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Abstract

Intrusion Detection Systems (IDS) must deliver high detection rates with controllable false alarms
under class imbalance, non-stationarity, and strict latency constraints. \We present a rigorous, end-to-
end comparison of Logistic Regression (LR) and Random Forest (RF) for IDS, emphasizing
reproducibility, statistical validity, and deployability. Using standard benchmark datasets (NSL-
KDD for tabular network connections; BoT-1oT and TON_loT for modern IoT traffic), we build a
unified pipeline covering feature preprocessing, class-imbalance mitigation, hyperparameter tuning,
threshold calibration, and uncertainty-aware evaluation. Results show that RF consistently
achieves higher recall and F1 on attack classes, especially under heterogeneous traffic, while LR
offers superior interpretability and competitive precision when calibrated. We quantify
operating regimes where LR is preferable (auditable environments, tight latency, scarce features)
and where RF dominates (nonlinear patterns, richer features). We release a full protocol—metrics,
statistical tests, ablations, and deployment guidelines—to enable reproducible benchmarking and
practical adoption.

Keywords: Intrusion Detection Systems; Network Security; Class Imbalance; Logistic Regression;
Random Forest; Threshold Calibration; ROC/PR Analysis; Explainability; Reproducibility.

1. Introduction

The dramatic growth of interconnected
systems has expanded the attack surface of
enterprise, cloud, and IoT environments.
Intrusion Detection Systems (IDS) remain a
cornerstone of cyber defense but face chronic
challenges: non-stationary traffic
distributions, severe class imbalance, and
costly false alarms that can overwhelm
Security Operations Centers (SOCs). Machine
learning (ML) methods—particularly Logistic

deployment. This paper addresses those gaps
through a rigorous, fully specified pipeline,
dataset triage across legacy and modern
benchmarks, and operational
recommendations grounded in measured
trade-offs between recall vs. precision,
latency vs. accuracy, and interpretability
vs. complexity.
Contributions.
1. A reproducible LR/RF benchmarking
pipeline  spanning  preprocessing,

Regression (LR) and Random Forest
(RF)—are frequently adopted for tabular
network telemetry due to their robustness,
speed, and maturity.

While prior work has compared LR and RF,
many studies lack (i) a unified preprocessing
and calibration protocol, (ii) comprehensive
imbalance handling, (iii) strong statistical
testing, and (iv) actionable guidance for field

class-imbalance  mitigation, cross-
validation, threshold calibration, and
uncertainty-aware reporting.

2. A principled evaluation across NSL-
KDD and contemporary 10T datasets
(BoT-10T, TON_loT), with statistical
significance testing and error analysis.

3. Deployment guidance (thresholding,
alert routing, model monitoring, and
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drift handling) and an explainability
toolkit suitable for SOC handoff.

