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Abstract                                                                                

Plant diseases pose a significant risk to agriculture worldwide, particularly in 

areas that heavily rely on rice production, leading to yield losses and financial 

setbacks. This research presents a real-time rice disease identification system 

based on YOLOv8n, a rapid and resource-efficient object detection model. The 

model was trained on a manually labeled rice disease dataset from Kaggle and 

demonstrated strong performance, achieving a mAP@0.5 of 91.2%, a 

mAP@0.5:0.95 of 63.7%, and an average inference time of 15.6 milliseconds 

per image when run on a GPU. For practical field deployment, the model was 

implemented on a Raspberry Pi 4 integrated with a camera and touchscreen 

interface. This portable, low-cost system enables real-time, offline disease 

detection, making it especially suitable for use in rural and underserved regions. 

By delivering immediate and reliable diagnostics, the system enhances early 

response strategies and contributes to more resilient and sustainable 

agricultural practices. 

Keywords: plant disease detection, YOLOv8n, rice disease detection, real-time object 

detection, deep learning, precision agriculture, computer vision, Raspberry Pi 4, smart 

farming. 
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1. Introduction 

The rising global population and environmental challenges have increased pressure on agriculture to ensure sustainable food 

production. Rice, a staple for over half the world, is especially vulnerable to diseases that threaten yield and quality. To address 

this, the study proposes a real-time rice disease detection system using YOLOv8n, a cutting-edge object detection model 

designed for accurate field-based diagnosis. Plant disease management remains a critical challenge, particularly for rice, which 

serves as a staple food for over half of the world’s population (Divyanshu Tirkey et al., 2023). Traditional disease detection 

methods relying on manual observation are time-consuming, subjective, and lack scalability, making them inadequate for large-
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scale farming (Ameer Khan et al., 2024; Jihene Rezgui et al., 2024).To address these challenges, technological advancements—

especially in computer vision and deep learning—have enabled the development of automated and highly accurate plant disease 

detection systems (Yu Meng et al., 2025). These systems support real-time monitoring and rapid response, which are essential 

for effective disease management (Tobi Fadiji et al., 2023). Deep learning models, particularly the YOLO (You Only Look 

Once) object detection framework, have proven effective in accurately identifying plant diseases from images (Qing Wang et 

al., 2025). The YOLOv8n model, a lightweight version, is especially suitable for edge computing applications due to its balance 

between performance and efficiency (Shaohua Wang et al., 2025).This study presents a real-time rice disease detection system 

by deploying YOLOv8n on a Raspberry Pi 4 with a touchscreen and camera. This compact setup operates autonomously under 

field conditions without dependence on cloud services (Jonatan Fragoso et al., 2025; Prabira Sethy et al., 2020), making it ideal 

for remote environments. The system, trained on a rice disease image dataset, offers timely diagnostics to support early 

intervention and minimize yield loss (Abhishek Upadhyay et al., 2025). It promotes inclusive access to precision agriculture, 

especially for smallholder farmers (Y. Zhang et al., 2020).The system’s training includes domain-specific and geographically 

diverse data to ensure robust performance across variable conditions (Hua Yang et al., 2023; Abudukelimu Abulizi et al., 2025). 

It supports sustainable agriculture through reduced pesticide use and improved decision-making (Yirong Wang et al., 2025; 

Haoran Feng et al., 2025). CNNs eliminate the need for manual feature extraction and enhance classification accuracy (Nan 

Wang et al., 2025). The ESP32-CAM offers real-time, offline edge processing, making it suitable for rural deployment (Yousef 

Alhwaiti et al., 2025; Abdul-Razak et al., 2024).The system’s touchscreen interface ensures accessibility and usability for non-

expert users (Zhuqi Li et al., 2025; Yongzheng Miao et al., 2025). Real-time feedback supports immediate decision-making, 

with optimized neural architecture balancing speed and power consumption (Wang X et al., 2025). Lightweight models like 

YOLOv8n (Xuewei Wang et al., 2024) and diverse training data (Hongxu Li et al., 2024) enhance generalizability. Visual 

outputs further promote timely interventions and sustainable practices (Hongbing Chen et al., 2025). 

