

Journal

J. Biol. Chem. Environ. Sci., 2017, Vol. 12(4): 35-61 http://biochenv.blogspot.com.eg/

PRODUCTION OF BIOETHANOL FROM WHEY MILK VIA BIOTECHNOLOGY

Randa Magdy Rafeh⁽¹⁾, Mohamed S. Hikal⁽²⁾, A. B. Abdelrazik⁽³⁾, Hoida A.M. El-Shazly ⁽¹⁾, Safwat Hassan Ali⁽²⁾

(1) Food Technology Research Institute,ARC,Giza, Egypt

(2) Department of Biochemistry, Faculty of Agriculture, Ain Shams University, Cairo, Egypt

(3) Department of Genetics, Faculty of Agriculture, Ain Shams University, Cairo, Egypt

ABSTRACT

Hydrolysis of lactose and production of ethanol as a biofuel was evaluated and conducted in the present study. Lactose was hydrolyzed by Lactase (β-D-galactosidase) which produced by *Candida pseudotropicalis* that grown in whey and synthetic media. In addition, optimum pH and incubation temperature for lactose hydrolysis by *Candida pseudotropicalis* were studied and were found to be pH 3 and 37°C respectively. On the other hand, two isolates and one strain of *Saccharomyces cerevisiae* were used to produce bioethanol from glucose and galactose which released after hydrolysis of lactose by *Candida pseudotropicalis*. The present study showed that the strain was the best in bioethanol production from glucose with level reached to 1.21 % (v/v). Moreover, intergeneric protoplast fusion was done between *Candida pseudotropicalis and Saccharomyces cerevisiae* to be as one microorgansim instead of two to facilitate, besides optimize the efficiency of bioethanol fermentation and production by the fusant which give 3.27% bioethanol from whey cheese.

Keywords: Bioethanol production, *Candida pseudotropicalis*, Intergeneric protoplast fusion. Lactose, *Saccharomyces cerevisiae*, Whey cheese,