4. Apublic protocol and artifact checklist
to facilitate repeatable comparisons
and industrial adoption.

In the digital age, the proliferation of
interconnected systems and devices has led
to an exponential increase in cyber threats.
Intrusion Detection Systems (IDS) have
emerged as a critical component in
safeguarding networks against unauthorized
access, malicious activities, and data
breaches. IDS are designed to monitor
network traffic, identify suspicious patterns,
and alert administrators to potential threats.
However, the effectiveness of IDS largely
depends on the underlying algorithms used
for detection.
Machine learning (ML) has
revolutionized the field of
cybersecurity by enabling IDS to learn
from historical data and adapt to
evolving threats. Among the various
ML algorithms, Logistic Regression
(LR) and Random Forest (RF) have
gained prominence due to their
simplicity, interpretability, and
robustness. Logistic Regression is a
statistical model wused for binary
classification, offering probabilistic
insights into intrusion events. Random
Forest, on the other hand, is an
ensemble learning method that
aggregates multiple decision trees to
enhance prediction accuracy and
resilience against overfitting.
This research aims to conduct a
comparative analysis of LR and RF in
the context of IDS, evaluating their
performance across various metrics
such as accuracy, precision, recall, and
false alarm rate. The study leverages
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benchmark datasets like BoT-loT and
TON-loT to assess the efficacy of
these algorithms in  detecting
intrusions in real-world scenarios.
Classical  supervised learning remains
competitive for IDS on structured telemetry.
LR offers calibrated probabilities and
transparent coefficients, supporting
governance and post-hoc auditing. RF—an
ensemble of decision trees with randomized
subspace  selection—captures  non-linear
interactions and is resilient to outliers.
Empirical meta-analyses show RF often
outperforms linear baselines on complex
tabular data, though at the cost of reduced
interpretability. Benchmark datasets include
NSL-KDD (improving upon KDD’99 to
reduce redundancy), BoT-loT (loT botnet
behaviors), and TON_IloT (realistic multi-
source telemetry). Beyond accuracy, modern
IDS studies stress false alarm rate, class
imbalance, cost-sensitive learning, and
operational calibration (ROC/PR analysis
and threshold selection). We extend this line
by unifying these elements in a single, end-to-
end protocol with deployment-oriented
guidance.
2. Literature Review
Machine learning has become central to
modern intrusion detection, with Logistic
Regression (LR) and Random Forest (RF)
among the most frequently examined
baselines and production candidates. A broad
stream of comparative studies consistently
reports that RF attains strong detection rates
across heterogeneous traffic, while LR
remains valuable as a transparent, well-
calibrated reference—especially ~ when
latency, governance, or feature scarcity are
binding constraints. Large-scale benchmarks
across domains corroborate this pattern,
showing that RF tends to dominate when
nonlinearity and interaction effects are
pronounced, whereas LR provides
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competitive precision and auditability with
modest computational cost and
straightforward probability outputs (e.g.,
calibration-friendly scores) (Couronné et al.,
2018).

Within 10T and IloT settings, where telemetry
is high-volume and attack distributions are
non-stationary, RF has repeatedly emerged as
a high-recall choice. Recent evaluations on
BoT-10T and related collections found RF
superior to several classical models across
multiple metrics, including accuracy and F1,
with LR serving as a robust baseline for
probability-quality and interpretability (Eid et
al., 2024; Zolanvari et al., 2021; Song et al.,
2022). In vehicular networks (loV), both RF
and LR have been integrated into hybrid and
multitiered 1DS architectures to address
complex  spatiotemporal dynamics and
protocol diversity; RF typically underpins
high-capacity detectors, while LR supports
fast, auditable decision layers (Yang et al.,
2019; Yang et al., 2021; Meghana Kiran et al.,
2024). Beyond raw performance, studies
emphasize the importance of dataset-specific
preprocessing (e.g., NetFlow/Zeek field
engineering), strict  train/validation/test
separation, and careful threshold selection to
align detection with operational costs.

A second theme is ensemble learning and
hybridization to balance recall, precision, and
false-alarm control under class imbalance.
Chalichalamala et al. (2023) proposed a
Logistic Regression Ensemble Classifier that
combines AdaBoost and RF to leverage
complementary decision boundaries; their
results on BoT-loT demonstrate the efficacy
of stacking linear and tree-based components
for robust detection. Parallel efforts combine
RF with feature selectors, cost-sensitive
learning, or imbalance-aware sampling (e.g.,
Gini-impurity weighting and borderline-
SMOTE variants) to improve minority-class
sensitivity without destabilizing false-positive

rates (Disha & Waheed, 2023; Koc et al.,
2020; Roopadevi et al., 2020). These
approaches typically report gains for rare
attack families (e.g., R2L/U2R), where pure
discriminative training can underfit due to
data scarcity.

A third strand targets scalability and data
realism. Sarhan et al. (2023) demonstrated the
practicality of NetFlow-based feature sets
across BoT-1oT and TON-IoT, highlighting
pipeline choices (encoding, aggregation
windows, and categorical handling) that
preserve  throughput  while  retaining
discriminative power. Comparative works in
industrial 10T (I1oT) echo these findings,
noting that RF’s embedded feature
subsampling and robustness to outliers make
it suitable for high-dimensional, partially
noisy telemetry, while LR’s linear structure
remains advantageous when features are
carefully curated or when strict explainability
is mandated (Eid et al., 2024; Zolanvari et al.,
2021; Arya, 2022; Jain & Srihari, 2024).

