Data availability

The data is available within the manuscript

# Funding

The authors received no funding

#### References

- 1. Prasetyo FH, Indrasari M. The effect of surface treatment of polymethyl methacrylate denture base on the soft-liner bond strength. Indonesian Journal of Prosthodontics. 2023 Dec 1;4(2):126-33.
- 2. Yildirim AZ, Unver S, Mese A, Bayram C, Denkbas EB, Cevik P. Effect of argon plasma and Er: YAG laser on tensile bond strength between denture liner and acrylic resin. The Journal of Prosthetic Dentistry. 2020 Dec 1;124(6):799-e1.
- 3. Bahaa SM, Eltayeb H, Abdallah SA, Shaaban SM. Comparative Evaluation of Tensile Bond Strength of Two Soft Liners Bonded to Heat-Cured and 3D-Printed Denture Base Materials. Egyptian Dental Journal. 2023 Oct 1;69(4):2999-3006.
- 4. Tayebi L, editor. Applications of Biomedical Engineering in Dentistry. Springer Nature; 2019 Aug 27.
- 5. Swapna C, Hareesh MT, Renjith M, Ahmed A, Abraham IA, Gopinathan M. An evaluation of the effect of surface treatment on the bond strength of soft denture liners. Journal of International Oral Health. 2016 Sep 1;8(9):922-6.
- 6. Vuksic J, Pilipovic A, Poklepovic Pericic T, Kranjcic J. Tensile bond strength between different denture base materials and soft denture liners. Materials. 2023 Jun 26;16(13):4615.
- 7. K. J. Anusavice and R. W. Phillip, Phillip's Science of Dental Materials pp. 751–753, Elsevier, St. Louis, MO, USA, 11th edition, 2003.
- 8. Dohiem MM. Comparison of Bond strength between acrylic based soft liner and two different denture bases (3Dprinted and conventional denture base). Egyptian Dental Journal. 2022 Jan 1;68(1):659-63.

- 9. Borges AB, Torres CR, Batista GR, Bresciani E, Crastechini E, Zanatta RF. Bond strength of reline resins to aged-simulated denture base acrylic resin. World Journal of Dentistry. 2017 Jun 1;7:1-5.
- 10. Yankova M, Peev T, Yordanov B. Basic problems with the use of resilient denture lining materials: Literature review. J IMAB. 2021 May 11;27(2):3723-0.
- 11. Choi JE, Ng TE, Leong CK, Kim H, Li P, Waddell JN. Adhesive evaluation of three types of resilient denture liners bonded to heat-polymerized, autopolymerized, or CAD-CAM acrylic resin denture bases. The Journal of prosthetic dentistry. 2018 Nov 1;120(5):699-705.
- 12. Muddugangadhar BC, Mawani DP, Das A, Mukhopadhyay A. Bond strength of soft liners to denture base resins and the influence of different surface treatments and thermocycling: A systematic review. The Journal of prosthetic dentistry. 2020 Jun 1;123(6):800-6.
- 13. Mutluaya MM and Ruytera IE. Evaluation of bond strength of soft relining materials to denture base polymers. Dent Mater. 2007; 23:1373-1381.
- 14. Al-Athel MS, Jagger RG. Effect of test method on the bond strength of a silicone resilient denture lining material. J Prosthet Dent 1996; 76:535-40
- 15. Craig RG, Gibbons P. Properties of resilient denture liners. J Am Dent Assoc 1961; 63:382-90 16. Amin WM, Fletcher AM, Ritchie GM. The nature of the interface between polymethyl methacrylate denture base materials and soft lining materials. J Dent 1981; 9:336-46.
- 17. Jacobsen NL, Mitchell DL, Johnson DL, Holt RA. Lased and sandblasted denture base surface preparations affecting resilient liner bonding. J Prosthet Dent 1997; 78:153-8.
- 18. Akin H, Tugut F, Guney U, Kirmali O, Akar T. Tensile bond strength of silicone-based soft denture liner to two chemically different denture base resins after various surface treatments. Lasers in Medical Science. 2013 Jan;28:119-23.
- 19. Kumari VV, Nadiger RK, Aldhuwayhi S, Shaikh SA, Joseph AM, Mustafa MM. Evaluation of tensile bonding strength of permanent soft relining material to denture base aerylic resin after erbium: Yttrium—Aluminum—Garnet laser treatment—An in vitro study. Journal of Pharmacy and Bioallied Sciences. 2021 Jun 1;13(Suppl 1):S660-3.
- 20. Gorler O, Dogan DO, Ulgey M, Goze A, Hubbezoğlu I, Zan R, Ozdemir AK. The effects of Er: YAG, Nd: YAG, and Ho: YAG laser surface treatments to acrylic resin denture bases on the tensile bond strength of silicone-based resilient liners. Photomedicine and laser surgery. 2015 Aug 1;33(8):409-14.
- 21. Yildirim AZ, Unver S, Mese A, Bayram C, Denkbas EB, Cevik P. Effect of argon plasma and Er: YAG laser on tensile bond strength between denture liner and acrylic resin. The Journal of Prosthetic Dentistry. 2020 Dec 1;124(6):799-e1.

