

Journal of Al-Azhar University Engineering Sector

JAUES JAUES

Vol. 20, No. 77, October 2025, 1363 - 1376

A COMPREHENSIVE REVIEW OF GEOPOLYMER PRODUCTS AS SUSTAINABLE MATERIALS FOR LEED CERTIFICATION COMPLIANCE

Mahmoud M. S. Elsebai

Department of Architecture, Faculty of Engineering, Al-Azhar University, Nacr City, 11884, cairo, Egypt

* Correspondence: mahmoud.mansour@azhar.edu.eg

Citation:

M. M. S. Elsebai" A Comprehensive Review of Geopolymer Products as Sustainable Materials for LEED Certification Compliance", Journal of Al-Azhar University Engineering Sector, vol. 20(77), pp. 1363-1376, 2025.

 Received:
 23 May 2025

 Revised:
 15 July 2025

 Accepted:
 20 August 2025

Doi: 10.21608/auej.2025.388454.1848

Copyright © 2025 by the authors. This article is an open access article distributed under the terms and conditions Creative Commons Attribution-Share Alike 4.0 International Public License (CC BY-SA 4.0)

ABSTRACT

Geopolymer binders made from alkali-activated aluminosilicate precursors such as fly ash and slag serve as technologically sound alternatives to Ordinary Portland Cement (OPC) in sustainable construction practices. These materials use industrial byproducts as main reactants to reduce landfill waste while avoiding the calcination emissions that occur during OPC manufacturing. Life-cycle assessments show geopolymerization systems reduce embodied energy by 60-70% and CO₂-equivalent emissions by 80-90% compared to OPC systems while delivering superior mechanical strength (≥70 MPa compressive strength) and chemical durability in sulfate/chloride environments and fire resistance (structural integrity retention >1200°C). Geopolymer systems have adjustable rheology and quick setting properties, which enable their use in advanced applications such as 3D-printed structural components and high-performance thermal insulation composites. The waste stream integration in these materials follows circular economy principles, which decreases abiotic resource consumption by 35-50% throughout the construction industry value chain. The industrial adoption of geopolymer materials encounters three main obstacles: the unpredictable nature of precursor materials, inconsistent curing methods and unclear regulations regarding long-term performance assessment. Geopolymers show substantial potential to meet requirements in three LEED v4.1 categories: by using waste valorization (MRc1-MRc3) to earn Material and Resources credits; by reducing production energy (EAc1) to earn Energy and Atmosphere credits; and by producing low VOC emissions (EQc4) to earn Indoor Environmental Quality credits. Future research should focus on three main areas: (i) machine learningoptimized mix designs for heterogeneous waste streams, (ii) accelerated carbonation testing frameworks for service life prediction, and (iii) international standard harmonization (ISO/ASTM) to promote global market penetration.

KEYWORDS: Geopolymer, LEED, Sustainable Construction Materials, Green Building, Environmental Sustainability, Construction Innovation.

مراجعة شاملة لمنتجات الجيوبوليمر كمواد مستدامة للامتثال لمتطلبات LEED

محمود منصور صالح السباعي

قسم العمارة، كلية الهندسة، جامعة الأزهر، مدينة نصر، ١١٨٨٤، القاهرة، مصر.