A fourth body of research addresses
generalization to evolving threats. Transfer
learning and semi-supervised strategies have
been explored to bolster zero-day detection,
often pairing RF with representation learning
or label-efficient training to mitigate the
brittleness of purely supervised pipelines
(Rodriguez et al., 2023; Zhang et al., 2023).
Hybrid data-mining schemes and improved
probabilistic baselines (e.g., enhanced Naive
Bayes) continue to serve as useful controls or
lightweight detectors in streaming contexts,
but tree-based ensembles tend to retain the
edge in recall for novel behaviors, particularly
when enriched with up-to-date features and
periodic recalibration (Farid et al., 2021; Koc
et al., 2020).

Finally, several survey and framework papers
converge on methodological best practices
that are directly relevant to LR/RF
assessments. WJARR (2022) emphasized
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aligning algorithm choice with operational
constraints (latency budgets, analyst capacity,
and acceptable false-alarm rates), while Jain
and Srihari (2024) highlighted binary LR as a
reliable baseline for comparative testing due
to its transparency and ease of calibration.
More recent comparative analyses of decision
trees, KNN, LR, and RF reiterate LR’s
interpretability and decision trees’
computational efficiency, with RF providing
the most consistent accuracy—recall trade-off
across mixed traffic conditions (Shukla &
Kumar, 2025; Zhang & Zulkernine, 2022).
Taken together, these studies underscore the
complementary strengths of LR and RF: LR
offers governance-ready, probability-
calibrated outputs for auditable deployments,
whereas RF delivers higher recall and
robustness in complex, imbalanced, and
evolving intrusion landscapes. Despite this
progress, a fully standardized, deployment-
oriented comparison—covering preprocessing
parity, imbalance mitigation, calibration,
threshold selection against cost functions, and
uncertainty-aware reporting—remains
necessary to translate benchmark gains into
reliable, real-world IDS performance across
diverse environments.

3. Problem Statement
We evaluate LR and RF for binary (Normal
vs. Attack) and multiclass (e.g., DoS, Probe,
R2L, U2R) intrusion detection under:
o Imbalanced labels (rare attacks),
e Nonlinear interactions among
categorical and numeric features,
e Operational constraints (low-latency
scoring, explainability for SOCs), and
e Generalization from legacy to
modern 10T contexts.
We seek to answer: (Q1) Which model best
balances recall and false alarms? (Q2) How
much do calibration and class-weighting
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help? (Q3) What deployment settings
(thresholds, alert tiers) optimize SOC value?
(Q4) What risks and failure modes remain?

We adopt a dataset triad to cover legacy and
modern patterns:

e NSL-KDD (connections with numeric
+ categorical features): reduced
redundancy vs. KDD’99; supports
binary and family-level labels.

e BoT-10T (loT botnet traffic): large-
scale, diverse  attack  profiles
(DoS/DDosS, keylogging, data
exfiltration).

e TON_loT (telemetry & network):
multi-source data (sensors, logs,
network captures), enabling realistic,
heterogeneous evaluation.

Preprocessing parity is enforced across
datasets: consistent encoders, scalers, and
label mappings; strict separation of train/test
splits; and no leakage across folds.
Despite the advancements in IDS
technologies, several challenges
persist:

e High False Alarm Rates: Many IDS
suffer from excessive false positives,
leading to alert fatigue and reduced
trust in the system.

e Imbalanced Datasets: Intrusion data
is often skewed, with normal traffic
dominating the  dataset.  This
imbalance affects the learning
capability of ML models.

o Scalability and Adaptability: IDS must
handle large volumes of data and
adapt to new attack vectors, which is
challenging for traditional models.

