

Suez Canal Engineering Energy and Environmental Science Journal

Faculty of Engineering - Suez Canal University

Year, Vol. 3, NO. 4, pages 80-88

Sustainable Soil Stabilization: Innovations, Environmentally Friendly Additives, and Future Perspectives

Mohamed Elshawadfy^{1*}, Abeer El Shahawy¹, Mai H. Shams ¹, Azza H. Moubarak¹

¹Department of Civil Engineering, Faculty of Engineering, Suez Canal University, PO Box 41522, Ismaili, Egypt

*Corresponding author: Mohamed Elshawadfy, Email address: <u>m.elshawadfy_pgs@eng.suez.edu.eg</u> DOI: 10.21608/sceee.2025.399796.1087

Article Info:

Article History:

Received: 01\07\2025 Accepted: 06\08\2025 Published: 30\10\2025

DOI: 10.21608/sceee.2025.399796.1087

Abstract

Soil stabilization plays a critical role in enhancing the mechanical properties of weak or expansive soils, thereby supporting infrastructure development. Conventional technologies, particularly cement and lime, have generated significant environmental concerns due to excessive energy consumption and carbon emissions. In response, sustainable soil stabilizing solutions using eco-friendly and waste-derived additives have attracted substantial attention. This review consolidates the latest advancements in sustainable soil stabilization, with a focus on the performance and mechanisms of various green additives, including agricultural wastes (e.g., rice husk ash, sugarcane bagasse ash), industrial by-products (e.g., fly ash, GGBFS, red mud), municipal solid waste derivatives (e.g., sewage sludge ash), and emerging materials such as recycled plastics and nano-additives. Key stabilization mechanisms, including pozzolanic reactions, microbialinduced calcite precipitation, and polymer bonding, are assessed alongside critical performance measures, including unconfined compressive strength (UCS), California Bearing Ratio (CBR), plasticity index, and permeability. Life cycle assessments reveal that sustainable additives can cut CO2 emissions by up to 50% compared to typical binders. Challenges related to material unpredictability, regulatory limitations, and environmental risks, such as leaching, are also explored. Innovations such as AI-driven design models, genetically modified microorganisms, and hybrid stabilizing systems are highlighted as potential avenues for future development. This study highlights the need for interdisciplinary research, standardization of testing methodologies, and legislative support to transition from conventional to sustainable stabilizing practices, paving the way for greener and more robust infrastructure.

Keywords: Sustainable Soil Stabilization; Eco-friendly binders; Waste-derived additives; Agricultural and industrial by-products; Recycled polymers and nanomaterials.

Suez Canal Engineering, Energy and Environmental Science Journal (2025), Vol. 3, No.4. Copyright © 2015 Mohamed Elshawadfy, Abeer El Shahawy, Mai H. Shams, Azza H. Moubarak. All rights reserved.

1. Introduction

The engineering performance of soils greatly determines the safety, lifespan, and cost-effectiveness of infrastructure systems. Soil stabilization, a procedure aimed at strengthening geotechnical qualities such as strength, compressibility, and durability, is crucial in the building of highways, embankments, and foundations. Traditionally, chemical stabilizers such as Portland cement and

lime have been extensively used to repair problematic soils, particularly clayey subgrades known for their extreme plasticity and tendency to shrink and swell. However, these materials are energy-intensive to create and contribute substantially to global carbon emissions, Cement production contributes to about 7-8% of worldwide CO2 emissions, highlighting the necessity for environmentally feasible alternatives in soil stabilization (Abed & Abbas, 2024; Andrew, 2018). In response to the constraints imposed by conventional approaches, geotechnical engineering has seen a growing interest in sustainable soil stabilization solutions. These approaches utilize environmentally friendly and often locally available waste-derived materials such as agricultural residues, industrial by-products, and municipal solid waste components not only to improve soil properties but also to mitigate ecological impact (Basha et al., 2005; Park & Kim; Wibowo et al., 2023). Moreover, developing technologies incorporating bio-based agents and nanomaterials offer new avenues for boosting and stabilizing efficiency while complying with circular economy principles (Bu et al., 2022; Cui et al., 2022a). In this review, "sustainable" refers to stabilization strategies that minimize ecological damage by leveraging waste valorization, local material reuse, carbon footprint reduction, and alignment with circular economy goals. It classifies eco-friendly additives based on their origin, explores their interaction mechanisms with soil matrices, evaluates performance metrics such as unconfined compressive strength (UCS), California Bearing Ratio (CBR), plasticity index, and permeability, and discusses their environmental and economic implications (Khan & Amin, 2022; Li et al., 2024). In addition, the study highlights recent technical advancements and examines the challenges and opportunities that will shape the future of this evolving profession.