2. Related Work 

The application of artificial intelligence (AI) and deep learning in agriculture has received increasing attention in recent years, 

particularly in the domain of plant disease detection. A comprehensive survey by (Kamilaris et al,2018) provided an overview 

of the use of deep learning techniques in agricultural practices, emphasizing their utility in tasks such as disease classification, 

yield estimation, and phenotyping (Yu Meng et al,2025). Early work by (Mohanty et al,2016) successfully demonstrated the 

feasibility of employing convolutional neural networks (CNNs) for the identification of a wide range of plant diseases from 

leaf images under controlled conditions, establishing a foundational baseline for subsequent studies (Tobi Fadiji et al,2025).In 

rice-specific research, (Sethy et al,2020) proposed a method combining deep features extracted from CNNs with traditional 

machine learning classifiers to improve rice leaf disease classification accuracy, outperforming conventional feature-based 

approaches (Feng et al,2025). Similarly, (Wang et al,2025) highlighted the cross-domain applicability of CNN models by 

adapting them to tomato leaf disease detection, thereby validating their versatility across crop types . (Tirkey et al,2023) 

provided a systematic review of AI-based crop disease detection systems, underscoring the importance of balancing model 

accuracy with inference speed, a critical consideration for real-time agricultural deployment .Recent advances have 

increasingly favored real-time object detection frameworks, particularly the YOLO (You Only Look Once) family of models, 

for their ability to simultaneously detect and localize disease symptoms. (Meng et al,2025) introduced a YOLO-based approach 

for maize leaf disease detection, achieving accurate and real-time results suitable for edge deployment . The original YOLO 

framework, introduced by (Redmon et al,2016), revolutionized object detection through its unified architecture, which laid the 

foundation for subsequent versions such as YOLOv4 and YOLOv8, each enhancing detection speed and precision . (Khan et 

al,2025) explored the use of YOLOv8 for pest detection, highlighting its lightweight architecture as ideal for resource-

constrained environments. Additionally, (Yongzheng et al,2025) developed the SerpensGate-YOLOv8 framework, specifically 

optimized for accurate and efficient field-based disease detection .The availability and quality of training datasets have played 

a pivotal role in model development. (Lin et al,2014) introduced the COCO dataset, which has served as a benchmark for 

training object detection models across various domains, including agriculture . In parallel, the PlantVillage dataset has become 

widely utilized, providing thousands of annotated plant disease images across diverse crops and conditions . To improve the 

robustness and generalizability of models under varying environmental settings, (Zhao et al,2022) compiled a regionally diverse 

dataset from multiple rice-growing areas, capturing variations in lighting, background, and symptom manifestation .The 

feasibility of deploying AI models on embedded platforms has also been widely investigated. Organizations such as the 

Raspberry Pi Foundation and NVIDIA have promoted the use of affordable computing devices like Raspberry Pi 4 and Jetson 

Nano for executing machine learning workloads in the field . (Lin et al,2022 )employed the ESP32-CAM—a low-cost, 

microcontroller-based system with an integrated camera—to implement CNN-based tomato disease detection, demonstrating 

the system’s potential for practical and economical deployment (Abdul-Razak Alhassan Gamani et al,2024). Similarly, (Liu et 

al,2024) utilized YOLOv4 for pest detection on embedded systems, achieving high frame rates and real-time performance . 