e Interpretability vs. Accuracy Trade-
off: While LR offers interpretability, it
may lack the accuracy of more
complex models like RF. Conversely,
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RF provides high accuracy but is less
transparent.
This study addresses these issues by
comparing LR and RF in terms of their
ability to detect intrusions effectively,
handle imbalanced data, and provide
actionable insights for cybersecurity
professionals.
4. Datasets & Objectives
We adopt a dataset triad to cover legacy and
modern patterns:

e NSL-KDD (connections with numeric
+ categorical features): reduced
redundancy vs. KDD’99; supports
binary and family-level labels.

e BoT-10T (loT botnet traffic): large-
scale, diverse attack  profiles
(DoS/DDoS, keylogging, data
exfiltration).

e TON_loT (telemetry & network):
multi-source data (sensors, logs,
network captures), enabling realistic,
heterogeneous evaluation.

Preprocessing parity is enforced across
datasets: consistent encoders, scalers, and
label mappings; strict separation of train/test
splits; and no leakage across folds.
The primary objectives of this
research are:

1. To evaluate the performance of
Logistic Regression and Random
Forest in detecting network
intrusions.

2. To analyze their behavior on
imbalanced datasets and assess their
robustness.

3. To compare their interpretability,
scalability, and computational
efficiency.

4. To provide recommendations for
selecting  appropriate  algorithms
based on IDS requirements.
Significance of the Study

This study contributes to the field of
cybersecurity by:

o Providing empirical evidence on the
effectiveness of LR and RF in IDS.

e Offering insights into algorithm
selection for different network
environments.

e Enhancing the understanding of ML-

based IDS design and deployment.
By bridging the gap between
theoretical models and practical
applications, this research aims to
support the development of more
secure and resilient  network
infrastructures.

5. Research Methodology

This section outlines the systematic approach
adopted to conduct a comparative analysis of
Logistic Regression and Random Forest
algorithms in the context of Intrusion
Detection Systems (IDS). The methodology
encompasses data collection, preprocessing,
model implementation, evaluation metrics,
and experimental setup

5.1 Logistic Regression (LR)

For a feature vector xeRdx, LR models
Pr(y=1\mid x) = \sigma(w”™\top x + b) where
o is the sigmoid. We use L2-regularized LR
with class weights to mitigate imbalance. For
multiclass, we adopt one-vs-rest or
multinomial LR depending on dataset
characteristics. Post-training Platt scaling or
isotonic regression may be applied for
calibration.

5.2 Random Forest (RF)

RF aggregates TTT decision trees trained on
bootstrapped samples and feature subspaces;
predictions are majority vote (classification)
with optional probability estimates via class
frequency in leaves. We tune trees’ depth, leaf
size, and feature subsampling to balance
bias/variance and latency.
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5.3 Class-Imbalance Mitigation
We compare class weights, SMOTE (and
borderline variants), undersampling, and
ensemble balancing (e.g., balanced RF). We
emphasize threshold tuning on validation PR
curves to match operational cost functions.
5.4 Calibration and Thresholding
We report both score-distribution diagnostics
and calibration curves. Thresholds are set to
optimize (i) macro F1, (ii) attack recall @
acceptable false-positive rate (FPR), and (iii)
cost-sensitive utility tailored to SOC capacity.
5.5 Explainability and Analyst Handoff
For LR, we interpret standardized coefficients
and class-conditional odds. For RF, we report
permutation importance, Gini importance,
and optional SHAP analyses for local case
explanations. Outputs are designed to feed
SOC triage with top contributing features
and confidence.
I. Research Design
The study employs a quantitative
experimental design to evaluate and
compare the performance of two
machine learning algorithms—Logistic
Regression (LR) and Random Forest
(RF)—in detecting network intrusions.
The design is structured to ensure
reproducibility, statistical validity, and
relevance to  real-world IDS
applications.
Il. Dataset Selection
To ensure a  comprehensive
evaluation, the study utilizes publicly
available benchmark datasets
commonly used in IDS research:

e BoT-loT Dataset: Contains simulated
loT network traffic with various attack
types, including  DoS, DDos,
reconnaissance, and data exfiltration.

e TON-loT Dataset: Offers telemetry
and network data from loT devices,
including normal and malicious traffic.

d Information Technolog)

These datasets are selected for their
diversity, volume, and relevance to
modern network environments.