* البريد الالكتروني للبلحث الرئيسي: mahmoud.mansour@azhar.edu.eg

الملخص

تعد المواد الجيوبو ليمرية، التي يتم تصنيعها من مركبات الألومينو سيليكات (مثل الرماد المتطاير والخبث) والتي يتم تنشيطها باستخدام المركبات القلوية مثل هيدر وكسيد الصوديوم وسليكات الصوديوم ، بديلاً تقنياً يمكن استخدامه للاستعاضة عن استخدام الأسمنت البور تلاندي العادي (OPC) في تطبيقات البناء المستدامة ومن خلال انتاج الجيوبوليمر يمكن الاستفادة من مخلفات صناعة الحديد (خبث الحديد) ومن مخلفات محطات انتاج الطاقة الكهربائية من الفحم الحجري بدلا من ارسالها الى مدافن النفايات، بالاضافة الى أن تدوير هذه النفايات لانتاج اسمنت الجيوبوليمر سيؤدي الى الحد من انبعاثات ثاني اكسيد الكربون الناتج عن عمليات التكليس المرتبطة بإنتاج الأسمنت البور تلاندي العادى. فتؤكد تقييمات دورة الحياة أن الجيوبوليمر يقلل الطاقة اللازمة لانتاج الاسمنت بنسبة ٦٠-٧٠٪ واتبعاثات ثاني أكسيد الكربون المكافئة بنسبة ٨٠-٩٠٪ مقارنة بأنظمة الاسمنت البور تلاندي العادي، كما أنـه يظهر في الوقت نفسه قوة ميكانيكية فائقة (قوة ضغط ٧٠ ميجا باسكال)، ومتانة كيميائية في بيئات الكبريتات/الكلوريد، ومقاومة للحريق (الحفاظ على سلامة الهيكل > 1200 درجة مئوية). وتتميز أنظمة الجيوبوليمر بخصائص انسيابية قابلة للتعديل وخصائص سريعة التثبيت، مما يتيح استخدامها في التطبيقات المتقدمة مثل المكونات الهيكلية المطبوعة ثلاثية الأبعاد ومركبات العزل الحراري عالية الأداء. والأهم من ذلك، أن دمجها في تدفقات النفايات يتماشي مع مبادئ الاقتصاد الدائري، مما يقلل من استنزاف الموارد غير الحيوية بنسبة ٣٥-٠٠٪ في جميع مراحل سلسلة القيمة في صناعة البناء والتشبيد. على الرغم من هذه المزايا، يواجه الاعتماد الصناعي لمواد الجيوبوليمر ثلاث عقبات رئيسية: الطبيعة غير المتوقعة للمواد الخام المستخدمة في انتاج الجيوبوليمر، وطرق المعالجة غير القياسية، واللوائح غير الواضحة فيما يتعلق بتقييم الأداء على المدى الطويل. ومع ذلك، تُظهر الجيوبوليمرات إمكانات كبيرة لتلبية المتطلبات في ثلاث فئات من فئات LEED v4.1: باستخدام تثمين النفايات (MRc1-MRc3) لكسب اعتمادات المواد والموارد؛ ومن خلال تقليل طاقة الإنتاج (EAcl) لكسب اعتمادات الطاقة والغلاف الجوي؛ ومن خلال إنتاج انبعاثات منخفضة من المركبات العضوية المتطايرة (EQc4) لكسب اعتمادات جودة البيئة الداخلية. وينبغي أن تركز الأبحاث المستقبلية على ثلاثة مجالات رئيسية: (١) تصميمات الخلط المحسنة بالتعلم الآلي لتدفقات النفايات غير المتجانسة، (٢) أطر اختبار الكربنة المعجّل للتنبؤ بعمر التشغيل، (٣) تنسيق المعابير الدولية (ISO/ASTM) لتعزيز اختراق السوق العالمية

الكلمات المفتاحية: الجيوبوليمر؛ LEED؛ مواد البناء المستدامة؛ المبانى الخضراء؛ الاستدامة البينية؛ الابتكار في البناء.

1. INTRODUCTION

The accelerating climate crisis, exacerbated by anthropogenic greenhouse gas (GHG) emissions surpassing 59 gigatonnes of carbon dioxide equivalent (GtCO₂-eq) annually [1], necessitates immediate, sector-specific mitigation interventions. The construction sector constitutes a critical intervention nexus, responsible for approximately 39% of global energy- and process-related CO₂ emissions [2]. Within this sector, Ordinary Portland Cement (OPC) production represents a disproportionately carbon-intensive activity, contributing 5–9% of total anthropogenic CO₂ emissions [3]. This significant carbon footprint arises from two primary emission pathways inherent to conventional OPC manufacturing: (i) the calcination of limestone (CaCO₃ \rightarrow CaO + CO₂), which accounts for 50–60% of direct process emissions [4], and (ii) the combustion of fossil fuels required to achieve high-temperature clinkering (1400–1500°C) in rotary kilns, contributing 40–50% of the sector's energy-related emissions [3].

The decarbonization of cement production necessitates multipronged approaches. Current mitigation strategies include clinker substitution with supplementary cementitious materials (SCMs) such as fly ash or slag, which can reduce CO₂ emissions by 312 million tons annually at global substitution rates of 34.5% [5]. However, the long-term sustainability of this approach is constrained by the declining availability of high-quality SCMs due to coal phase-out policies [6]. Consequently, advanced material solutions like geopolymer concrete—synthesized through alkali activation of aluminosilicate precursors (e.g., fly ash, metakaolin, slag)—have emerged as technologically viable alternatives to OPC [7].

Geopolymers demonstrate compelling environmental advantages: life cycle assessments confirm 40–60% lower CO₂ emissions and 30–50% reduced energy demand compared to OPC systems [8]. This stems from their avoidance of limestone calcination, utilization of industrial byproducts (diverting 800 million tons of ash/slag from landfills annually [9]), and lower processing temperatures (60–80°C) [10]. Beyond carbon mitigation, geopolymers exhibit

superior mechanical durability (compressive strengths up to 100 MPa), chemical resistance, and fire stability (service temperatures >1200°C) [11]. Their tunable rheology enables advanced applications including 3D-printed structural elements and thermal insulation systems [12].

This study investigates geopolymer concrete's potential to advance sustainable construction practices, with specific focus on its alignment with the Leadership in Energy and Environmental Design (LEED v4.1) certification framework. We evaluate how geopolymer properties contribute to credits across multiple LEED categories, including Materials & Resources (recycled content, material reuse), Sustainable Sites (heat island reduction), and Indoor Environmental Quality (low-emitting materials) [13].

2. METHODS

2.1. LEED and Sustainable Construction

The Leadership in Energy and Environmental Design (LEED) certification system, administered by the U.S. Green Building Council (USGBC), has fundamentally reconfigured sustainability paradigms within the global construction industry since its inception in 1998 [14]. By establishing quantifiable performance benchmarks across six environmental domains (Section 2.2), LEED provides a standardized framework that incentivizes resource efficiency through third-party verification and market recognition [15]. Empirical studies confirm its catalytic effect: LEED-certified buildings demonstrate 25–30% reduced energy consumption and 11% lower operational costs compared to conventional structures [16].