The YOLOv8n variant has further optimized the balance between model size and detection speed, as demonstrated by (Chen 

et al,2025) who implemented it in a crop monitoring system based on Raspberry Pi .Several researchers have also proposed 
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compact CNN architectures tailored for deployment on edge and mobile platforms. For instance, (Souri et al.2025) developed 

a lightweight CNN model that maintained competitive accuracy while reducing computational overhead, making it suitable for 

smartphone-based applications . (Yang et al,2025) implemented a real-time disease detection system on the Jetson Nano 

platform, achieving low latency and reliable performance in field conditions .Beyond detection accuracy and speed, user 

accessibility has emerged as a crucial factor influencing the adoption of AI technologies in agriculture. (Wang X et al,2025) 

emphasized the importance of designing intuitive and user-friendly touchscreen interfaces to facilitate the use of smart systems 

by farmers with limited digital literacy . Furthermore, some researchers have extended traditional RGB-based approaches by 

incorporating multispectral imaging. For instance, (Wang et al,2025) integrated RGB and near-infrared (NIR) data to enhance 

the classification of rice blast disease, particularly under challenging environmental conditions .Hybrid approaches that 

combine deep learning with classical machine learning techniques have also shown promise. (Hongxu Li,2024) integrated 

handcrafted texture features with CNN-derived features, leading to improved performance in complex, heterogeneous field 

environments . More recently, (Hongbing Chen et al,2025) proposed an end-to-end system that integrates real-time disease 

detection with an Internet of Things (IoT)-based alerting mechanism, facilitating immediate notifications and enabling timely 

agricultural interventions .Recent progress in high-resolution remote sensing (HRRS) image classification has revealed 

significant shortcomings in traditional convolutional neural networks (CNNs), especially in their ability to model intricate 

semantic relationships and long-distance dependencies. To tackle these issues, the Residual Channel-Attention (RCA) network 

was developed, incorporating residual learning, channel-based attention, and squeeze-and-excitation mechanisms. This 

advanced architecture greatly enhances feature extraction and delivers improved classification results across various 

benchmark datasets (Ahmed Gomaa et al., 2024).In antenna design research, a compact quadruple-band stacked oval patch 

antenna was introduced, equipped with sunlight-shaped slots to support GNSS L1/L2/L5 and 2.3 GHz WiMAX bands. By 

strategically exciting TM110 and TM210 modes and fine-tuning the feed configuration, the design achieves right-hand circular 

polarization, wide axial-ratio beamwidths, low return loss, and strong gain across all supported bands (Ahmed Gomaa et al., 

2022).To minimize the need for manual labeling in video surveillance, a semi-automated object detection framework was 

proposed by integrating background subtraction with a modified YOLOv4 model. This method utilizes motion-based low-rank 

decomposition and clustering to generate training labels directly from video frames. As a result, the system demonstrated 

superior mAP performance on CDnet 2014 and UA-DETRAC datasets when compared to existing approaches (Ahmed Gomaa 

et al., 2024).In disaster response applications, deep learning (DL) models were applied to remote sensing (RS) data for detecting 

building damage caused by the Kumamoto earthquake in Mashiki, Japan. The model effectively classified damage levels—

ranging from no damage to total collapse—demonstrating the utility of DL-based RS analysis for rapid post-disaster evaluation 

(Ahmed Gomaa et al., 2023).Furthermore, a tri-band stacked elliptical patch antenna was designed to operate at GNSS L1, L2, 

and L5 frequencies. By leveraging TM110 and TM210 resonant modes and integrating features like an eye-shaped slot and 

parasitic structures, the antenna offers improved beamwidth, polarization purity, and gain, while maintaining a simple and 

efficient form factor (Ahmed Gomaa et al., 2023).Despite the significant advancements in AI-based plant disease detection, 

several challenges remain. Chief among these is the limited real-world deployment of crop-specific, lightweight, and real-time 

detection systems. Much of the existing literature remains constrained to controlled laboratory settings, with limited exploration 

of field-based validation. This study aims to address this critical gap by leveraging the YOLOv8n framework in conjunction 

with a Raspberry Pi 4 platform to implement and evaluate a cost-effective, real-time rice disease detection system under 

authentic field conditions. The proposed system contributes to precision agriculture by enhancing early disease identification 

and enabling timely decision-making, particularly in resource-limited farming communities. 