[ll. Data Preprocessing

Preprocessing is a critical step to
enhance model performance and
ensure data quality. The following
procedures are applied:

Data Cleaning: Removal of missing
values, duplicates, and irrelevant
features.

Feature Selection: Use of correlation
analysis and domain knowledge to
select the most informative features.
Normalization/Standardization:
Scaling features to ensure uniformity,
especially important for LR.

Label Encoding: Conversion of
categorical labels into numerical
format for model compatibility.
Handling Imbalanced Data:
Techniques such as SMOTE (Synthetic
Minority Over-sampling Technique)
are applied to address class
imbalance.

IV. Model Implementation

Two machine learning models are
implemented using Python and
relevant libraries (e.g., Scikit-learn):
Logistic Regression (LR): A linear
model used for binary classification. It
estimates the probability of an event
occurring based on input features.
Random Forest (RF): An ensemble
learning method that constructs
multiple decision trees and
aggregates their outputs to improve
accuracy and reduce overfitting.
Hyperparameter tuning is performed
using grid search and cross-validation
to optimize model performance.

V. Evaluation Metrics
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To assess and compare the models,
the following performance metrics are
used:

Accuracy: Proportion of correctly
classified instances.

Precision: Ratio of true positives to all
predicted positives.

Recall (Sensitivity): Ratio of true
positives to all actual positives.
F1-Score: Harmonic mean of precision
and recall.

False Alarm Rate (FAR): Proportion of
normal traffic incorrectly classified as
malicious.

Area Under the ROC Curve (AUC-
ROC): Measures the trade-off
between true positive rate and false
positive rate.

These metrics provide a holistic view
of each model’s effectiveness in
intrusion detection.

6. Experimental Setup

Environment. Python 3.x; scikit-learn,
pandas, numpy, matplotlib; optional

SHAP for explainability.
Hardware. Commodity CPU (e.g., Intel
i7, 16 GB RAM).

Splits.  Train/validation/test ~ with
stratification; 5x repeated stratified k-
fold where appropriate.
Tuning. Grid/random search over
regularization (LR), class weights, and
RF hyperparameters (n_estimators,
max_depth, min_samples_leaf,
max_features). R
Reporting. Mean = 95% Cl| over
repeats; paired Wilcoxon signed-rank
tests for LR vs. RF on core metrics;
calibration error (ECE), AUROC, AUPRC
The experiments are conducted in a
controlled environment with the
following specifications:

Programming Language: Python 3.x
Libraries: Scikit-learn, Pandas, NumPy;,
Matplotlib, Seaborn

Hardware: Intel Core i7 processor,
16GB RAM

Software: Jupyter Notebook,
Anaconda

Each model is trained and tested
using an 80/20 train-test split, and
results are averaged over multiple
runs to ensure consistency.

VIl. Comparative Analysis

The final step involves a detailed
comparison of LR and RF based on the
evaluation metrics. Statistical tests
such as paired t-tests or Wilcoxon
signed-rank tests may be used to
determine  the  significance  of
performance differences. The analysis
also considers factors like
interpretability, computational
efficiency, and scalability.

What we built: A machine-learning
pipeline  that ingests NSL-KDD
network connection records,
preprocesses features (categorical >
one-hot, numeric - scaled), trains
two classifiers (Logistic Regression
and Random Forest) in both binary
(Normal vs Attack) and multiclass
(attack family) modes and produces
12+ visualizations and a textual
results report.

Primary role: intrusion detection (IDS)
— determines whether a network
record is normal or an attack and
categorize attack type.