2. Challenges in Stabilizing Clay Soils

Clay-rich soils pose considerable geotechnical issues due to their intrinsic physicochemical qualities, which hamper construction efforts and damage long-term structural integrity. These soils often exhibit strong plasticity, low shear strength, and high compressibility, making them prone to volumetric changes in response to fluctuations in moisture. This shrink-swell behaviour can result in cracking, ground displacement, and premature failure of foundations and pavements). Akbarimehr et al., 2019(This poses serious risks for infrastructures such as highways, airport runways, and pipeline corridors, which are especially susceptible to differential settlement. In addition, clay soils typically exhibit poor drainage and water retention capabilities due to their fine-grained structure, which results in saturation, increased pore pressure, and reduced bearing capacity under load (Isaac et al., 2003). The electrochemical interactions between clay particles and stabilizing chemicals further complicate treatment, demanding site-specific techniques and tailored additive compositions (Fazal E Jalal et al., 2020). Various variables, including clay mineralogy, organic content, initial moisture conditions, and external loading history, determine the field efficacy of stabilization procedures in clayey soils. These parameters affect how additives interact with soil matrices and determine the success of stabilization treatments (Yin et al., 2018). This variability in mineralogical composition, discussed further in Section 9.1, can significantly impact the reactivity and effectiveness of selected additives, especially in high-swelling clays like montmorillonite. For instance, high swelling clays, such as montmorillonite, require greater stabilizing reactions, often combining both chemical and mechanical methods, to achieve the appropriate durability and stiffness. Environmental challenges, such as freeze-thaw cycles and wetting-drying fluctuations, may further decrease the stabilizing efficacy over time. Therefore, materials selected for clay stabilization must not only improve immediate mechanical qualities but also provide resistance to environmental deterioration and leaching (Aparna, 2022; Kolias et al., 2005).

3. Overview of Soil Stabilization Techniques

Soil stabilization encompasses various techniques designed to improve the geotechnical properties of weak or unstable soils. These strategies aim to enhance key attributes, including strength, durability, compaction, and resistance to moisture-induced deterioration. Contemporary stabilizing techniques can be classified into mechanical, chemical, biological, and advanced synthetic or nanomaterial-based methods. A comparative overview of these major approaches including their mechanisms, applications, advantages, limitations, and sustainability aspects is presented in Table 1.

Table 1. Comparative summary of major soil stabilization techniques:

Technique	Mechanism	Typical Use	Advantages	Limitations	Sustainability Aspect
Mechanical	Compaction, particle interlock	Roads, shallow layers	Simple, cost-effective	Limited to shallow depth	Neutral
Chemical	Pozzolanic/hydration	Expansive clays, roads	High strength, widespread use	CO ₂ emissions from cement/lime	Low to Medium
Biological (MICP)	Calcite precipitation	Loose, sandy soils	Eco-friendly, improves cohesion	Costly, lab-scale mostly	High
Geosynthetic	Reinforcement	Slopes, pavements	Custom design, high tensile strength	Requires installation expertise	Neutral
Nano/Polymer	Microstructural modification	Most soils	Improves strength & water resistance	Expensive, compatibility issues	Variable

3.1 Mechanical Stabilization

Mechanical stabilization involves modifying the physical properties of soil without altering its chemical composition. This is typically achieved through compaction or mixing with granular substances, such as sand or gravel, to enhance particle interlock and load-bearing capacity. Mechanical methods are optimal for shallow applications, including road subbases and embankment fills, and are esteemed for their simplicity and cost-efficiency (Fondjo et al., 2021)

3.2 Chemical Stabilization

Chemical stabilization utilizes binders such as cement, lime, fly ash, or industrial by-products to enhance soil performance through pozzolanic or hydration processes. The interaction between stabilizers and soil particles generates cementitious compounds, such as calcium silicate hydrate (C-S-H), thereby improving strength and reducing flexibility. Cement-treated soils exhibit enhanced compressive strength and resistance to moisture fluctuations, while lime is particularly effective in treating clayey soils due to its cation exchange properties (Basha et al., 2005; Little, 1995).

3.3 Biological Stabilization

Biological stabilization, also known as bio-stabilization, utilizes natural or manufactured microbial processes to promote soil cohesiveness. Microbial-induced calcite precipitation (MICP) is the most studied technique, whereby ureolytic bacteria, such as Sporosarcina pasteurii, accelerate calcium carbonate production by binding soil particles and lowering permeability (DeJong et al., 2006). This approach has shown potential for sustainable applications but confronts limits in scalability and cost-effectiveness (Bu et al., 2022).

3.4 Geosynthetic Reinforcement

Geosynthetics such as geotextiles, geogrids, and geomembranes are applied to reinforce soil by boosting its tensile strength and minimizing deformation. These materials are particularly effective in applications involving slope stabilization, retaining structures, and pavement subgrades. They give instant strength increase and can be customized for certain stress conditions (Hamza et al., 2022; Saied et al., 2022).