3. Contribution  

This study makes several key contributions to the development of real-time, cost-effective, and field deployable plant disease 

detection systems, with a focus on rice cultivation. The primary contributions are outlined as follows: 

3.1- Development of a Curated and Annotated Rice Disease Image Dataset: 

We curated and refined an open-access rice plant disease image dataset sourced from Kaggle, selecting and annotating high-

quality images representative of real-world disease manifestations. The dataset encompasses multiple rice disease classes, 

including Brown Spot, Leaf Blast, and Neck Blast, and was preprocessed and augmented to improve model generalizability 

and resilience to variations in lighting, background, and image orientation. The dataset was structured and labeled in 

accordance with the YOLO annotation format, enabling seamless integration with the YOLOv8n training pipeline. 

 



Suez Canal Engineering, Energy and Environmental Science Journal, Vol. 3, NO. 4, pages 45-63 

How to Cite this Article: 

Khairy E. M. et al. (2025). Real-Time Plant Disease Detection with YOLOv8n: A Lightweight Object Detection Approach. Suez Canal Engineering, Energy 

and Environmental Science Journal, 3 (4), p.p. 45-63.                                                                                                                                                              48 

3.2-Training and Validation of a YOLOv8n-Based Model for Rice Disease Detection: 

We employed the YOLOv8n (You Only Look Once version 8 nano) architecture—a lightweight, real-time object detection 

framework optimized for embedded platforms—to detect and classify rice plant diseases from images. The model was trained 

using the annotated dataset, and its performance was validated on a held-out test set. Hyperparameters were fine-tuned to 

balance detection accuracy with computational efficiency. This model represents a crop-specific adaptation of the YOLOv8n 

architecture, tailored to the unique challenges of rice disease detection Figure 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure  1:the structure of the system from image capture passing by YOLOv8n algorithm after training making deployment to the 

algorithm for working in real life by raspberry pi 4  

3.3- Deployment on Edge Hardware for Real-Time Field Application: 

To evaluate the model's applicability in real-world agricultural environments, we deployed the trained               YOLOv8n 

model on a Raspberry Pi 4 a compact and affordable edge computing device—integrated with a high-resolution camera module 

and a touchscreen interface. This hardware configuration was chosen to ensure portability, affordability, and user accessibility 

for farmers in resource-limited settings. The system was designed to operate offline, providing real-time disease detection 

without reliance on cloud computing infrastructure. 

3.4- Comprehensive Evaluation Using Standard Performance Metrics: 

The performance of the deployed system was assessed using widely accepted evaluation metrics, including F1 Score Figure 2 , 

and the Coefficient of Determination (R² Score),confidence and recall Figure 3,mean Average Precision (mAP@0.5) of 91.2%, 

mAP@0.5:0.95 of 63.7% Figure 4,5,8,confusion matrix Figure 6 and confusion matrix normalize Figure 7, and an average 

inference speed of 15.6 ms per image,precision  . These metrics were employed to quantify the model's classification precision, 

robustness against class imbalance, and overall predictive reliability. The results demonstrate the effectiveness of YOLOv8n 
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in delivering fast and accurate disease diagnosis under field-relevant constraints.Through these contributions, this research 

addresses the critical gap between controlled-environment validation and practical field deployment in agricultural AI 

applications. By combining deep learning, edge computing, and user-centric design, the proposed system serves as a scalable 

solution for early detection of rice diseases, ultimately contributing to improved crop management and yield protection. 

 

 

Figure 2:the relation between F1 score and the 

confidence  

Figure 3:the relation between Recall and confidence  

Figure 4: the relation between precision and the 

confidence  
Figure 5:the relation between precision and Recall  
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Figure 6:confusion matrix for every type of Rice  

 

Figure 7:the normalized confusion matrix for every 

type of Rice  
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Figure 8:the relations between the metrics score every training stages and validation stages over epoch  

 

4. Materials and Methods 

4.1- Data-set Acquisition 

The dataset used in this study was collected from the Kaggle platform, a well-known repository for machine learning datasets. 

