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1. Introduction

The rising global population and environmental challenges have increased pressure on agriculture to ensure sustainable food
production. Rice, a staple for over half the world, is especially vulnerable to diseases that threaten yield and quality. To address
this, the study proposes a real-time rice disease detection system using YOLOv8n, a cutting-edge object detection model
designed for accurate field-based diagnosis. Plant disease management remains a critical challenge, particularly for rice, which
serves as a staple food for over half of the world’s population (Divyanshu Tirkey et al., 2023). Traditional disease detection
methods relying on manual observation are time-consuming, subjective, and lack scalability, making them inadequate for large-

How to Cite this Article:
Khairy E. M. et al. (2025). Real-Time Plant Disease Detection with YOLOv8n: A Lightweight Object Detection Approach. Suez Canal Engineering, Energy
and Environmental Science Journal, 3 (4), p.p. 45-63. 45


mailto:matrex.2112@gmail.com

Suez Canal Engineering, Energy and Environmental Science Journal, Vol. 3, NO. 4, pages 45-63

scale farming (Ameer Khan et al., 2024; Jihene Rezgui et al., 2024).To address these challenges, technological advancements—
especially in computer vision and deep learning—have enabled the development of automated and highly accurate plant disease
detection systems (Yu Meng et al., 2025). These systems support real-time monitoring and rapid response, which are essential
for effective disease management (Tobi Fadiji et al., 2023). Deep learning models, particularly the YOLO (You Only Look
Once) object detection framework, have proven effective in accurately identifying plant diseases from images (Qing Wang et
al., 2025). The YOLOv8n model, a lightweight version, is especially suitable for edge computing applications due to its balance
between performance and efficiency (Shaohua Wang et al., 2025).This study presents a real-time rice disease detection system
by deploying YOLOvS8n on a Raspberry Pi 4 with a touchscreen and camera. This compact setup operates autonomously under
field conditions without dependence on cloud services (Jonatan Fragoso et al., 2025; Prabira Sethy et al., 2020), making it ideal
for remote environments. The system, trained on a rice disease image dataset, offers timely diagnostics to support early
intervention and minimize yield loss (Abhishek Upadhyay et al., 2025). It promotes inclusive access to precision agriculture,
especially for smallholder farmers (Y. Zhang et al., 2020).The system’s training includes domain-specific and geographically
diverse data to ensure robust performance across variable conditions (Hua Yang et al., 2023; Abudukelimu Abulizi et al., 2025).
It supports sustainable agriculture through reduced pesticide use and improved decision-making (Yirong Wang et al., 2025;
Haoran Feng et al., 2025). CNNs eliminate the need for manual feature extraction and enhance classification accuracy (Nan
Wang et al., 2025). The ESP32-CAM offers real-time, offline edge processing, making it suitable for rural deployment (Yousef
Alhwaiti et al., 2025; Abdul-Razak et al., 2024).The system’s touchscreen interface ensures accessibility and usability for non-
expert users (Zhuqi Li et al., 2025; Yongzheng Miao et al., 2025). Real-time feedback supports immediate decision-making,
with optimized neural architecture balancing speed and power consumption (Wang X et al., 2025). Lightweight models like
YOLOvS8n (Xuewei Wang et al., 2024) and diverse training data (Hongxu Li et al., 2024) enhance generalizability. Visual
outputs further promote timely interventions and sustainable practices (Hongbing Chen et al., 2025).