3.5 Nano and Polymer-Based Techniques

Recent advancements in material science have enabled the use of nano-engineered additives and polymers for soil stabilization. Nano-silica, nano-clay, and nano-bentonite significantly alter the soil microstructure, resulting in enhanced strength, water resistance, and improved erosion management. Similarly, synthetic and bio-based polymers build films over soil particles, improving cohesion and reducing hydraulic conductivity (Hu et al., 2024; Kumar & Devi, 2023; Shahin et al., 2015). These technologies deliver high-performance solutions, but they frequently require accurate dosage and rigorous environmental compatibility assessments.

4. Factors Influencing Stabilization Effectiveness

These factors influence not only short-term performance but also the long-term resilience of treated soils. The electrochemical reactions between stabilizing chemicals and reactive soil particles, especially clays, are among the most crucial interactions. These processes are intrinsically intricate owing to disparities in soil mineralogy, surface charge properties, pH levels, and pore fluid composition. Cation exchange processes and the development of cementitious gels are significantly influenced by local ionic strength and the presence of competing species, such as organics or sulfates. Moreover, the thickness of the double layer around clay particles can vary significantly based on electrolyte content, thereby affecting flocculation and bonding behavior. Due to the considerable variability of these variables across different sites, localized testing and customized mix designs are necessary for dependable performance. Figure 1 presents a schematic overview of the principal influencing components and their interconnections, demonstrating how soil type, moisture conditions, additive properties, organic content, and environmental exposure collectively impact stabilization outcomes.

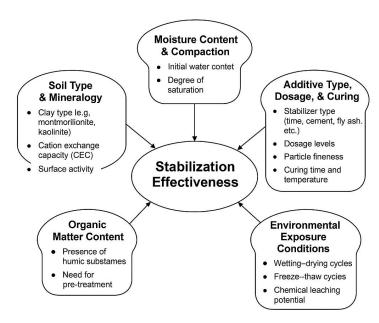


Figure 1: Key Factors Influencing Soil Stabilization Effectiveness Source: Researcher

4.1 Soil Type and Mineralogy

The mineralogical composition of the soil, particularly the presence of expansive clays such as montmorillonite, significantly affects stabilization outcomes. High cation exchange capacity (CEC) and surface activity in such clays increase interaction with chemical additives but may also lead to unpredictable swelling behaviour if not appropriately managed (Di Matteo et al., 2011; Fazal E Jalal et al., 2020). Conversely, kaolinitic clays often require smaller dosages due to their comparatively modest activity.

4.2 Moisture Content and Compaction

Initial moisture content affects both the workability of stabilized mixes and the onset of chemical processes such as pozzolanic bonding. Excess moisture dilutes stabilizers and decreases compaction, whereas inadequate moisture restricts ion mobility and slows reaction kinetics (Yin et al., 2018). The optimum moisture content must, therefore, be carefully assessed during mix formulation to ensure good binder-soil interaction.

4.3 Additive Type, Dosage, and Curing

Different stabilizers—such as lime, cement, fly ash, GGBFS, geopolymers, or enzymes—exhibit diverse reactivity profiles. Their efficacy depends on dosage levels, particle fineness, and cure time, as well as environmental factors (e.g., temperature, humidity). Under-dosing may result in suboptimal performance, while overdosing may increase expense and environmental risk without corresponding benefits (Abed & Abbas, 2024; Basha et al., 2005).

4.4 Organic Matter Content

Soils with high organic content pose stability issues since humic compounds can coat particles, interfering with ion exchange and cementation processes. In such circumstances, pre-treatment (e.g., oxidation or removal) or increased binder dosage is often essential (Gao et al., 2023).

4.5 Environmental Exposure Conditions

Field factors, such as wetting—drying cycles, freeze-thaw action, and chemical leaching, affect the durability of stabilized soils. Stabilizers must, therefore, be selected not just for immediate performance but also for resistance to environmental degradation. Research has shown that stabilizers utilizing industrial by-products often exhibit superior durability due to the formation of more complex and less soluble cementitious compounds (Hu et al., 2024; Kolias et al., 2005).

5. Sustainable Mechanisms and Additives

Waste from industrial and agricultural sources. These materials, which are frequently abundant in silicates, aluminates, or calcium-based compounds, provide performance comparable to conventional binders while minimizing environmental impact.

5.1 Stabilization Mechanisms

The efficacy of sustainable additives is mostly determined by the following:

- Pozzolanic reactions (e.g., $Ca(OH)_2 + SiO_2 \rightarrow calcium \ silicate \ hydrate)$
- Cation exchange and flocculation in clay minerals

How to Cite this Article:

- Polymer encapsulation involves the binding of particles by film-forming chemicals. These films reduce inter-particle spacing, form hydrophobic barriers, and significantly improve tensile strength while limiting water ingress and shrink-swell behavior.
- Microbial-induced calcite precipitation (MICP) as bio-stabilizers

Each mechanism influences the soil matrix variably, contingent upon the chemical characteristics of the additive and the inherent qualities of the soil (Bu et al., 2022; Dhami et al., 2013).