2.2. Foundational Principles of the LEED Certification System

LEED v4.1 operationalizes sustainability through six performance categories, each comprising prerequisite standards and credit-based achievement pathways [17]:

- Sustainable Sites (SS) prioritizes the minimization of built-environment impacts through strategic site selection that avoids ecologically sensitive areas (e.g., floodplains, habitats of endangered species), comprehensive stormwater management utilizing low-impact development techniques such as bioswales and permeable pavements, and urban heat island mitigation via reflective surfaces and vegetated roofs [18]. This category mandates that projects achieve at least a 40% reduction in impervious surfaces compared to conventional development [19].
- Water Efficiency (WE) This category focuses on saving water, achieved through the use and integration of low water demand materials during building construction as well as the implementation of rainwater harvesting and water reuse systems [20].
- Energy and Atmosphere (EA) establishes rigorous energy optimization requirements, mandating demonstrated whole-building energy savings of ≥10% above ASHRAE 90.1-2016 baselines, integration of on-site renewable energy systems (e.g., photovoltaics, geothermal heat pumps) supplying ≥5% of total consumption, and refrigerant management protocols that reduce ozone depletion potential by eliminating chlorofluorocarbon-based systems [21]. Enhanced commissioning and ongoing energy performance monitoring are compulsory for credit achievement [22].
- Materials and Resources (MR) advances circular economy objectives by requiring minimum thresholds of recycled content (10–20% by material cost), regional material sourcing within 500 km (30% of total materials), construction waste diversion from landfills (≥50% by weight), and life-cycle assessment verification demonstrating ≥10% reduction in global warming potential compared to conventional designs [23]. Material ingredient disclosure via Health Product Declarations is mandatory for transparency [24].
- Indoor Environmental Quality (IEQ) ensures occupant health through multi-parameter controls: ventilation systems must meet or exceed ASHRAE 62.1-2016 outdoor air delivery rates, low-emitting materials (VOC content < 50 g/L) are required for all interior surfaces, daylight autonomy must cover ≥55% of regularly occupied spaces, and thermal comfort compliance requires ±0.5 PMV-PPD alignment with ASHRAE 55-2017 standards [25].

• Innovation (IN) and Regional Priority (RP) provide supplementary pathways for exemplary performance beyond base requirements. The Innovation category awards points for novel sustainability strategies not addressed in existing credits (e.g., blockchain-enabled energy tracking), while Regional Priority addresses geographically specific environmental challenges through localized solutions such as desert water harvesting or hurricane-resilient structural systems [26].

Fig. 1. LEED Credit Categories.

3. RESULTS

A comprehensive review of existing literature on geopolymers reveals several key sustainability features of this emerging material:

3.1. Geopolymers: As a Sustainable Alternative

Compared to Portland cement, geopolymers offer a significant reduction in CO2 emissions during production. This is due to the lower energy requirements and the use of industrial byproducts as raw materials [27].

3.2. Properties and Advantages

Geopolymers exhibit several desirable properties, including high early strength, durability, and fire resistance. These properties make them suitable for various construction applications, from structural elements to precast components [28].

4. ENVIRONMENTAL BENEFITS OF GEOPOLYMERS: FROM THE LEED PERSPECTIVE

Geopolymers' unique properties and production processes offer significant environmental benefits that align with the principles of Leadership in Energy and Environmental Design (LEED) certification.

4.1 Carbon Footprint Mitigation

The carbon dioxide emissions intrinsic to geopolymer production are reduced by 67–83% versus OPC systems (0.18–0.25 t CO₂-eq/tonne vs. 0.85–1.10 t CO₂-eq/tonne) due to avoided limestone calcination and lower processing temperatures (60–90°C vs. 1450°C) [29]. Hybrid fly ash/slag formulations further enhance this profile through optimized reaction kinetics, achieving compressive strengths exceeding 70 MPa while maintaining global warming potentials below 0.30 t CO₂-eq/m³ [30]. This positions geopolymers as strategic materials for achieving **Materials and Resources (MR) Credit 1: Building Life-Cycle Impact Reduction** through whole-building lifecycle assessment optimization [31].

Thermally modified geopolymers exhibit thermal conductivities of 0.08–0.15 W/m·K [32], enabling their deployment as passive insulation systems that reduce building HVAC energy demand by 12–18% in temperate climates [33]. This operational energy savings directly supports compliance with **Energy and Atmosphere (EA) Credit 1: Optimize Energy Performance** when integrated into building envelopes [34].

4.2 Resource Circularity

Geopolymer synthesis achieves **38–52%** water reduction versus OPC production through optimized alkali-activator chemistry requiring water/binder ratios of 0.22–0.28 [35], satisfying thresholds for Water Efficiency (WE) Credit 2: Indoor Water Use Reduction in industrial processes [36]. The incorporation of secondary raw materials (fly ash: 60–100%, slag: 15–40%, red mud: 5–20%) [37] diverts 2.8–4.3 tons of industrial waste per tonne of binder produced [38], exceeding the 30% recycled content threshold for **MR Credit 4: Recycled Content** [39].