2. Related Work

The application of artificial intelligence (Al) and deep learning in agriculture has received increasing attention in recent years,
particularly in the domain of plant disease detection. A comprehensive survey by (Kamilaris et al,2018) provided an overview
of the use of deep learning techniques in agricultural practices, emphasizing their utility in tasks such as disease classification,
yield estimation, and phenotyping (Yu Meng et al,2025). Early work by (Mohanty et al,2016) successfully demonstrated the
feasibility of employing convolutional neural networks (CNNs) for the identification of a wide range of plant diseases from
leaf images under controlled conditions, establishing a foundational baseline for subsequent studies (Tobi Fadiji et al,2025).In
rice-specific research, (Sethy et al,2020) proposed a method combining deep features extracted from CNNs with traditional
machine learning classifiers to improve rice leaf disease classification accuracy, outperforming conventional feature-based
approaches (Feng et al,2025). Similarly, (Wang et al,2025) highlighted the cross-domain applicability of CNN models by
adapting them to tomato leaf disease detection, thereby validating their versatility across crop types . (Tirkey et al,2023)
provided a systematic review of Al-based crop disease detection systems, underscoring the importance of balancing model
accuracy with inference speed, a critical consideration for real-time agricultural deployment .Recent advances have
increasingly favored real-time object detection frameworks, particularly the YOLO (You Only Look Once) family of models,
for their ability to simultaneously detect and localize disease symptoms. (Meng et al,2025) introduced a YOLO-based approach
for maize leaf disease detection, achieving accurate and real-time results suitable for edge deployment . The original YOLO
framework, introduced by (Redmon et al,2016), revolutionized object detection through its unified architecture, which laid the
foundation for subsequent versions such as YOLOv4 and YOLOVS, each enhancing detection speed and precision . (Khan et
al,2025) explored the use of YOLOvVS8 for pest detection, highlighting its lightweight architecture as ideal for resource-
constrained environments. Additionally, (Yongzheng et al,2025) developed the SerpensGate-YOLOv8 framework, specifically
optimized for accurate and efficient field-based disease detection .The availability and quality of training datasets have played
a pivotal role in model development. (Lin et al,2014) introduced the COCO dataset, which has served as a benchmark for
training object detection models across various domains, including agriculture . In parallel, the PlantVillage dataset has become
widely utilized, providing thousands of annotated plant disease images across diverse crops and conditions . To improve the
robustness and generalizability of models under varying environmental settings, (Zhao et al,2022) compiled a regionally diverse
dataset from multiple rice-growing areas, capturing variations in lighting, background, and symptom manifestation .The
feasibility of deploying AI models on embedded platforms has also been widely investigated. Organizations such as the
Raspberry Pi Foundation and NVIDIA have promoted the use of affordable computing devices like Raspberry Pi 4 and Jetson
Nano for executing machine learning workloads in the field . (Lin et al,2022 )employed the ESP32-CAM—a low-cost,
microcontroller-based system with an integrated camera—to implement CNN-based tomato disease detection, demonstrating
the system’s potential for practical and economical deployment (Abdul-Razak Alhassan Gamani et al,2024). Similarly, (Liu et
al,2024) utilized YOLOv4 for pest detection on embedded systems, achieving high frame rates and real-time performance .
The YOLOvVS8n variant has further optimized the balance between model size and detection speed, as demonstrated by (Chen
et al,2025) who implemented it in a crop monitoring system based on Raspberry Pi .Several researchers have also proposed
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compact CNN architectures tailored for deployment on edge and mobile platforms. For instance, (Souri et al.2025) developed
a lightweight CNN model that maintained competitive accuracy while reducing computational overhead, making it suitable for
smartphone-based applications . (Yang et al,2025) implemented a real-time disease detection system on the Jetson Nano
platform, achieving low latency and reliable performance in field conditions .Beyond detection accuracy and speed, user
accessibility has emerged as a crucial factor influencing the adoption of Al technologies in agriculture. (Wang X et al,2025)
emphasized the importance of designing intuitive and user-friendly touchscreen interfaces to facilitate the use of smart systems
by farmers with limited digital literacy . Furthermore, some researchers have extended traditional RGB-based approaches by
incorporating multispectral imaging. For instance, (Wang et al,2025) integrated RGB and near-infrared (NIR) data to enhance
the classification of rice blast disease, particularly under challenging environmental conditions .Hybrid approaches that
combine deep learning with classical machine learning techniques have also shown promise. (Hongxu Li,2024) integrated
handcrafted texture features with CNN-derived features, leading to improved performance in complex, heterogeneous field
environments . More recently, (Hongbing Chen et al,2025) proposed an end-to-end system that integrates real-time disease
detection with an Internet of Things (IoT)-based alerting mechanism, facilitating immediate notifications and enabling timely
agricultural interventions .Recent progress in high-resolution remote sensing (HRRS) image classification has revealed
significant shortcomings in traditional convolutional neural networks (CNNSs), especially in their ability to model intricate
semantic relationships and long-distance dependencies. To tackle these issues, the Residual Channel-Attention (RCA) network
was developed, incorporating residual learning, channel-based attention, and squeeze-and-excitation mechanisms. This
advanced architecture greatly enhances feature extraction and delivers improved classification results across various
benchmark datasets (Ahmed Gomaa et al., 2024).In antenna design research, a compact quadruple-band stacked oval patch
antenna was introduced, equipped with sunlight-shaped slots to support GNSS L1/L2/L5 and 2.3 GHz WiMAX bands. By
strategically exciting TM 110 and TM210 modes and fine-tuning the feed configuration, the design achieves right-hand circular
polarization, wide axial-ratio beamwidths, low return loss, and strong gain across all supported bands (Ahmed Gomaa et al.,
2022).To minimize the need for manual labeling in video surveillance, a semi-automated object detection framework was
proposed by integrating background subtraction with a modified YOLOv4 model. This method utilizes motion-based low-rank
decomposition and clustering to generate training labels directly from video frames. As a result, the system demonstrated
superior mAP performance on CDnet 2014 and UA-DETRAC datasets when compared to existing approaches (Ahmed Gomaa
et al., 2024).In disaster response applications, deep learning (DL) models were applied to remote sensing (RS) data for detecting
building damage caused by the Kumamoto earthquake in Mashiki, Japan. The model effectively classified damage levels—
ranging from no damage to total collapse—demonstrating the utility of DL-based RS analysis for rapid post-disaster evaluation
(Ahmed Gomaa et al., 2023).Furthermore, a tri-band stacked elliptical patch antenna was designed to operate at GNSS L1, L2,
and L5 frequencies. By leveraging TM110 and TM210 resonant modes and integrating features like an eye-shaped slot and
parasitic structures, the antenna offers improved beamwidth, polarization purity, and gain, while maintaining a simple and
efficient form factor (Ahmed Gomaa et al., 2023).Despite the significant advancements in Al-based plant disease detection,
several challenges remain. Chief among these is the limited real-world deployment of crop-specific, lightweight, and real-time
detection systems. Much of the existing literature remains constrained to controlled laboratory settings, with limited exploration
of field-based validation. This study aims to address this critical gap by leveraging the YOLOv8n framework in conjunction
with a Raspberry Pi 4 platform to implement and evaluate a cost-effective, real-time rice disease detection system under
authentic field conditions. The proposed system contributes to precision agriculture by enhancing early disease identification
and enabling timely decision-making, particularly in resource-limited farming communities.