5.2 Agricultural Waste-Based Additives

Agricultural wastes, including rice husk ash (RHA), sugarcane bagasse ash, and maize cob ash, exhibit significant pozzolanic reactivity owing to their elevated silica concentration. RHA, whether utilized independently or in conjunction with lime or cement, improves strength and durability by generating supplementary calcium silicate hydrate (C-S-H) gels (Basha et al., 2005; Eksana Wibowo et al., 2023). These materials are economically plentiful and promote the circular economy. Annually, more than 100 million tons of rice husk and sugarcane residues are produced worldwide, rendering them a viable feedstock for sustainable soil remediation.

5.3 Industrial By-products

Fly ash (FA), ground granulated blast-furnace slag (GGBFS), red mud, and steel slag are extensively used as supplemental cementitious materials. Fly ash-lime systems exhibit extended strength development and reduced permeability owing to ongoing pozzolanic reactions throughout time (Fazal E. Jalal et al., 2020). GGBFS, when activated with alkali or lime, facilitates the formation of high-strength, low-leachability matrices (Abed & Abbas, 2024; Li et al., 2023).

5.4 Municipal Solid Waste Derivatives

Sewage sludge ash (SSA) and cremated waste ashes have recently attracted interest as stabilizers. Despite the presence of potentially hazardous materials in SSA, effective encapsulation and immobilization techniques, like vitrification or geopolymerization, can reduce associated hazards (Aparna, 2022).

5.5 Emerging Additives: Recycled Plastics and Nanomaterials

Polymers, such as polypropylene fibers and recycled polyethylene, have been effectively integrated into soil matrices to enhance tensile strength and improve crack resistance. Moreover, nanomaterials, specifically nano-silica, nano-clay, and nanobentonite, facilitate particle-level alterations in soil structure, markedly enhancing load-bearing capacity and water resistance (Rosales et al., 2020; Zhang et al., 2022).

6. Performance Evaluation of Sustainable Stabilizers

The efficacy of sustainable soil stabilizers is assessed using various geotechnical and durability performance metrics. Laboratory testing, microstructural characterization, and extended field monitoring all contribute to evaluating the engineering feasibility of these binders in comparison to traditional binders.

6.1 Strength Parameters

The unconfined compressive strength (UCS) test is the predominant metric for evaluating enhancements in soil strength. While ASTM D4318 and ASTM D5084 are used to evaluate plasticity and permeability, respectively, ASTM D2166 is commonly used to perform the UCS test. Research has shown that agricultural and industrial waste additives—such as rice husk ash, fly ash, and GGBFS—can markedly improve UCS values when utilized in conjunction with lime or cement (Abed & Abbas, 2024; Eksana Wibowo et al., 2023). Soils that are polymer-stabilized and nano-treated exhibit strength enhancements, frequently surpassing 100–300% compared to untreated controls (Hu et al., 2024; Liu et al., 2018). For instance, fly ash-lime mixtures have been shown to reduce CO₂ emissions by over 40% while achieving UCS values of up to 2 MPa, which is comparable to the strength of traditional cement-treated soils (Abed & Abbas, 2024; Li et al., 2024).

6.2 Plasticity and Compaction

Additive treatment often reduces the plasticity index (PI) by altering the behavior of the soil's clay content. This is especially pertinent in expansive soils, where the risk of swelling must be mitigated. The incorporation of fly ash and nano-clay has been demonstrated to markedly decrease the Plasticity Index (PI), thereby enhancing compaction properties and volumetric stability (Fazal E. Jalal et al., 2020; Rosales et al., 2020).

6.3 Permeability and Durability

Sustainable stabilizers also influence hydraulic characteristics. Certain additives, including biochar and polymer emulsions, diminish permeability by creating particle-binding membranes. Other materials, such as MICP or geopolymers, form dense microstructures that are resistant to chemical degradation and fluctuations in moisture (Bu et al., 2022; Dhami et al., 2013). Durability is frequently assessed via wetting—drying and freeze-thaw procedures that replicate field conditions. Additives derived from GGBFS, red mud, and hybrid binders generally surpass cement in their ability to withstand environmental degradation (Kolias et al., 2005).

6.4 Microstructural and Mineralogical Analysis

Scanning electron microscopy (SEM), X-ray diffraction (XRD), and energy-dispersive spectroscopy (EDS) elucidate the stabilization mechanism by detecting freshly synthesized cementitious chemicals. Treated soils typically exhibit enhanced crystallinity, reduced pore volume, and more compact particle packing, which are associated with increased strength and decreased leachability (Li et al., 2023).