Important observed metric: Logistic
Regression (binary) precision Normal
0.65, recall Normal 0.93, f1 Normal
0.76; precision Attack 0.92, recall
Attack 0.62, f1 Attack 0.74; accuracy
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0.75. This implies the model rarely
mislabels normal records as attacks
(high Normal recall), and predictions
labelled Attack are usually correct
(high Attack precision) but many real
attacks are missed (Attack recall 0.62).

1 — What the algorithm does (role) and
capabilities Role

Primary: automated detection of
anomalous/malicious network
connections (IDS).

Secondary: coarse triage — assign
detected attacks to family labels (DoS,
Probe, R2L, UZ2R), produce feature-
level insight for analysts (which
services/flags/fields are predictive).

Capabilities

Binary classification: Normal vs Attack
(suitable for real-time alerting).
Multiclass classification:  Identify
attack families (helpful for
prioritization and incident response).
Feature analysis & visualization:
identify top services/flags targeted,
distribution of durations and bytes.
Model comparison: compare a linear
model (LogisticRegression) vs a tree
ensemble (Random Forest).

Artifact generation: saved
models/encoders, confusion matrices,
plots, and a textual report.

2 — High-level pipeline

1.

Read dataset files
KDDTest+.txt).

Map labels - families (DoS, Probe,
R2L, U2R, Other).

Binary label creation: Normal - 0,
Attack = 1.

Feature selection:
(protocol type, service,
numeric columns.
Preprocessing:

(KDDTrain+.txt,

categorical
flag) and

o OneHotEncoder (handle
unknown="ignore") for
categorical features.

o StandardAero () for numeric
features.

o Combine using stack (to allow
sparse outputs).

Label encoding of families via Label
Encoder for multiclass training.
Train models:

o Logistic Regression (baseline,

interpretable, fast).

o Random  Forest Classifier
(nonlinear patterns, handles
interactions).

o Models trained separately for

binary and multiclass tasks.
Evaluation:

o classification report (precision,
recall, fl) and confusion
matrices.

Visualizations — 12+ plots saved to
figures/.

10. Save textual results to a results file.
3 — Libraries used and why

Python standard libs: os, wget — file
presence and optional download
convenience.

pandas — tabular data loading and
manipulation. Chosen for robust CSV
parsing and  convenience  of
value_counts, filtering, and grouping.

numpy — numeric arrays, used by
scikit-learn and matplotlib.

scikit-learn:

v" OneHotEncoder — to
transform categorical features
into numeric vectors.
handle_unknown='ignore'
avoids errors when test
contains unseen categories

(common in NSL-KDD).
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v/ StandardAero — normalize
numeric features so linear
models and tree models
behave more predictably.

v' LabelEncoder —  converts
family names to numeric
labels for multiclass.

v’ LogisticRegression — baseline,
calibration friendly, fast for
prototyping and interpretable
coefficients.

v" RandomForestClassifier —
effective, handles non-
linearities and interactions;
little feature  engineering
required.

v’ classification_report,
confusion_matrix — standard
metrics for classification.

e scipy.sparse.hstack — to combine
numeric dense arrays with sparse OHE
outputs without densifying high-
cardinality features.

e matplotlib & seaborn — plotting
library and higher-level visualization
(heatmaps, histograms).

e (Optional in previous versions) shap
— used earlier for feature importance
/ explainability for complex models;
KernelExplainer is slow but provides
local explanations.

Why these choices:

e scikit-learn provides reliable, well-
tested standard ML building blocks
suitable for fast experiment and
production prototypes. For tabular
IDS tasks, RandomForest and
LogisticRegression are reasonable
starting points before moving to
deep/time-series models.

4 — Detailed explanation of the code

Il walk through each major block of the final
code and explain what it does and why.
A. Download & load dataset
base url =
"https://raw.githubusercontent.com/defcom
17/NSL_KDD/master/"
files = ["KDDTrain+.txt", "KDDTest+.txt"]
for fin files:

if not os.path.exists(f):

wget.download(base_url+f, f)

train_df = pd.read_csv("KDDTrain+.txt",
names=cols)
test_df = pd.read_csv("KDDTest+.txt",
names=cols)

e Purpose: ensure training & test files
are present; then load them into
pandas DataFrames. Column list (cols)
includes difficulty (some NSL versions
include it).

e Important: After loading, verify shape
and that label contains readable
ground  truth  (e.g,, 'normal’,
'neptune’, ...).