- 22. Nakhaei M, Dashti H, Ahrari F, Vasigh S, Mushtaq S, Shetty RM. Effect of different surface treatments and thermocycling on bond strength of a silicone-based denture liner to a denture base resin. J Contemp Dent Pract. 2016 Feb 1;17(2):154-9.
- 23. Dr. Saquib Ahmed Shaikh, Dr. Lekha, K., Dr. Gaurav Mathur, Dr. Swasti Tambi Mathur and Dr. Anup N. Comparative evaluation of tensile bond strength of two commercially available liners following pretreatment of denture surface with oxygen plasma and laser- an in vitro study. International Journal of Current Research.2016 May 10:8(05):30640.
- 24. Dr. Al-Shakaki Hala and Dr. Al-Essa Hussein. Effect of different surface treatments on tensile bond strength of silicone-based soft denture liner. International Journal of Applied Dental Sciences. 2020; 6(3): 259-262
- 25. Brahmandabheri N, Duggineni CR, Chitturi RK, Guguloth H, Dubasi M. Effect of surface treatments on the tensile bond strength of heat cure silicone soft liner to an acrylic resin denture base in a simulated oral environment-a comparative SEM study. Journal of Dr. NTR University of Health Sciences. 2022 Jan 1;11(1):57-63.
- 26. Haghi HR, Shiehzadeh M, Gharechahi J, Nodehi D, Karazhian A. Comparison of tensile bond strength of soft liners to an acrylic resin denture base with various curing methods and surface treatments. Int J Prosthodont. 2020 Jan 1;33(1):56-62.
- 27. Aziz HK. Effect of the CO2 laser as surface treatment on the bond strength of heat cured soft liner to the high impact acrylic denture base material. J Baghdad Coll Dent. 2017 Mar 13;325(4203):1-7.
- 28. Korkmaz FM, Bagis B, Özcan M, Durkan R, Turgut S, Ates SM. Peel strength of denture liner to PMMA and polyamide: laser versus airabrasion. The journal of advanced prosthodontics. 2013 Aug 1;5(3):287-95.
- 29. Hariharan Ramakrishnan MD, PGDHM A, Jayakrishnakumar SM, Azhagarasan NS. Comparative Evaluation of the Effect of Different Surface Treatments on Shear Bond Strength between Silicone Soft Liner and Denture Base Resin—A Three Dimensional Study. IOSR Journal of Dental and Medical Sciences. 2019 Nov; 18, 24–34.
- 30. Alabady AA, Khalaf BS. Bond strength of acrylic soft liner to Nd: Yag laser-treated thermoplastic acrylic denture base material. 3c Tecnología: glosas de innovación aplicadas a la pyme. 2023;12(1):354-64.
- 31. Qanber LM, Hamad TI. Effect of plasma treatment on the bond of soft denture liner to conventional and high impact acrylic denture materials. J Baghdad Coll Dent. 2021 Sep 15;33:9-17.