7. Environmental and Economic Impacts

Even though many sustainable stabilizers could require pre-treatment or longer curing times, when evaluated over the course of the project, their cost-effectiveness becomes clear. Reduced use of binder, lower costs for raw materials, and longer-lasting treated subgrades are usually the sources of cost reductions. For instance, a hypothetical road stabilization project that uses geopolymer-based binders rather of traditional Portland cement would result in a 20–30% reduction in binder costs because of the reduced material consumption. Additionally, compared to conventional approaches, the entire life cycle cost of geopolymer-stabilized subgrades may be reduced by up to 40% over a 20-year period due to decreased maintenance frequency and greater durability (Abed & Abbas, 2024; Dhami et al., 2013). Incorporating such analyses highlights the tangible economic benefits of sustainable stabilization methods, further supporting their viability for widespread adoption.

7.1 Carbon Footprint Reduction

Conventional stabilizers, such as Portland cement and lime, are associated with significant CO₂ emissions resulting from calcination and energy-intensive production processes. Cement production accounts for roughly 7–8% of worldwide CO₂ emissions (Andrew, 2018). Conversely, industrial by-products such as fly ash, GGBFS, and red mud are either carbon-neutral or require minimal further processing, hence substantially reducing embodied emissions. Research indicates CO₂ reductions of 30–60% when traditional binders are replaced with waste-derived materials (Abed & Abbas, 2024; Li et al., 2023).

7.2 Waste Valorization and Circular Economy

The utilization of agricultural and industrial by-products in soil stabilization diverts substantial quantities of material from landfills, promoting a circular economy. For instance, rice husk ash and sugarcane bagasse ash repurpose biomass residues, while fly ash and steel slag repurpose otherwise problematic industrial waste (Basha et al., 2005; Rosales et al., 2020). This mitigates environmental liabilities and fosters waste-to-resource innovation.

7.3 Life Cycle Cost Savings

While many sustainable stabilizers may necessitate pre-treatment or extended curing durations, their cost-effectiveness is enhanced when assessed across the entire project life cycle. Cost savings result from reduced binder usage, lower raw material expenses, and increased durability of treated subgrades. Geopolymer-based binders frequently surpass cement in durability, potentially reducing maintenance frequency and related expenses (Abed & Abbas, 2024; Dhami et al., 2013).

7.4 Environmental Risk and Toxicity

Some waste-derived stabilizers, such as red mud or sewage sludge ash, may include salts or heavy metals that, if they leak, could endanger the environment. Therefore, before field application, comprehensive leachability assessments are crucial. According to recent research, stabilization methods such as vitrification and geopolymerization can successfully immobilize dangerous substances, greatly reducing the possibility of ecological damage. Through strong chemical bonding and encapsulation, pollutants are chemically bound within an aluminosilicate matrix by geopolymerization, which decreases mobility and leachability. Similar to this, vitrification physically encapsulates pollutants and stops their release into the environment by melting garbage and then solidifying it into a stable, glass-like structure. (Aparna, 2022; Li et al., 2023). Explaining these mechanisms reinforces the understanding of how environmental risks associated with waste-derived stabilizers can be effectively managed.

8. Technological Innovations and Research Directions

As the need for sustainable geotechnical solutions grows, innovative technologies are changing the soil stabilization environment. The effectiveness and predictability of stabilization treatments are being improved by developments in data-driven design, biotechnology, and material science. For these new solutions to reach their full potential, interdisciplinary cooperation is needed, combining knowledge from materials science, microbiology, geotechnical engineering, and artificial intelligence.

8.1 Bio-Based Stabilization and Genetic Engineering

Bio-stabilization techniques such as microbial-induced calcite precipitation (MICP) are evolving rapidly. Engineered microbial strains have been developed to enhance calcite yield, regulate precipitation rates, and operate under variable field conditions (Cui et al., 2022b; Dhami et al., 2013). For instance, genetically modified Sporosarcina pasteurii strains exhibiting enhanced urease activity are showing promise at laboratory and pilot-scale trials, demonstrating increased soil-binding efficiency. However, transitioning these bio-based approaches to large-scale field applications remains an active research area, requiring close collaboration between microbiologists, genetic engineers, and geotechnical specialists.

8.2 Nanotechnology Applications

Nanomaterials continue to gain traction due to their large surface area and reactivity. Advances in nano-silica, nano-alumina, and graphene-enhanced additives have led to significant improvements in soil strength, permeability, and erosion resistance. Current nanotechnology solutions have predominantly been demonstrated at lab-scale or small pilot projects, showing promising results in controlled conditions. To progress toward widespread field adoption, collaborative efforts between materials scientists and geotechnical engineers are critical, particularly to address challenges like scalability, cost-effectiveness, and environmental compatibility (Hu et al., 2024; Rosales et al., 2020).