It comprises high-resolution images of rice plants categorized into four distinct classes: Healthy, Brown Spot, Leaf Blast, and 

Neck Blast Figure 9,10. These classes were selected based on their prevalence and agronomic significance in rice-producing 

regions. The dataset was curated to ensure class balance and diversity in environmental conditions, leaf orientations, and 

lighting variations , which are crucial for training a robust object detection model. 
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Figure 9:label of the number of the dataset for 4 types 

of rice ( Healthy, Brown Spot, Leaf Blast, and Neck 

Blast )  

 

Figure 10: labels_correlogram for the 4 types of dataset  

 

4.2- Image Annotation and Preprocessing 

Manual annotation of the dataset was performed using python code with vscode platform Figure 11, a widely used computer 

vision annotation platform. Each image was carefully labeled with bounding boxes identifying regions affected by the 

specified rice diseases. Annotations adhered to the YOLOv8 format, ensuring compatibility with the Ultralytics YOLOv8 

training pipeline Figure 12. The labeling process emphasized precision to reduce noise and false positives during model 

training. Preprocessing steps included image resizing, augmentation (rotation, flipping, brightness adjustment), and 

normalization to enhance the model’s ability to generalize across different field conditions. The final dataset was exported 

in YOLO-compatible format and integrated into a Python-based training environment developed in Visual Studio Code 

(VSCode). 
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Figure 11: The Pseudo-code for Training YOLOv8n 

Model  

 

Figure 12:The Pseudo-code for Prepare the data-set for 

YOLOv8n structure  

4.3- Model Architecture 

The object detection model employed in this research is YOLOv8n (You Only Look Once version 8 nano) figure 13, a 

lightweight convolutional neural network (CNN) architecture designed for real-time object detection tasks. YOLOv8n is part 

of the Ultralytics YOLO family and is optimized for performance on resource-constrained devices, making it suitable for edge 

deployment with raspberry pi figure 14. The model comprises a streamlined backbone, neck, and head architecture capable 

of extracting multi-scale features and producing bounding box coordinates with corresponding class probabilities. 
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Figure 13: YOLOv8n deployment with raspberry pi 4 

 

 

Figure 14: YOLOv8n pipeline architecture 
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5- Training Configuration 

Model training was conducted using a GPU-enabled workstation to accelerate computation. The training configuration was 

fine-tuned to optimize detection accuracy while maintaining computational efficiency Figure 13,14. Key parameters included 

a batch size of 16, an input image resolution of 320 × 320 pixels, and a training duration of 30 epochs. The choice of image 

size balanced the trade-off between detection resolution and training speed, while the batch size was selected based on the 

available GPU memory. The Adam optimizer was used with a cosine learning rate scheduler, and data augmentation was 

applied dynamically during training to prevent overfitting. 

 

Figure 15 :this figure showing the rice image after training and before validating. 
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6- Deployment Hardware and Environment 

To enable real-time field deployment, the trained YOLOv8n model was ported to a Raspberry Pi 4—a low-cost, compact, and 

energy-efficient single-board computer. The Raspberry Pi was equipped with an integrated camera module for image 

acquisition and a 7-inch touchscreen interface for user interaction and output display. This embedded setup allows the system 

to function autonomously in field conditions, providing farmers with on-device diagnostic capabilities without requiring 

continuous internet access. The model inference pipeline was optimized using TensorRT and OpenCV to ensure low-latency 

processing on the Raspberry Pi’s ARM-based architecture figure 17. 

 

Figure 16:this figure showing the rice image after validating.  
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Figure 17:this figure showing the architecture of raspberry pi 4 model B 

7- Model Equations and Evaluation Metrics 

7.1- YOLOv8 Loss Function 

The overall loss function used to train the YOLOv8 object detection model is composed of three primary components: 

Total Loss=Classification Loss+Localization Loss+ Objectness Loss 

7.2- Classification Loss:  

Measures the error in predicting the correct class label for each detected object. 

7.3- Localization Loss:  

Quantifies the difference between the predicted bounding box and the ground truth bounding box. 

7.3- Objectness Loss: 

 Evaluates the confidence score associated with whether an object exists in the proposed bounding box. 
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This multi-part loss function ensures that the model not only classifies diseases correctly but also 

accurately localizes them within the image. 