4.3 Indoor Environmental Quality Enhancement

Geopolymer matrices emit **71–89%** fewer total volatile organic compounds (TVOC < 200 μ g/m³ at 28 days) than OPC control samples when tested per ISO 16000-9 protocols [40], with formaldehyde emissions consistently below CDPH Standard v1.2 thresholds of 9 μ g/m³ [41]. Their microporous structure (median pore diameter: 8–12 nm) further regulates relative humidity through capillary condensation mechanisms [42], supporting compliance with **Indoor Environmental Quality (EQ) Credit2: Low-Emitting Materials** [43].

4.4 Service Life Extension

Accelerated durability testing reveals geopolymers exhibit chloride diffusion coefficients below 0.35×10^{-12} m²/s [44] and carbonation rates under 0.1 mm/year^{0.5} [45], extending structural service life by 40–60 years versus OPC systems [46]. This reduces material replacement frequency, directly aligning with **Sustainable Sites** (SS) Credit 5.2: Building Life-Cycle Impact Reduction through minimized maintenance interventions [47].

4.5 Resilient Infrastructure Applications

Field demonstrations of geopolymer concretes in municipal wastewater systems show mass loss below 0.05% after 24-month acid exposure (pH 2) [48], while bridge girders exhibit negligible corrosion current densities ($<0.1~\mu\text{A/cm}^2$) after 5-year coastal deployment [49]. Such performance validates their application in **Innovation (ID) Credit 1** through infrastructure resilience enhancement [50]. Their closed-loop material flow (95% byproduct utilization) further operationalizes circular economy principles within **MR Credit 5: Regional Materials** frameworks [51].

Table 1 shows the benefits of Geopolymers' advantages across LEED credit categories.

Table 1: Geopolymers' advantages across LEED credit categories.

Parameter	OPC Concrete	Geopolymer Concrete	Change	LEED Credit Alignment
Global	0.85-1.10 t CO ₂ -	0.18-0.25 t CO ₂ -	67-83% Reduction	MR Credit 1
Warming	eq/tonne [29]	eq/tonne [29]		
Potential				
Water	0.35-0.45 m ³ /tonne	0.22-0.28 m³/tonne	38-52% Reduction	WE Credit 2
Consumption		[35]		
Recycled	5-15% [37]	60-100% [37]	400-600% Increase	MR Credit 4
Content				
VOC	450-600 μg/m³ [40]	50-150 μg/m³ [40]	71-89% Reduction	EQ Credit 2
Emissions				
Service Life	40-50 years [46]	60-90 years [46]	50-80% Increase	SS Credit 5.2

5. LEED CATEGORIES AND GEOPOLYMER CONTRIBUTIONS

Geopolymers can contribute to various LEED credit Categories, include:

5.1 Sustainable Sites (SS) Credit 1: Heat Island Reduction

The solar reflectance of both geopolymer concrete and Ordinary Portland Cement (OPC) concrete is not a fixed value but depends heavily on the color and composition of their constituent materials, particularly the primary binder.

Ordinary Portland Cement (OPC) Concrete

Standard OPC concrete made with typical gray cement has a moderate solar reflectance (albedo). Fresh concrete typically has an albedo between 0.35 and 0.40. After weathering and exposure, the albedo generally ranges from 0.25 to 0.40 [52].

The single most important factor influencing the solar reflectance of OPC concrete is the color of the cement itself, followed by the color of the supplementary materials and aggregates [53]. Using white Portland cement and light-colored aggregates can significantly increase this value.

Geopolymer Concrete

The solar reflectance of geopolymer concrete is determined by its aluminosilicate source material, which is often an industrial by-product like fly ash or slag.

Fly Ash-Based: Many common sources of fly ash (especially Class F) are dark gray or black. Consequently, research has found that concretes made with dark gray fly ash exhibit some of the lowest solar reflectance values [53]. Therefore, geopolymer concrete made from this type of fly ash will generally have a lower solar reflectance than standard OPC concrete.

Slag-Based: Ground granulated blast-furnace slag (GGBS) is a common alternative precursor for geopolymer concrete [54]. Since GGBS is typically off-white or light gray, geopolymer concrete made with a high percentage of slag will be much lighter in color. Following the principle that the binder's color is the dominant factor [53], these lighter-colored slag-based geopolymers can have a solar reflectance comparable to or even higher than standard OPC concrete.

5.2 Water Efficiency (WE) Credit 2: Water Use Reduction

Alkali-activated geopolymer synthesis achieves 28–45% water reduction versus OPC concrete production [55], primarily through dry-mix methodologies requiring only 0.20–0.25 water/binder ratios [56]. This conservation stems from the absence of hydration reactions, relying instead on dissolution-polycondensation mechanisms [57]. Such reductions align with WE Credit 2's baseline reduction requirements when implementing optimized mix designs [58].

5.3 Energy and Atmosphere (EA) Credit 1: Optimized Energy Performance

Geopolymer deployment reduces operational energy demand through their thermal mass properties (specific heat capacity: 0.98–1.05 kJ/kg·K [59]), lowering HVAC loads by 8–12% in climate zones 2–4 [60]. More significantly, their 62–85% lower embodied energy (1.1–1.8 GJ/tonne vs. OPC's 4.0–5.5 GJ/tonne) [61] contributes to whole-building lifecycle assessment compliance under EA Credit 1 [62].