8.3 Hybrid Stabilization Systems

Combining multiple additives such as lime with polymers or fly ash with nanomaterials, has yielded synergistic benefits. Hybrid systems are particularly advantageous, addressing multiple soil deficiencies simultaneously (e.g., low strength and high swelling) while improving durability in aggressive environments (Li et al., 2023). Such hybrid stabilization methods have successfully progressed beyond laboratory settings, with limited-scale field applications confirming their viability. Further interdisciplinary collaboration among chemists, civil engineers, and materials researchers is essential to refine hybrid systems and optimize their performance for larger-scale implementation.

8.4 Artificial Intelligence and Optimization

AI and machine learning (ML) are being applied to optimize stabilizer formulations, predict performance based on soil properties, and automate the mix design process. Models trained on large experimental datasets can rapidly recommend additive combinations and dosages tailored to specific geotechnical conditions (Eyo et al., 2022). Currently, AI-based methods are actively employed at pilot-project scales, with promising initial validation studies underway. To achieve reliable large-scale applicability, ongoing cooperation between data scientists, geotechnical engineers, and industry stakeholders is crucial to integrate diverse datasets and ensure practical usability.

8.5 Sustainability Assessment Tools

Life-cycle assessment (LCA), environmental product declarations (EPD), and carbon footprint modelling tools are increasingly used to quantify the environmental benefits of sustainable stabilization practices. These tools enable engineers to make informed decisions, not only based on performance but also on environmental metrics (Abed & Abbas, 2024; Andrew, 2018). Broader interdisciplinary coordination, involving environmental specialists, policy makers, and industry professionals, will further enhance their relevance and facilitate their integration into standardized project planning processes.

9. Challenges and Standardization Needs

Although sustainable soil stabilization has made encouraging strides, a number of practical, legal, and technological issues need to be resolved before these techniques may be extensively used in engineering practice. It is crucial to rank these issues in order of immediate impact and viability of solutions. The most urgent problems at the moment are material variability, the absence of established standards, environmental risk uncertainty, field implementation challenges, and regulatory obstacles. For applications to be safe and scalable, standardization of materials, testing procedures, and environmental assessment standards is still crucial.

9.1 Material Variability and Inconsistency

One of the primary challenges is the heterogeneity of waste-derived materials, including fly ash, rice husk ash, red mud, and sewage sludge ash. Their chemical and physical properties can vary significantly based on source, combustion process, and preprocessing methods (Aparna, 2022; Basha et al., 2005). This variability affects the reactivity, durability, and overall performance of the stabilized soil, resulting in uncertainties during field application.

9.2 Lack of Design Standards and Codification

Comprehensive guidelines for sustainable additives are scarce or nonexistent, whereas traditional stabilizers like cement and lime enjoy the advantages of well-established mix design techniques. For instance, international guidelines such as ASTM or Eurocode do not yet include standardized testing methods and design procedures for geopolymer binders (e.g., optimal alkaline activator ratios), bio-stabilization (e.g., standardized microbial viability tests, calcite yield measurements), or polymer-based stabilization (e.g., polymer dispersion and dosage standards). (Fazal E. Jalal et al., 2020; Kolias et al., 2005). Currently, most applications rely on empirical approaches and localized studies, underscoring an urgent need for developing universally recognized testing standards.

9.3 Environmental Risk Assessment

Some sustainable stabilizers pose environmental hazards because of heavy metals, salts, or volatile organic chemicals, even though they frequently use materials generated from waste. Standardized and comprehensive leaching evaluations are crucial, especially for materials like sewage sludge ash or red mud. Leachability techniques like EN 12457 and TCLP (Toxicity Characteristic Leaching Procedure) are currently not routinely used across investigations, which makes it challenging to benchmark safety standards and conduct comparative analysis. (Dhami et al., 2013; Li et al., 2023). Consistent assessment and secure field deployment can be achieved by standardizing environmental risk evaluation procedures.

9.4 Field Implementation and Long-Term Monitoring

While many sustainable stabilization methods show excellent laboratory-scale performance, limited validation exists from large-scale field applications. Scaling-up poses significant practical difficulties, including additive distribution uniformity, controlled curing conditions, and soil-behavior variability under real conditions (Abed & Abbas, 2024). To confirm real-world performance and guide future design standards, long-term monitoring systems that address durability elements like wetting-drying cycles, freeze-thaw impacts, and traffic-induced stress are desperately needed.