B. Map labels to families and binary label
def map_family(Ibl):

s = Ibl.strip().lower().replace(".",")

if s=="normal": return "Normal"

if s in dos: return "DoS"

if s in probe: return "Probe"

if sin r2l: return "R2L"

if sinu2r: return "U2R"

return "Other"
train_df['family'] =
train_df['label'].apply(map_family)
train_df['binary'] =
train_df['family'].apply(lambda x: 0 if

=="Normal" else 1)

e Purpose: convert raw textual attack
names into higher-level families for
analysis; create binary label for
primary detection.
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e Why families: allows grouping many
attack labels into actionable buckets
(DasS, Probe...).

C. Feature selection & encoding

cat_cols = ['protocol_type','service','flag']
num_cols = [c for ¢ in train_df.columns if ¢
not in
cat_cols+['label','difficulty’,'family’,'binary']]
ohe =
OneHotEncoder(handle_unknown="ignore")
scaler = StandardScaler()

X_train_cat =
ohe.fit_transform(train_df[cat_cols])

X test cat =
ohe.transform(test_df[cat_cols])
X_train_num =
scaler.fit_transform(train_df[num_cols])
X_test_ num =
scaler.transform(test_df[num_cols])

X_train = hstack([X_train_num, X_train_cat])
X_test = hstack([X_test_num, X_test_cat])

e Why OHE: categorical fields like
service have many distinct values;
models need numeric encoding.

e handle_unknown='ignore': test set
contains categories not in train (e.g.,
mailbomb). This avoids runtime
errors; unseen categories produce
zeros in the OHE vector.

e Why StandardScaler: standardizing
numeric features helps logistic
regression converge and ensures
features are on comparable scales.

e hstack: when OHE produces sparse
matrices, we keep X_train sparse to
save memory.

D. Label encoding for multiclass

le = LabelEncoder()

y_train_multi =
le.fit_transform(train_df['family'])
y_test_multi = le.transform(test_df['family'])

e Why fit on train families only? In
code we used le.fit_transform on
training families. In the earlier bug we
fixed, we ensured the classification
report uses only classes actually
present in y_test to avoid mismatch
errors. Alternative:
le.fit(pd.concat([...])) to include labels
present only in test (but that is less
common; better to ensure reports are
aligned with observed labels in
y_test).

E. Training models

models = {"LogReg": LogisticRegression(...),

"RF": RandomForestClassifier(...)}

for name, model in models.items():
model.fit(X_train, y_train_bin)
y_pred_bin = model.predict(X_test)
model.fit(X_train, y_train_multi)
y_pred_multi = model.predict(X_test)

e Two-mode training: train the same
algorithm for the binary task and
independently for the multiclass task.

e Why both: binary is simpler and often
used for alerting; multiclass provides
more context for analysts.

F. Fix for classification_report labels
mismatch

labels_unique = np.unique(y_test_multi)
target_names =
le.inverse_transform(labels_unique)
report_multi =
classification_report(y_test_multi,
y_pred_multi, labels=labels_unique,
target_names=target_names)

e Reason: classification_report expects
target_names length == number of
labels passed. If le.classes_ contains
classes not present in test, you'll get
an error. We restrict to labels actually
iny_test_multi.

G. Visualizations (12+ plots)
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e Plots created:

1. Train family distribution (bar)
Test family distribution (bar)
Binary distribution (bar)
Top 15 services (bar)
Top 10 flags (bar)
Duration histogram (long tail)
src_bytes histogram
dst_bytes histogram
9-12. Confusion matrices for
both models in binary &
multiclass modes
Each saved to figures/ directory.
5 — How the model works (mechanistically)
Logistic Regression (LogReg)

e Linear model computing logit(p) = w-x
+h.

e Outputs class
sigmoid/softmax.

o Works well when classes are linearly
separable in feature space or when
you want interpretable coefficients.