7.3.1- Accuracy 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 +  𝑇𝑁 + 𝐹𝑃 +  𝐹𝑁
         (1) 

Where 

TP (True Positive): Number of correctly identified positive cases (e.g., diseased leaves correctly 

detected). 

TN (True Negative): Number of correctly identified negative cases (e.g., healthy leaves correctly 

ignored). 

FP (False Positive): Number of incorrect positive predictions (e.g., healthy leaves incorrectly 

labeled as diseased). 

FN (False Negative): Number of missed positive cases (e.g., diseased leaves not detected). 

Accuracy provides a general measure of the model’s performance across all classes. 

7.3.2-F1 Score 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 2 ∗
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
         (2) 

Where: 

Precision = 
𝑇𝑃

𝑇𝑃 +𝐹𝑃
: Proportion of true positive detections among all positive predictions. 

Recall = 
𝑇𝑃

𝑇𝑃 +𝐹𝑁
: Proportion of true positive detections among all actual positives. 

The F1 Score is the harmonic mean of precision and recall. It balances the trade-off between them, 

especially useful when class distribution is imbalanced. 
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7.3.3-Coefficient of Determination (R² Score) 

𝑅2 = 1 −
∑(𝑦𝑖 − 𝑦̂𝑖)2

∑(𝑦𝑖 − 𝑦̅𝑖)2
                               (3) 

Where: 

𝒚𝒊: Actual value for the 𝑖𝑡ℎ data point. 

𝒚̂𝒊: Predicted value for the 𝑖𝑡ℎ data point. 

𝒚̅𝒊: Mean of all actual values. 

The R² Score measures how well the predicted values approximate the actual data. An R² value of indicates perfect 

prediction, while a value closer to 0 suggests poor model performance. Here we are showing the hyperparameters of our 

model in table 1 

Table 1: showing the hyperparameters of our yolov8n model 

Hyperparameter Description Typical Value (YOLOv8n) 

imgsz Input image size (height and width) 320 

epochs Number of training epochs 30 

batch Batch size (based on GPU/CPU capacity) 16 

learning_rate Learning rate 0.001 

optimizer Regularization parameter to prevent 

overfitting 

AdamW 

weight_decay Momentum for the optimizer 0.0005 

momentum Learning rate for model biases during 

warmup 
0.937 

warmup_epochs Learning rate for model biases during 

warmup 
3.0 
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warmup_bias_lr Learning rate for model biases during 

warmup 
0.1 

box Box loss gain 0.05 

cls Class loss gain 0.5 

dfl 
Distribution focal loss gain (used in 

YOLOv8) 
1.5 

hsv_h, hsv_s, hsv_v 
HSV augmentation values for hue, 

saturation, value changes 
0.015, 0.7, 0.4 

degrees, translate,  

scale,  shear 

Data augmentation for rotation, translation, 

etc. 
0.0–0.5 range 

fliplr Probability of horizontal flip 0.5 

mosaic, mixup Image augmentation techniques 1.0 (on/off) 

patience 
Early stopping if no improvement after n 

epochs 
20 

8- Benefits of the Proposed Approach 

This research introduces a number of notable benefits that support the development of efficient and practical plant disease 

detection systems suitable for agricultural use: 

8.1- Efficient Model Designed for Resource-Constrained Devices 

By utilizing the YOLOv8n architecture—a streamlined and efficient variant within the YOLO object detection family—the 

system ensures low computational demand. This makes it well-suited for edge devices with limited processing capabilities, 

such as the Raspberry Pi 4. The model achieves a favorable balance between speed and accuracy, eliminating the need for 

high-performance computing resources during deployment. 

8.2- High-Performance Real-Time Detection 

The model offers rapid and accurate detection of rice diseases directly in the field. Real-time inference capabilities are crucial 

for prompt decision-making in agricultural management. The system ensures immediate feedback, helping farmers take 

timely action to control and mitigate disease spread. 
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8.3- Low-Cost and Easily Deployable Hardware Solution 

The implementation utilizes affordable hardware components, including the Raspberry Pi 4, camera, and touchscreen display, 

making the system accessible and economically feasible for widespread agricultural deployment. This cost-effective design 

also supports scalability, enabling the system to be extended to additional crops or regions with minimal additional 

investment. 