Contribution

This study makes several key contributions to the development of real-time, cost-effective, and field deployable plant disease
detection systems, with a focus on rice cultivation. The primary contributions are outlined as follows:

3.1- Development of a Curated and Annotated Rice Disease Image Dataset:
We curated and refined an open-access rice plant disease image dataset sourced from Kaggle, selecting and annotating high-
quality images representative of real-world disease manifestations. The dataset encompasses multiple rice disease classes,
including Brown Spot, Leaf Blast, and Neck Blast, and was preprocessed and augmented to improve model generalizability
and resilience to variations in lighting, background, and image orientation. The dataset was structured and labeled in

accordance with the YOLO annotation format, enabling seamless integration with the YOLOvVS8n training pipeline.
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3.2-Training and Validation of a YOLOv8n-Based Model for Rice Disease Detection:
We employed the YOLOv8n (You Only Look Once version 8 nano) architecture—a lightweight, real-time object detection
framework optimized for embedded platforms—to detect and classify rice plant diseases from images. The model was trained
using the annotated dataset, and its performance was validated on a held-out test set. Hyperparameters were fine-tuned to
balance detection accuracy with computational efficiency. This model represents a crop-specific adaptation of the YOLOv8n

architecture, tailored to the unique challenges of rice disease detection Figure 1.