5.4 Materials and Resources (MR) Credits

- MR Credit 4: Recycled Content: Geopolymers incorporate 60–100% post-industrial recycled materials (e.g., fly ash, slag), exceeding LEED's threshold for 30% recycled content valuation [63].
- MR Credit 5: Regional Materials: Locally sourced aluminosilicate precursors (<160 km) reduce transportation emissions by 18–33%, qualifying for regional material credits [64].
- MR Credit 2: Construction Waste Management: Geopolymer precast elements demonstrate near-zero waste generation (≤2% landfill diversion) versus cast-in-place concrete (8–12% waste), facilitating waste diversion credits [65].

5.5 Indoor Environmental Quality (EQ) Credits

- EQ Credit 4.1: Low-Emitting Materials: Geopolymers emit 67–89% fewer total VOCs (≤50 μg/m³) than OPC concretes when tested per ASTM D5116, complying with CDPH Standard v1.2 thresholds [66].
- **EQ Credit 1: Enhanced Durability**: With chloride diffusion coefficients ≤0.3×10⁻¹² m²/s and acid resistance exceeding 95% mass retention after 360-day exposure [67], geopolymers reduce maintenance-associated indoor pollutants by minimizing material degradation cycles [68].

5.6 Innovation (ID) Credit 1

Geopolymer implementation satisfies ID Credit requirements through: a) Novel CO₂ mineralization during curing (5–8% carbon sequestration by mass) [69]. b) Pilot projects demonstrating 40–60% lifecycle cost reductions [70]. c) Third-party verified EPDs documenting 76% lower GWP [71].

6. Case Study: The University of Queensland's Global Change Institute (GCI)

6.1. Project Details [72].

Location:

Brisbane, Australia

Owner:

The University of

Queensland

Architecture & Interior

Design:

HASSELL

Building Program:

Educational

Area:

3865 m²

Year:

2013

The GCI building was awarded the Green Building Council of Australia's 6 Star Green Star rating and ranked 34th in the world's 50 most impressive environmentally friendly university buildings.

Awards

The Global Change Institute building has won multiple awards for its innovation in sustainability. Major Awards to Date:

- 2016 WSP Parsons Brinckerhoff Award for Best Sustainable Development.
- 2015 Queensland State Awards. Harry Marks Award for Sustainable Architecture
- 2014 World Architecture News Sustainability Awards Winner Public Buildings and Urban Design
- 2013 BPN Sustainability Awards Winner Innovation of the Year (Geopolymer Suspended Concrete Floor Panels Product Award)

The University of Queensland's Global Change Institute (GCI) stands as a pioneering example of the application of geopolymer concrete in a large-scale, public building in addition to comply with more LEED credits through its innovative design. This innovative project marks a significant stride towards sustainable construction practices.

6.2. Key Applications

- **Structural Concrete**: The GCI building was the Australia's first to utilize geopolymer concrete for structural purposes, specifically in precast floor panels. These panels form the three suspended floors of the building, demonstrating the material's structural integrity and suitability for large-scale applications [73].
- Sustainability Focus: Geopolymer concrete offers a lower carbon footprint compared to traditional Portland cement concrete, making it a more environmentally friendly option [73].
- **Innovative Design**: The project necessitated close collaboration between architects, engineers, and the geopolymer concrete producer, Wagners. The precast floor panels were designed to not only meet structural requirements but also contribute to the building's thermal performance and aesthetic appeal [73].
- Overcoming Challenges: Implementing geopolymer concrete in a building of this scale presented unique challenges. Extensive testing and research were conducted to ensure the material's performance met the required standards [73].

6.3. Benefits of Using Geopolymer Concrete

- Reduced Carbon Footprint: Geopolymer concrete used in the Global Change Institute (GCI) building at the University of Queensland demonstrated a significant reduction in embodied carbon—up to 80% less than conventional Portland cement concrete. This was achieved by using a proprietary geopolymer mix composed entirely of industrial byproducts such as fly ash, with no Portland cement.
- Improved Thermal Performance: The precast geopolymer floor panels used in the GCI building contributed to enhanced thermal mass and insulation, helping regulate indoor temperatures and reduce HVAC loads. Structural testing confirmed that the panels had thermal and mechanical properties comparable to or better than traditional concrete.
- Innovation and Leadership: The GCI project was the first multi-storey building in Australia to use structural geopolymer concrete, setting a precedent for sustainable construction. It served as a living laboratory for low-carbon materials and was recognized with multiple sustainability awards.

In essence, the GCI building showcased the feasibility and benefits of using geopolymer concrete in a real-world, large-scale project. It represents a significant milestone in the development and application of this sustainable material.

7. CHALLENGES AND FUTURE RESEARCH

Although Geopolymers offer several advantages over OPC, including lower CO2 emissions, reduced energy consumption, and the utilization of industrial by-products such as fly ash and slag [74]. These materials not only help in waste management but also enhance the mechanical properties and durability of the resulting concrete. For instance, geopolymer concrete exhibits higher strength, better temperature stability, and improved resistance to chemicals compared to OPC [75].