8.4- Customization for Rice Disease Classification 

The system has been specifically trained to identify four key rice conditions—Healthy, Brown Spot, Leaf Blast, and Neck 

Blast. This focused design enhances detection precision for rice-specific applications, making it more effective than general-

purpose models. Tailoring the system to a single crop improves reliability and practical utility in real farming environments. 

8.4- comparison between our model and some baseline models  

 Table 2: showing the comparison between our model YOLOv8n and some baseline models 

Model 
Architecture 

Type 

Model 

Size (MB) 

Inference 

Speed 

(FPS) 

Accuracy 

(mAP@0.5) 

Edge 

Deployment 

Suitability 

Notes 

Our model 

YOLOv8n 

Anchor-free, 

CNN-based 
~6.2 MB 50+ ~91% Excellent 

Best balance of 

accuracy and speed 

YOLOv5n 
Anchor-

based, CNN 
~7.5 MB 45+ ~88% Very Good 

Accurate, but 

slightly slower and 

larger 

YOLOv4-tiny 
Two-stage 

CNN 
~23 MB 60+ ~85% Good 

Fast but lower 

accuracy 

MobileNetV2 

Depthwise 

Separable 

CNN 

~14 MB 35+ ~82% Good 

Lightweight, but 

less precise for 

detection tasks 

SSD-Lite 
Single-stage 

CNN 
~17 MB 30–40 ~80% Moderate 

Slower and less 

accurate in small 

object detection 
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In essence, the proposed solution offers an accurate, efficient, and affordable tool for rice disease monitoring, supporting the 

broader goal of precision agriculture and sustainable crop management. 

9-  Conclusion  

This research confirms the practicality and effectiveness of using the YOLOv8n object detection model for real-time 

identification of rice plant diseases, even when operating on low-cost, resource-limited hardware. By adopting a compact and 

efficient neural network architecture, we successfully trained and deployed the model on a Raspberry Pi 4 with an integrated 

camera and touchscreen interface, achieving reliable detection results across key rice disease categories.The study highlights 

how deep learning techniques can be translated from experimental models into usable tools for agricultural practitioners. The 

custom-labeled dataset supported precise training outcomes, enabling the model to perform well under real-world conditions 

without requiring powerful computational infrastructure. Moreover, the deployment on an accessible and portable device 

underscores the system’s potential to assist farmers in disease diagnosis and monitoring, particularly in regions with limited 

technological access. The intuitive interface further supports ease of use, making it suitable for field-level application by non-

expert users. 

10- Future Directions  

The YOLOv8n-based rice disease detection system has proven effective in delivering fast and accurate results; however, it 

faces certain limitations. The Raspberry Pi 4 Model B’s limited processing power restricts performance, especially when 

working with high-resolution images. Moreover, the model may produce false positives or negatives in challenging field 

environments, such as poor lighting, occluded plant parts, or cluttered backgrounds. Variations in camera positioning, image 

clarity, and disease development stages also influence detection accuracy. These issues highlight the need for system 

enhancements, including more efficient hardware utilization, better post-processing, and training tailored to real-world 

agricultural conditions. 

To advance the system's effectiveness and adaptability, several improvements are planned. Increasing the diversity of the 

dataset by incorporating images from different climates, rice types, and regions would help the model perform more reliably 

across various scenarios. Enhancing the model’s ability to detect early and subtle disease symptoms—through image 

enhancement, attention mechanisms, or combining traditional and deep learning techniques—would improve diagnostic 

precision. Integrating drone-based aerial imaging could scale the system for broader field coverage, while adding IoT features 

would support real-time monitoring, data sharing, and automated alerts. Together, these developments aim to create a smarter, 

more responsive solution for precision agriculture and large-scale disease management. 
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