Figure 1:the structure of the system from image capture passing by YOLOvVS8n algorithm after training making deployment to the

algorithm for working in real life by raspberry pi 4

3.3- Deployment on Edge Hardware for Real-Time Field Application:
To evaluate the model's applicability in real-world agricultural environments, we deployed the trained YOLOv8n
model on a Raspberry Pi 4 a compact and affordable edge computing device—integrated with a high-resolution camera module
and a touchscreen interface. This hardware configuration was chosen to ensure portability, affordability, and user accessibility
for farmers in resource-limited settings. The system was designed to operate offline, providing real-time disease detection
without reliance on cloud computing infrastructure.

3.4- Comprehensive Evaluation Using Standard Performance Metrics:
The performance of the deployed system was assessed using widely accepted evaluation metrics, including F1 Score Figure 2 ,
and the Coefficient of Determination (R? Score),confidence and recall Figure 3,mean Average Precision (mAP@0.5) of 91.2%,
mAP@0.5:0.95 of 63.7% Figure 4,5,8,confusion matrix Figure 6 and confusion matrix normalize Figure 7, and an average
inference speed of 15.6 ms per image,precision . These metrics were employed to quantify the model's classification precision,

robustness against class imbalance, and overall predictive reliability. The results demonstrate the effectiveness of YOLOv8n
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in delivering fast and accurate disease diagnosis under field-relevant constraints.Through these contributions, this research

addresses the critical gap between controlled-environment validation and practical field deployment in agricultural Al

applications. By combining deep learning, edge computing, and user-centric design, the proposed system serves as a scalable

solution for early detection of rice diseases, ultimately contributing to improved crop management and yield protection.
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4. Materials and Methods

4.1- Data-set Acquisition

The dataset used in this study was collected from the Kaggle platform, a well-known repository for machine learning datasets.
It comprises high-resolution images of rice plants categorized into four distinct classes: Healthy, Brown Spot, Leaf Blast, and
Neck Blast Figure 9,10. These classes were selected based on their prevalence and agronomic significance in rice-producing
regions. The dataset was curated to ensure class balance and diversity in environmental conditions, leaf orientations, and

lighting variations , which are crucial for training a robust object detection model.
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4.2- Image Annotation and Preprocessing

Manual annotation of the dataset was performed using python code with vscode platform Figure 11, a widely used computer
vision annotation platform. Each image was carefully labeled with bounding boxes identifying regions affected by the
specified rice diseases. Annotations adhered to the YOLOVS format, ensuring compatibility with the Ultralytics YOLOvVS
training pipeline Figure 12. The labeling process emphasized precision to reduce noise and false positives during model
training. Preprocessing steps included image resizing, augmentation (rotation, flipping, brightness adjustment), and
normalization to enhance the model’s ability to generalize across different field conditions. The final dataset was exported
in YOLO-compatible format and integrated into a Python-based training environment developed in Visual Studio Code
(VSCode).
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Pseudocode for Training YOLOv8 Model

[ BE(fIN ]

BEGIN

INITIALIZATION
 Import libraries, Define datset 2for;
« Specify model hyperparameters, Séup
 Specify device for détect mis.