9.5 Regulatory and Institutional Barriers

The adoption of sustainable practices is severely slowed by institutional inertia and regulatory restrictions. Conventional materials are usually required by construction rules, which limits the use of substitutes even when they perform better technically or environmentally. Governments and trade associations could put in place particular incentives, including tax exemptions, funding for environmentally friendly building methods, or updated public procurement regulations that prioritize projects with less of an impact on the environment, to get beyond this obstacle. Regulatory frameworks that are updated to incorporate environmental performance criteria into project approval procedures can promote innovation and make sustainable stabilizing techniques more widely accepted (Andrew, 2018).

10. Conclusion

The increasing imperative to reduce environmental impacts in infrastructure development has catalysed substantial advancements in sustainable soil stabilization. This review has comprehensively analyzed various sustainable additives, including agricultural wastes, industrial by-products, municipal residues, and advanced materials such as nanocomposites and bio-stabilizers, as well as their mechanisms of action, performance metrics, and broader implications. Sustainable stabilizers demonstrate commendable performance across multiple geotechnical parameters, such as unconfined compressive strength, plasticity index, permeability, and long-term durability. In many instances, these materials compete with or surpass conventional binders, like cement and lime, while simultaneously delivering significant reductions in carbon emissions and promoting waste valorization. Nonetheless, widespread implementation faces substantial challenges, including material variability, insufficient field validation, regulatory inertia, and the absence of clearly defined design protocols. Moving forward, it is essential that future initiatives establish universal standards for testing and application, enhance understanding of long-term field behaviour through systematic monitoring, leverage AI-driven design tools to optimize additive combinations, and foster interdisciplinary research alongside public-private partnerships for effective technology transfer. Ultimately, the successful integration of sustainable soil stabilization hinges upon consistently aligning engineering efficacy with ecological responsibility, a principle that must guide decision-making at every stage of geotechnical infrastructure development. By overcoming existing technological, regulatory, and institutional hurdles, sustainable soil stabilization represents a viable, scalable pathway towards environmentally friendly and resilient infrastructure.

References

- Abed, M. H., & Abbas, I. S. (2024). Development and assessment of eco-and user-friendly geopolymeric stabilizers for sustainable soil improvement. *Cleaner Waste Systems*, *9*, 100170.
- Akbarimehr, D., Aflaki, E., & Eslami, A. (2019). Experimental investigation of the densification properties of clay soil mixes with tire waste. *Civil Engineering Journal*, 5(2), 363-372.
- Andrew, R. M. (2018). Global CO 2 emissions from cement production. Earth System Science Data, 10(1), 195-217.
- Aparna, R. (2022). Sewage sludge ash for soil stabilization: A review. Materials Today: Proceedings, 61, 392-399.
- Basha, E., Hashim, R., Mahmud, H., & Muntohar, A. (2005). Stabilization of residual soil with rice husk ash and cement. *Construction and Building Materials*, 19(6), 448-453.
- Bu, C., Lu, X., Zhu, D., Liu, L., Sun, Y., Wu, Q., Zhang, W., & Wei, Q. (2022). Soil improvement by microbially induced calcite precipitation (MICP): a review about mineralization mechanism, factors, and soil properties. *Arabian Journal of Geosciences*, 15(9), 863.
- Cui, M.-J., Lai, H.-J., Wu, S.-F., & Chu, J. (2022a). Comparison of soil improvement methods using crude soybean enzyme, bacterial enzyme or bacteria-induced carbonate precipitation. *Géotechnique*, 74(1), 18-26.
- Cui, M.-J., Lai, H.-J., Wu, S.-f., & Chu, J. (2022b). Comparison of Soil Improvement Methods using Crude Soybean Enzyme, Bacterial Enzyme or Bacteria Induced Carbonate Precipitation. *Géotechnique*.
- DeJong, J. T., Fritzges, M. B., & Nüsslein, K. (2006). Microbially induced cementation to control sand response to undrained shear. *Journal of geotechnical and geoenvironmental engineering*, 132(11), 1381-1392.
- Dhami, N., Reddy, M., & Mukherjee, M. (2013). Biomineralization of calcium carbonates and their engineered applications: a review. Front Microbiol 4: 1–13. In.
- Di Matteo, L., Bigotti, F., & Ricco, R. (2011). Compressibility of kaolinitic clay contaminated by ethanol-gasoline blends. *Journal of geotechnical and geoenvironmental engineering*, 137(9), 846-849.
- Eksana Wibowo, D., Ramadhan, D. A., ., E., & Prayuda, H. (2023). Soil stabilization using rice husk ash and cement for pavement subgrade materials. *Revista de la construcción*.
- Eyo, E. U., Abbey, S. J., & Booth, C. A. (2022). Strength predictive modelling of soils treated with calcium-based additives blended with eco-friendly pozzolans—A machine learning approach. *Materials*, *15*(13), 4575.
- Fondjo, A. A., Theron, E., & Ray, R. P. (2021). Stabilization of expansive soils using mechanical and chemical methods: a comprehensive review. *Civ Eng Archit*, 9(5), 1295-1308.