7.1. Challenges in Adoption

Despite the numerous benefits, the adoption of geopolymers faces several challenges:

- Raw Material Availability: The availability of raw materials like fly ash and slag is geographically limited, affecting the feasibility of large-scale adoption. Additionally, the supply of sodium hydroxide, a key activator, is insufficient to meet global demand, limiting the replacement of OPC to approximately 7% [76].
- **Durability Concerns**: The long-term durability of geopolymer concrete, especially under aggressive environmental conditions, is not well-documented. Studies have shown that

while geopolymer concrete can perform better than OPC in some cases, the influence of factors like calcium content and curing conditions needs further investigation [77].

- Cost and Environmental Impact: The cost of producing geopolymer concrete can vary significantly depending on the source and transportation of raw materials. While some studies indicate a potential reduction in greenhouse gas emissions, the financial costs can be higher compared to OPC [78].
- **Technical Challenges**: The high alkaline content required for geopolymer synthesis and the need for elevated temperature curing are significant technical barriers. These factors complicate the production process and limit the widespread use of geopolymers in the construction industry [79].

7.2. Future Research Directions

To address these challenges and promote the adoption of geopolymers, future research should focus on the following areas:

- Material Optimization: Research should aim to optimize the mix design and curing methods to enhance the mechanical properties and durability of geopolymer concrete. This includes exploring alternative activators and reducing the reliance on high alkaline content.
- Long-term Durability Studies: Comprehensive studies on the long-term performance of geopolymer concrete under various environmental conditions are essential. This includes investigating the effects of carbonation, acid corrosion, sulfate attack, and freezethaw cycles.
- Cost Reduction Strategies: Developing cost-effective production methods and identifying alternative raw materials can help reduce the financial barriers to adoption. This includes exploring the use of locally available industrial by-products and reducing the dependency on sodium hydroxide.
- Environmental Impact Assessment: Conducting detailed life-cycle assessments to evaluate the environmental impacts of geopolymer concrete production and identifying ways to minimize negative effects such as abiotic depletion and ecotoxicity.
- **Regulatory Framework**: Establishing standardized guidelines and regulatory frameworks for the use of geopolymer concrete in construction can facilitate its adoption. This includes developing design templates and performance criteria.

In summary, addressing these challenges, handling and processing, material consistency, and cost-effectiveness—will be essential for geopolymers to fulfill their potential as a sustainable material.

CONCLUSIONS

Geopolymers represent a promising sustainable alternative for construction materials, demonstrating significant alignment with Leadership in Energy and Environmental Design (LEED) certification frameworks. Their environmental advantages—including substantial reductions in carbon emissions, conservation of natural resources, and enhanced durability—position geopolymers as critical enablers of resilient and ecologically responsible infrastructure development.

Primary among these benefits is the material's capacity to reduce CO₂ emissions by 40-70% compared to Ordinary Portland Cement (OPC), directly addressing the construction sector's environmental footprint while advancing sustainable material practices.

Beyond emissions mitigation, geopolymers exhibit superior mechanical and performance characteristics, including high early-age compressive strength (>40 MPa at 24 hours), exceptional durability in aggressive environments, and fire resistance exceeding 1200°C. These properties collectively enhance structural longevity and safety, enabling infrastructure that surpasses conventional performance benchmarks.

Critically, geopolymer implementation contributes directly to LEED certification through:

- Materials & Resources (MR) credits via industrial byproduct utilization (e.g., fly ash, slag).
- Energy & Atmosphere (EA) credits through reduced embodied energy (1.1 1.8 GJ/tonne vs. OPC's 4.0-5.5 GJ/tonne).

As material innovation and standardization efforts advance, geopolymers are poised to accelerate the construction industry's transition toward carbon-neutral building practices.

CONFLICT OF INTEREST

The authors have no financial interest to declare in relation to the content of this article.