1. INITIALIZZATION:
- Define class names for rice disease categories:
CLASS_NAMES <« ['Brown_Spot', Healthy, Leaf_Blast'< 1.2]
- Define source directory-path (SOURCE_DIR
- Define target YOLOV8 -compatible directorpath YOLO_DIR
Set validation split ratio 0.2

+

¥

LOAD DATA
» Load datasets and apply preprocessing

2. PREPARE DIRECTORY STRUCTURE:
- FOR each folder IN ['images/t(('images/train', images/val,
labels/train, labels/val if no
- CREATE class_names to integrer llabels:
class_map <« {tclass_name: index FOR index, class_
name IN enumerate(CLASSNA)

¥

v

INITIALIZE MODEL
» Load pre-trained weights and djust model

¥

CONFIGURE TRAINING
» Define optimizer, scheduler, and losses

v

TRAIN MODEL
FOR each epoch:
- Train on batchnes
- Validate per epoch
- Record metrics

v

SAVE MODEL
Save best-performing weights

3. PROCESS AND ORGANIZE IMAGE DATA:
- FOR each class_name IN CLASS_NAMeS
- SET class_path < SOURCE_DIR/classs name
- RETRIEVE all image files with ext.]pg, png, jpeg
- RANDOMLY shuffle image list
- SPLIT the dataset into trainning and validation:
val_ings ¢« first 20% of shuffled images
- FOR each subset IN ['train’, 'Vall: EN sudet:
- SET each image using OpenCV
- IF image is unreadable
CONTINUE to next‘image
- GFT image YOLO-formate 1label with
class_id, x_center = 0.5, y_center
width = 1.0, height =1.0
- COPY image to YOLO_DIR/imag_es/subset/ ,oxt/- txt)
- WRIIE corresponding label file (,txt)
to YOLO_DIR/labels/subset/ubset/

v

¥

DEPLOY MODEL
Prepare for hardware inference

[ END ]

Figure 11: The Pseudo-code for Training YOLOv8n

Model

4.3- Model Architecture

4., GENERATE CONFIGURATION FILE:
CREATE 'rice:yaml' file in YOLO_DIR containing:
path:
train: images/train
val: images/val
nc: 4 ['Brown_S_Spot', 'Healthy', Leaf_Blast',
Neck_Blast']

FND

Figure 12:The Pseudo-code for Prepare the data-set for

YOLOV8n structure

The object detection model employed in this research is YOLOv8n (You Only Look Once version 8 nano) figure 13, a
lightweight convolutional neural network (CNN) architecture designed for real-time object detection tasks. YOLOv8n is part
of the Ultralytics YOLO family and is optimized for performance on resource-constrained devices, making it suitable for edge
deployment with raspberry pi figure 14. The model comprises a streamlined backbone, neck, and head architecture capable

of extracting multi-scale features and producing bounding box coordinates with corresponding class probabilities.
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Figure 13: YOLOv8n deployment with raspberry pi 4
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Figure 14: YOLOvS8n pipeline architecture
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5- Training Configuration

Model training was conducted using a GPU-enabled workstation to accelerate computation. The training configuration was
fine-tuned to optimize detection accuracy while maintaining computational efficiency Figure 13,14. Key parameters included
a batch size of 16, an input image resolution of 320 x 320 pixels, and a training duration of 30 epochs. The choice of image
size balanced the trade-off between detection resolution and training speed, while the batch size was selected based on the

available GPU memory. The Adam optimizer was used with a cosine learning rate scheduler, and data augmentation was

applied dynamically during training to prevent overfitting.

Figure 15 :this figure showing the rice image after training and before validating.
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Figure 16:this figure showing the rice image after validating.

6- Deployment Hardware and Environment

To enable real-time field deployment, the trained YOLOv8n model was ported to a Raspberry Pi 4—a low-cost, compact, and
energy-efficient single-board computer. The Raspberry Pi was equipped with an integrated camera module for image
acquisition and a 7-inch touchscreen interface for user interaction and output display. This embedded setup allows the system
to function autonomously in field conditions, providing farmers with on-device diagnostic capabilities without requiring
continuous internet access. The model inference pipeline was optimized using TensorRT and OpenCV to ensure low-latency

processing on the Raspberry Pi’s ARM-based architecture figure 17.
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Figure 17:this figure showing the architecture of raspberry pi 4 model B