- Gao, H., Tao, H., Yang, Y., Che, Q., Tang, Q., & Gu, Y. (2023). Effect of humus on the solidification and stabilization of heavy metal contaminated river sediment. *International Journal of Environmental Research and Public Health*, 20(6), 4882.
- Hamza, M., Aziz, M., & Xiang, W. (2022). Strengthening of high plastic clays by geotextile reinforcement. Arab J Geosci 15: 805. In.
- Hu, J., Zhao, T., Jia, J., Guo, J., Yang, W., Dong, S., Li, Z., & Gao, T. (2024). Impact of Nano-SiO2 on the Compressive Strength of Geopolymer-Solidified Expansive Soil. *Buildings*, 14(10), 3123.
- Isaac, K. P., Biju, P., & Veeraragavan, A. (2003). Soil stabilization using bio-enzyme for rural roads. *Integrated development of rural an arterial road networks for socio-economic development, Delhi.*
- Jalal, F. E., Xu, Y., Jamhiri, B., & Memon, S. A. (2020). On the Recent Trends in Expansive Soil Stabilization Using Calcium-Based Stabilizer Materials (CSMs): A Comprehensive Review. Advances in Materials Science and Engineering, 2020, 1510969.
- Jalal, F. E., Xu, Y., Jamhiri, B., & Memon, S. A. (2020). On the Recent Trends in Expansive Soil Stabilization Using Calcium-Based Stabilizer Materials (CSMs): A Comprehensive Review. *Advances in Materials Science and Engineering*, 2020(1), 1510969
- Khan, M., & Amin, S. (2022). Effects of chemical stabilisation of eggshells-lime and fly-ash-cement on the structural strength of subgrade soil in rural roads. *Recent Progress in Materials*, 4(3).
- Kolias, S., Kasselouri-Rigopoulou, V., & Karahalios, A. (2005). Stabilisation of clayey soils with high calcium fly ash and cement. *Cement and concrete composites*, 27(2), 301-313.
- Kumar, A., & Devi, K. (2023). Application of Nanotechnology in Soil Stabilization. *Journal of Building Material Science Volume*, 5(02).
- Li, J., Shan, Y., Ni, P., Cui, J., Li, Y.-d., & Zhou, J. (2023). Mechanics, durability, and microstructure analysis of marine soil stabilized by an eco-friendly calcium carbide residue-activated coal gangue geopolymer. *Case Studies in Construction Materials*.
- Li, J., Shan, Y., Ni, P., Cui, J., Li, Y., & Zhou, J. (2024). Mechanics, durability, and microstructure analysis of marine soil stabilized by an eco-friendly calcium carbide residue-activated coal gangue geopolymer. *Case Studies in Construction Materials*, 20, e02687.
- Little, D. N. (1995). Stabilization of pavement subgrades and base courses with lime.
- Liu, J., Bai, Y., Song, Z., Lu, Y., Qian, W., & Kanungo, D. (2018). Evaluation of strength properties of sand modified with organic polymers. Polymers 10 (3): 287. In.
- Park, C., & Kim, E. J. Remediation of Arsenic and Heavy Metals and Soil Stabilization by Waste Chitosan based Biochar. *Journal of Korean Society of Environmental Engineers*, 46(8).
- Rosales, J., Agrela, F., Marcobal, J. R., Diaz-López, J. L., Cuenca-Moyano, G. M., Caballero, Á., & Cabrera, M. (2020). Use of nanomaterials in the stabilization of expansive soils into a road real-scale application. *Materials*, 13(14), 3058.
- Saied, M., Abu Zeid, M. M., & Abdel Naiem, M. A. (2022). Numerical study of the behaviour of embankment constructed over soft soil stabilized with ordinary and geosynthetic-reinforced stone columns. *JES. Journal of Engineering Sciences*, 50(4), 189-204.
- Shahin, S. S., Fayed, L., & Ahmad, E. H. (2015). Review of Nano additives in stabilization of Soil. Seventh international conference on nano technology in construction,
- Wibowo, D. E., Ramadhan, D. A., & Prayuda, H. (2023). Soil stabilization using rice husk ash and cement for pavement subgrade materials. *Revista de la construcción*, 22(1), 192-202.
- Yin, C., Zhang, W., Jiang, X., & Huang, Z. (2018). Effects of initial water content on microstructure and mechanical properties of lean clay soil stabilized by compound calcium-based stabilizer. *Materials*, 11(10), 1933.
- Zhang, J., Xu, W., Gao, P., Su, L., Kun, B., Yueyuan, L., & Bohan, Y. (2022). Integrity and crack resistance of hybrid polypropylene fiber reinforced cemented soil. *Journal of Engineered Fibers and Fabrics*, 17, 15589250211068428.