REFERENCES

- [1]. Intergovernmental Panel on Climate Change (IPCC). Climate Change 2022: Mitigation of Climate Change. Contribution of Working Group III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Shukla, P.R., et al. (eds.)]. Cambridge University Press, Cambridge, UK and New York, NY, USA. 2022.
- [2]. Global Alliance for Buildings and Construction (GlobalABC), International Energy Agency (IEA), United Nations Environment Programme (UNEP). 2022 Global Status Report for Buildings and Construction. UNEP, Nairobi. 2022.
- [3]. International Energy Agency (IEA). Cement. IEA, Paris. 2022 (Updated September 2023).
- [4]. Andrew, Robbie M. Global CO₂ emissions from cement production, 1928–2018. Earth System Science Data 2019;11(4):1675–1710.
- [5] G. Habert et al. "Environmental impacts and decarbonization strategies in the cement and concrete industries." Nature Reviews Earth & Environment 2020;1(11):559-573.
- [6] S.A. Miller et al. "Carbon dioxide reduction potential in the global cement industry by 2050." Cement and Concrete Research 2018;114:115-124.
- [7] J. Davidovits. Geopolymer Chemistry and Applications, 5th ed. Institut Géopolymère, 2020.
- [8] T. Luukkonen et al. "Life Cycle Assessment of Geopolymer Concrete: A Review." Construction and Building Materials 2021;307:124998.
- [9] M. Weil et al. "Geopolymers as Sustainable Substitutes for Portland Cement." Journal of Industrial Ecology 2019;23(1):196-213.
- [10] J.L. Provis & J.S.J. van Deventer. Geopolymers: Structures, Processing, Properties and Industrial Applications. Woodhead Publishing, 2009.
- [11] P. Duxson et al. "Thermal evolution of metakaolin geopolymers." Journal of Materials Science 2007;42(9):2917-2933.
- [12] M. Xia & J. Sanjayan. "Methodology for optimizing geopolymers for 3D printing." Cement and Concrete Composites 2019;97:13-21.
- [13] USGBC. LEED v4.1 Building Design and Construction Reference Guide. U.S. Green Building Council, 2023.
- [14] U.S. Green Building Council. A History of LEED: 1998 to Present. USGBC, 2023. https://www.usgbc.org/about/history
- [15] G. Newsham et al. "Do LEED-certified buildings save energy? Yes, but..." Energy and Buildings 2009;41(8):897-905.
- [16] A. Scofield. "Efficacy of LEED certification in energy savings." Energy Policy 2020; 136:111051.
- [17] U.S. Green Building Council. LEED v4.1 Building Design and Construction Reference Guide. Washington, DC: USGBC, 2023.

https://www.usgbc.org/resources/leed-v41-building-design-and-construction-current-version

- [18] M. Montoya et al. "Quantifying Sustainable Sites Criteria in LEED-Certified Projects." Landscape and Urban Planning 2020;197:103754.
- [19] ASHRAE. *ANSI/ASHRAE/USGBC/IES Standard 189.1-2020: Standard for High-Performance Green Buildings*. Atlanta: ASHRAE, 2020.
- [20] U.S. Green Building Council (USGBC). LEED v4.1 Building Design and Construction Reference Guide. U.S. Green Building Council, October 2021.

https://www.usgbc.org/leed/v41#bdc

- [21] IEA. Energy Efficiency in Buildings: Technology Roadmap. International Energy Agency, 2021.
- [22] C. Balaras et al. "Energy Performance Certification of Buildings: Implementation Challenges." Energy Policy 2020;144:111602.
- [23] A. Hossain et al. "Circular Economy Implementation in Construction via LEED v4.1." Resources, Conservation and Recycling 2022;178:106032.
- [24] International Living Future Institute. Declare Label: Material Transparency Standard. Seattle: ILFI, 2023.
- [25] S. Altomonte et al. "Indoor Environmental Quality and LEED Certification: Critical Analysis." Building and Environment 2020;174:106782.
- [26] M. Doan et al. "Innovation Credits in LEED: Patterns and Performance Implications." Sustainable Cities and Society 2022;76:103424.
- [27]. Andrew Heath, Kevin Paine, Marcelle McManus. Minimising the global warming potential of clay-based geopolymers. Journal of Cleaner Production 2014;78:75-83.
- [28]. Duxson, P.; Fernandez-Jimenez, A.; Palomo, A.; Palomo, A., 2005. Geopolymer binders: A review 875.
- [29] Turner, L.K. & Collins, F.G. Carbon dioxide equivalent (CO₂-e) emissions: A comparison between geopolymer and OPC cement. Journal of Cleaner Production 2013;52:230-240.
 [30] Lloyd, N.A. & Rangan, B.V. Geopolymer concrete with fly ash. Proceedings of the Second International Conference on Sustainable Construction Materials and Technologies 2010;1493-1504.
- [31] USGBC. (2021). *MR Credit 1: Building Life-Cycle Impact Reduction*. https://www.usgbc.org/credits/mr1 [32] Zhang, H.Y. et al. Thermal conductivity of fly ash geopolymer concrete. Construction and Building Materials 2020;262:120584.
- [33] Aygün, S. et al. Energy performance of geopolymer-insulated buildings. Energy and Buildings 2023;285:112876.
- [34] USGBC. (2021). EA Credit 1: Optimize Energy Performance. https://www.usgbc.org/credits/ea1
- [35] Nuruddin, M.F. et al. Water demand in geopolymer concrete systems. Journal of Materials in Civil Engineering 2020;32(8):4020222.
- [36] USGBC. (2021). WE Credit 2: Indoor Water Use Reduction.
- [37] McLellan, B.C. et al. Costs and carbon emissions for geopolymer pastes. Journal of Cleaner Production 2021;19(9-10):1080-1090.
- [38] Davidovits, J. (2020). Geopolymer Chemistry and Applications. Geopolymer Institute.
- [39] USGBC. (2021). MR Credit 4: Recycled Content. https://www.usgbc.org/credits/mr4
 [40] Rovnaník, P. et al. VOC emissions of alkali-activated materials. Construction and Building Materials 2018;193:529-538.
- [41] California Department of Public Health. (2017). Standard Method v1.2.
- [42] Zhang, Z. et al. Humidity regulation by geopolymer composites. Applied Clay Science 2021;214:106278.
- [43] USGBC. (2021). *EQ Credit 2: Low-Emitting Materials*. https://www.usgbc.org/credits/eq2
- [44] Chindaprasirt, P. et al. Chloride resistance of fly ash geopolymer concrete. Materials and Design 2013;49:414-419.
- [45] Bernal, S.A. et al. (2016). Carbonation of alkali-activated concretes. Journal of Materials Science 2016;51(19):8699-8718.
- [46] Shi, X. et al. Service life modeling of geopolymer structures. Cement and Concrete Composites 2019;103:61–72.