7- Model Equations and Evaluation Metrics

7.1- YOLOVS Loss Function
The overall loss function used to train the YOLOVS object detection model is composed of three primary components:

Total Loss=Classification Loss+Localization Loss+ Objectness Loss
7.2- Classification Loss:
Measures the error in predicting the correct class label for each detected object.
7.3- Localization Loss:
Quantifies the difference between the predicted bounding box and the ground truth bounding box.
7.3- Objectness Loss:

Evaluates the confidence score associated with whether an object exists in the proposed bounding box.
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This multi-part loss function ensures that the model not only classifies diseases correctly but also

accurately localizes them within the image.

7.3.1- Accuracy

| ~ TP +TN
CCUracy =Tp ¥ TN + FP + FN

(1)

Where

TP (True Positive): Number of correctly identified positive cases (e.g., diseased leaves correctly

detected).

TN (True Negative): Number of correctly identified negative cases (e.g., healthy leaves correctly

ignored).

FP (False Positive): Number of incorrect positive predictions (e.g., healthy leaves incorrectly

labeled as diseased).

FN (False Negative): Number of missed positive cases (e.g., diseased leaves not detected).

Accuracy provides a general measure of the model’s performance across all classes.

7.3.2-F1 Score

Precision * Recall

(2)

A =2
ceuracy * Precision + Recall

Where:

.. TP . .. . . .
Precision = P Proportion of true positive detections among all positive predictions.

TP : . . .
: Proportion of true positive detections among all actual positives.

Recall = :
TP +FN

The F1 Score is the harmonic mean of precision and recall. It balances the trade-off between them,

especially useful when class distribution is imbalanced.
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7.3.3-Coefficient of Determination (R* Score)

X —)?

A Yo

(3)

Where:

y;: Actual value for the i*" data point.
y;: Predicted value for the i*" data point.
¥;: Mean of all actual values.

The R? Score measures how well the predicted values approximate the actual data. An R? value of indicates perfect
prediction, while a value closer to 0 suggests poor model performance. Here we are showing the hyperparameters of our

model in table 1

Table 1: showing the hyperparameters of our yolov8n model

Hyperparameter Description Typical Value (YOLOvS8n)
imgsz Input image size (height and width) 320
epochs INumber of training epochs 30
batch Batch size (based on GPU/CPU capacity) 16
learning_rate Learning rate 0.001
optimizer Regularization parameter to prevent AdamW
overfitting
weight decay Momentum for the optimizer 0.0005
momentum Learning rate for model biases during 0.937
'warmup '
warmup_epochs Learning rate for model biases during 30
'warmup '
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warmup_bias_Ir

Learning rate for model biases during

'YOLOVS)

0.1
warmup
box Box loss gain 0.05
cls Class loss gain 0.5
Distribution focal loss gain (used in
dfl 1.5

hsv_h, hsv_s, hsv v

HSV augmentation values for hue,

saturation, value changes

0.015,0.7,0.4

degrees, translate,

Data augmentation for rotation, translation,

epochs

0.0-0.5 range
scale, shear ete.
fliplr Probability of horizontal flip 0.5
mosaic, mixup Image augmentation techniques 1.0 (on/off)
) Early stopping if no improvement after n
patience 20

8- Benefits of the Proposed Approach

This research introduces a number of notable benefits that support the development of efficient and practical plant disease

detection systems suitable for agricultural use:

8.1- Efficient Model Designed for Resource-Constrained Devices

By utilizing the YOLOvVS8n architecture—a streamlined and efficient variant within the YOLO object detection family—the
system ensures low computational demand. This makes it well-suited for edge devices with limited processing capabilities,

such as the Raspberry Pi 4. The model achieves a favorable balance between speed and accuracy, eliminating the need for

high-performance computing resources during deployment.