- 32. Zhang H, Fang J, Hu Z, Ma J, Han Y, Bian J. Effect of oxygen plasma treatment on the bonding of a soft liner to an acrylic resin denture material. Dental materials journal. 2010;29(4):398-402.
- 33. Soygun K, Tamam EV, Doğan A, Keskin S. Does the plasma application time affect the tensile bond strength between PMMA and a silicone-based denture liner?.Nigerian Journal of Clinical Practice. 2020 Sep 1;23(9):1266-73.
- 34. Yildirim Bicer AZ, Dogan A, Keskin S, Dogan OM. Effect of argon plasma pretreatment on tensile bond strength of a silicone soft liner to denture base polymers. The Journal of Adhesion. 2013 Jul 3;89(7):594-610.
- 35. Abdullah ZS, Mahmood WS, Ibrahem RA. The effect of plasma treatment on shear bond strength of soft denture liner with two different types of denture base material (heat cure and light cure). Journal of Baghdad College of Dentistry. 2014;26(2):44-9.
- 36. Xiaoqing M, Chunyuan Q, Zhang X, Chen Y. Improvment of the adhesive strength between silicon-based soft liner and thermocycled denture base with plasma treatment. Dentistry. 2015;5(12):5-12.
- 37. Qanber LM, Hameed TI. The effect of plasma treatment on the bonding of a soft liner to CAD-CAM denture base resin. J Res Med Dent Sci. 2021 Jul;9:90.
- 38. Mumcu E, Topcu Ersöz MB, Avukat EN, Akay C, Pat S. Influence of oxygen effect in coating layer on tensile bond strength of PMMA. International Journal of Polymeric Materials and Polymeric Biomaterials. 2023 May 3;72(7):507-16.
- 39. Hamedirad F, Alikhasi M, Hasanzade M. The Effect of Sandblasting on Bond Strength of Soft Liners to Denture Base Resins: A Systematic Review and Meta-Analysis of In Vitro Studies. International Journal of Dentistry. 2021;2021(1):5674155.
- 40. Khanna A, Bhatnagar VM, Karani JT, Madria K, Mistry S. A comparative evaluation of shear bond strength between two commercially available heat cured resilient liners and denture base resin with different surface treatments. Journal of clinical and diagnostic research: JCDR. 2015 May;9(5):ZC30.
- 41. Akay C, Mumcu E, Erdinç G. Effect of different surface modifications on the bonding of a soft liner to a denture base material. Selcuk Dental Journal. 2020;7(1):27-33.
- 42. Kuźniarski A, Huss W, Dąbrowa T, Kijak E. Comparative Assessment of the Adhesion Forces of Soft Silicone Materials to the Denture Base Material (PMMA) Conditioned with Sandblasting. Materials. 2024 Jul 11;17(14):3439.
- 43. Akın H, Tugut F, Mutaf B, Guney U, Ozdemir A. Effect of sandblasting with different size of aluminum oxide particles on tensile bond strength of resilient liner to denture base. Cumhuriyet Dental Journal. 2011 Jan 22;14(1):5-11.

- 44. Atsü S, KeskIn Y. Effect of silica coating and silane surface treatment on the bond strength of soft denture liner to denture base material. Journal of Applied Oral Science. 2013;21(4):300-6.
- 45. Dastjerdi MR, Chaijan KA, Baboli SK, Gholinia H. Effect of sandblasting on the tensile bond strength of two permanent silicone soft liners to the denture base.
- 46. kumar Mempally H, Komala J, Ganji SG. Evaluation of tensile bond strength of heat-polymerized acrylic soft liners with various surface pre-treatment of denture bases: an in vitro study. Journal homepage: www. nacd. in Indian J Dent Adv. 2018;10(2):65-73.
- 47. Ariyani S, Chairunnisa R. The Effect Of Surface Treatment And Thermocycling On Bond Strength Between Silicon Soft Denture Lining And Acrylic Resin Denture Base. Journal of Pharmaceutical Negative Results. 2023 Mar 6:2943-52.
- 48. Surapaneni H, Ariga P, Haribabu R, Ravi Shankar Y, Kumar VH, Attili S. Comparative evaluation of tensile bond strength between silicon soft liners and processed denture base resin conditioned by three modes of surface treatment: an invitro study. The Journal of Indian Prosthodontic Society. 2013 Sep;13:274-80.
- 49. Kulkarni RS, Parkhedkar R. The effect of denture base surface pretreatments on bond strengths of two long term resilient liners. The journal of advanced prosthodontics. 2011 Mar 1;3(1):16-9.
- 50.Al Taweel SM, Al-Otaibi HN, Labban N, AlFouzan A, Shehri HA. Soft Denture Liner Adhesion to Conventional and CAD/CAM Processed Poly (Methyl Methacrylate) Acrylic Denture Resins-An In-Vitro Study. Materials. 2021 Nov 3;14(21):6614.
- 51. Shaaban SM, Bekheet SB, Abdallah SA, Mahmoud TA. Effect of Sandblasting Surface Treatment on the Bond Strength and Surface Roughness Between the 3D-Printed Denture Base and Silicon-Based Soft Liner. Egyptian Dental Journal. 2023 Jul 1;69(3):2175-84.
- 52. Gopal KV, Padmaja BJ, Reddy NR, Reddy BM, Babu NS, Sunil M. Comparison and evaluation of tensile bond strength of two soft liners to the denture base resin with different surface textures: An in vitro study. Journal of Dr. NTR University of Health Sciences. 2014 Apr 1;3(2):102-6.
- 53. Pradeep C, Lahori M, Sisodiya S. Comparative evaluation of tensile bond strength of auto polymerising and heat cure soft liner with different denture base resins after surface treatment: An in vitro study.
- 54. Almuraikhi T. Assessment of tensile bond strength of a soft liner to the denture base resin with different surface treatments: An in vitro study. The Journal of Contemporary Dental Practice. 2022 Sep 23;23(6):613-7.