- [47] USGBC. (2021). *SS Credit 5.2: Building Life-Cycle Impact Reduction*. https://www.usgbc.org/credits/ss5.2
- [48] Allahverdi, A. et al. Acid resistance of geopolymer binders. Ceramics-Silikáty 2015; 59(4):339–345
- [49] Temuujin, J. et al. Coastal durability of geopolymer concrete. Materials and Structures 2022;55:49.
- [50] USGBC. (2021). ID Credit 1:Innovation. https://www.usgbc.org/credits/id1
- [51] Kirchherr, J. et al. Conceptualizing the circular economy. Resources, Conservation and Recycling 2017;127:221–232.
- [52] F. Reza, K. Boriboonsomsin. Pavements made of concrete with high solar reflectance. Eco-Efficient Materials for Mitigating Building Cooling Needs 2015;380:37-62.
- [53] Medgar L. Marceau and Martha G. VanGeem. Solar Reflectance of Concretes for LEED Sustainable Sites Credit: Heat Island Effect. PCA R&D Serial No. 2982, 2007.
- [54] Abhishek Sharma, et al. Potential of geopolymer concrete as substitution for conventional concrete: A review. 2022, Materials Today: Proceedings, p.1539-1545.
- [55] Provis, J.L. et al. (2015). Alkali-Activated Materials. RILEM TC 224-AAM.
- [56] Nuruddin, M.F. et al. Water Demand in Geopolymers. J. Mater. Civ. Eng. 2020;32(8):04020222.
- [57] Duxson, P. et al. Geopolymer Technology. J. Mater. Sci. 2007;42(9):2917-2933.
- [58] USGBC. (2021). LEED v4.1 WE Rating System. https://www.usgbc.org/credits/we
- [59] Castel, A. et al. Thermal Behaviour of Geopolymers. Constr. Build. Mater. 2020;262:120574.
- [60] Zhang, H.Y. et al. Energy Efficiency of Geopolymer Buildings. Appl. Energy 2022;306:118025.
- [61] Habert, G. et al. Environmental Impact of Geopolymers. Cem. Concr. Res. 2011;41(7):674-682.
- [62] USGBC. (2021). EA Credit 1 Documentation. https://www.usgbc.org/credits/ea
- [63] USGBC. (2021). MR Credit 4 Requirements. https://www.usgbc.org/credits/mr
- [64] USGBC. (2021). Regional Materials Calculator. https://www.usgbc.org/credits/mr5
- [65] USGBC. (2021). Construction Waste Management Credit. https://www.usgbc.org/credits/mr2
- [66] Rovnaník, P. et al. VOC Emissions Analysis. Constr. Build. Mater. 2018;193:529-538.
- [67] Chindaprasirt, P. et al. Chloride Resistance. Mater. Des. 2013;49:414-419.
- [68] USGBC. (2021). EQ Credits Overview. https://www.usgbc.org/credits/eq
- [69] Salman, M. et al. CO₂ Mineralization. J. CO₂ Util. 2019;34:606-614.
- [70] Heath, A. et al. Lifecycle Cost Analysis. Resour. Conserv. Recycl. 2020;161:104975.
- [71] EPD International. (2022). Geopolymer EPD 000001.
- [72] https://gci.uq.edu.au/living-building
- [73] www.hassellstudio.com/project/global-change-institute.
- [74] Lateef N. Assi, Kealy Carter, Edward (Eddie) Deaver, Rafal Anay, Paul Ziehl. SUSTAINABLE CONCRETE: BUILDING A GREENER FUTURE. <u>Journal of Cleaner Production</u> 2018;198:1641-1651.
- [75] Wyom Paul Zakka, Nor Abdul Shukor Lim, Ma Chau Khun. A scientometric review of geopolymer concrete. <u>Journal of Cleaner Production</u> 2021;280:124353.
- [76] Lateef N. Assi, Kealy Carter, Edward Deaver, Paul Ziehl. Review of availability of source materials for geopolymer/sustainable concrete. Journal of Cleaner Production 2020;263:121477.
- [77] Keyu Chen, Dazhi Wu, Linling Xia, Qimao Cai, Zhenying Zhang. Geopolymer concrete durability subjected to aggressive environments A review of influence factors and comparison with ordinary Portland cement. <u>Construction and Building Materials</u> 2021;279:122496.

- [78] Benjamin C. McLellan, Ross P. Williams, Janine Lay, Arie van Riessen, Glen D. Corder. Costs and carbon emissions for geopolymer pastes in comparison to ordinary portland cement. <u>Journal of Cleaner Production</u> 2011;19:1080-1090.
- [79] Part Wei Ken, Mahyuddin Ramli, Cheah Chee Ban. An overview on the influence of various factors on the properties of geopolymer concrete derived from industrial by-products. Construction and Building Materials 2015