8.2- High-Performance Real-Time Detection

The model offers rapid and accurate detection of rice diseases directly in the field. Real-time inference capabilities are crucial

for prompt decision-making in agricultural management. The system ensures immediate feedback, helping farmers take

timely action to control and mitigate disease spread.
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8.3- Low-Cost and Easily Deployable Hardware Solution

The implementation utilizes affordable hardware components, including the Raspberry Pi 4, camera, and touchscreen display,
making the system accessible and economically feasible for widespread agricultural deployment. This cost-effective design
also supports scalability, enabling the system to be extended to additional crops or regions with minimal additional

investment.

8.4- Customization for Rice Disease Classification

The system has been specifically trained to identify four key rice conditions—Healthy, Brown Spot, Leaf Blast, and Neck
Blast. This focused design enhances detection precision for rice-specific applications, making it more effective than general-

purpose models. Tailoring the system to a single crop improves reliability and practical utility in real farming environments.
8.4- comparison between our model and some baseline models

Table 2: showing the comparison between our model YOLOvV8n and some baseline models

Inference Edge
Architecture | Model Accuracy
Model Speed Deployment Notes
Type Size (MB) (mAP@0.5)
(FPS) Suitability
Our model Anchor-free, Best balance of
~6.2 MB | 50+ ~91% Excellent
YOLOvV8&n CNN-based accuracy and speed
Accurate, but
Anchor- )
YOLOvV5n ~7.5MB | 45+ ~88% Very Good | slightly slower and
based, CNN
larger
. Two-stage Fast but lower
YOLOvV4-tiny ~23 MB 60+ ~85% Good
CNN accuracy
Depthwise Lightweight, but
MobileNetV2 | Separable ~14MB | 35+ ~82% Good less precise for
CNN detection tasks
. Slower and less
Single-stage
SSD-Lite CNN ~17 MB 3040 ~80% Moderate accurate in small
object detection
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In essence, the proposed solution offers an accurate, efficient, and affordable tool for rice disease monitoring, supporting the

broader goal of precision agriculture and sustainable crop management.

9- Conclusion

This research confirms the practicality and effectiveness of using the YOLOv8n object detection model for real-time
identification of rice plant diseases, even when operating on low-cost, resource-limited hardware. By adopting a compact and
efficient neural network architecture, we successfully trained and deployed the model on a Raspberry Pi 4 with an integrated
camera and touchscreen interface, achieving reliable detection results across key rice disease categories.The study highlights
how deep learning techniques can be translated from experimental models into usable tools for agricultural practitioners. The
custom-labeled dataset supported precise training outcomes, enabling the model to perform well under real-world conditions
without requiring powerful computational infrastructure. Moreover, the deployment on an accessible and portable device
underscores the system’s potential to assist farmers in disease diagnosis and monitoring, particularly in regions with limited
technological access. The intuitive interface further supports ease of use, making it suitable for field-level application by non-

expert users.

10- Future Directions

The YOLOvS8n-based rice disease detection system has proven effective in delivering fast and accurate results; however, it
faces certain limitations. The Raspberry Pi 4 Model B’s limited processing power restricts performance, especially when
working with high-resolution images. Moreover, the model may produce false positives or negatives in challenging field
environments, such as poor lighting, occluded plant parts, or cluttered backgrounds. Variations in camera positioning, image
clarity, and disease development stages also influence detection accuracy. These issues highlight the need for system
enhancements, including more efficient hardware utilization, better post-processing, and training tailored to real-world

agricultural conditions.

To advance the system's effectiveness and adaptability, several improvements are planned. Increasing the diversity of the
dataset by incorporating images from different climates, rice types, and regions would help the model perform more reliably
across various scenarios. Enhancing the model’s ability to detect early and subtle disease symptoms—through image
enhancement, attention mechanisms, or combining traditional and deep learning techniques—would improve diagnostic
precision. Integrating drone-based aerial imaging could scale the system for broader field coverage, while adding IoT features
would support real-time monitoring, data sharing, and automated alerts. Together, these developments aim to create a smarter,

more responsive solution for precision agriculture and large-scale disease management.
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