- 55. Kaur H, Datta K. Comparative evaluation of tensile bond strength of silicone-based denture liners after thermocycling and surface treatment. Indian Journal of Dental Research. 2015 Sep 1;26(5):514-9.
- 56. Gupta S. Effect of surface treatment on the flexural strength of denture base resin and tensile strength of autopolymerizing silicone based denture liner bonded to denture base resin: an in vitro study. The Journal of Indian Prosthodontic Society. 2010 Dec;10:208-12.
- 57. Sarac YS, Sarac D, Kulunk T, Kulunk S. The effect of chemical surface treatments of different denture base resins on the shear bond strength of denture repair. The Journal of prosthetic dentistry. 2005 Sep 1;94(3):259-66.
- 58. Saraç YŞ, Başoğlu T, Ceylan GK, Saraç D, Yapici O. Effect of denture base surface pretreatment on microleakage of a silicone-based resilient liner. The Journal of prosthetic dentistry. 2004 Sep 1;92(3):283-7.
- 59. Sabah DQ, Khalaf BS. Effect of Thermocycling on Surface Roughness and Shear Bond Strength of Acrylic Soft Liner to the Surface of Thermoplastic Acrylic Treated with Ethyl Acetate. Indian Journal of Forensic Medicine & Toxicology. 2022 Jan 1;16(1).
- 60. Goiato MC, Santos DM, Medeiros RA, Vechiato Filho AJ, Sinhoreti MA, Silva EV, Moreno A. Tensile bond strength of a soft liner to an acrylic resin after primer application and thermocycling. Materials Research. 2015 Dec 4;18:1183-7.
- 61. Kümbüloğlu Ö, Yildirim B, Al-Haj Husain N, Özcan M. Adhesion potential of relining materials to polyamide and PMMA-based denture base materials: effect of surface conditioning methods. Journal of Adhesion Science and Technology. 2019 Sep 2;33(17):1939-47.
- 62. Sreenivasulu D, Shyammohan A. In-Vitro Study on the Tensile Bond Strength of 3 Chair-Side Permanent Soft Liners to PMMA Base and the Effect of Thermocycling on it. Indian Journal of Stomatology. 2014 Apr 1;5(2).
- 63. Madan N, Datta K. Evaluation of tensile bond strength of heat cure and autopolymerizing silicone-based resilient denture liners before and after thermocycling. Indian Journal of Dental Research. 2012 Jan 1;23(1):64-8.
- 64. Demir H, Dogan A, Dogan OM, Keskin S, Bolayir G, Soygun K. Peel bond strength of two silicone soft liners to a heat-cured denture base resin. Journal of Adhesive Dentistry. 2011 Nov 1;13(6).
- 65. Rajaganesh N, Sabarinathan S, Azhagarasan NS, Shankar C, Krishnakumar J, Swathi S. Comparative evaluation of shear bond strength of two different chairside soft liners to heat processed acrylic denture base resin: An: in vitro: study. Journal of Pharmacy and Bioallied Sciences. 2016 Oct 1;8(Suppl 1):S154-9.

- 66. Geramipanah F, Ghandari M, Zeighami S. The effect of thermocycling on tensile bond strength of two soft liners. Journal of Dentistry (Tehran, Iran). 2013 Sep;10(5):405.
- 67. Janyaprasert P, Kamonkhantikul K, Homsiang W, Arksornnukit M. Effect of thermocycling on tensile bond strength of autopolymerized, heatpolymerized, milled, and 3D printed denture base materials bonded to 4 different denture liners: an in vitro study. BMC Oral Health. 2024 Aug 25;24(1):1000.



Dental Journal