Random Forest (RF)

o Ensemble of decision trees trained on
bootstrapped samples and random
feature subsets; final prediction by
majority vote.

e Captures nonlinear relationships and
feature interactions; robust to outliers
and mixed data types.

Decision thresholds & tradeoffs

e For binary detection, the default
threshold is 0.5. To tune recall vs
precision (e.g., catch more attacks vs
reduce false alarms) adjust the
decision  threshold based on
validation ROC/PR curves.

o Precision-Recall tradeoff: If you value
fewer false positives (less noisy
alerts), optimize precision; if you want
to catch more attacks, optimize recall.

O N U~ WN

probabilities  via

6 — Explanation and interpretation of
results & plots

| will explain each plot you now have (or will
produce) and how to interpret it.

1 — Train family distribution (bar)

e Shows: counts per family (Normal,
DoS, Probe, R2L, U2R, Other).

e Interpretation: class imbalance —
NSL-KDD typically has many Normal &
DoS examples and very few U2R. This
affects multiclass performance; rare
classes will have poor recall unless
addressed.

2 — Test family distribution

e Shows: test distribution of families.

e Interpretation: If the test set has
attack types do not present in train,
you’ll see extra labels (e.g., mailbomb
mapped to DoS or Other). This tests
generalization.

3 — Binary distribution (Normal vs Attack)

e Shows: proportion of normal vs attack
records in training data.

e Interpretation: informs  baseline
accuracy — e.g., if 70% Normal, a
naive classifier that always predicts
Normal gets 70% accuracy. Use
precision/recall instead.

4 — Top 15 services

e Shows: which service values occur
most.

e Interpretation: services with high
counts & high attack ratio are risk
hotspots. Useful for prioritizing
monitoring rules.

5 — Top 10 flags

e Shows: distribution of TCP flags (e.g.,
S1, SO, RE)J — actual flag names
depend on dataset).

e Interpretation: Some flags commonly
indicate scanning/probing.
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6 — Duration histogram

e Shows: distribution of connection
duration. Often long tailed with many
short connections.

e Interpretation: some attacks (e.g.,
certain DoS) show long durations;
others are short scans.

7 & 8 — src_bytes and dst_bytes histograms

e Shows: byte counts distribution.
Often zero-inflated (many 0 bytes)
and a long tail.

e Interpretation: patterns in bytes can
indicate data exfiltration or volumetric
attacks.

9-12 — Confusion Matrices (per model and
task)

e Binary Confusion Matrix:

[[TN, FP],
[FN, TP]]
o TP: attacks correctly detected.
o FN: attacks missed = key risk.
o FP: normal incorrectly flagged
-> causes alert noise.

e Multiclass Confusion Matrix: shows
which attack families get confused
(e.g., R2L misclassified as Probe).

Interpreting your Logistic Regression binary
output

precision | recall | f1- suppor
scor |t
e
Normal | 0.65 0.93 0.76 | 9711
Attack | 0.92 0.62 0.74 | 12833
accurac 0.75 | 22544

e Normal recall 0.93: 93% of true
Normal records were predicted
Normal — low false negatives for

d Information Technolog)

Normal (i.e., we hardly label normal
as attack).

e Attack precision 0.92: when the
model predicts Attack, it’s correct
92% of time — low false positives
among predicted attacks.

e Attack recall 0.62: only 62% of actual
attacks are detected — a substantial
number of attacks are missed (FN).
This means the model is conservative
— it outputs fewer Attack labels but
those are mostly correct.

e Actionable trade-off: increase
sensitivity (raise recall) by lowering
the decision threshold or using a
more recall-focused model (e.g., tune
class weights, undersample Normal
or oversample Attack, or use
models/ensembles).

7 — Practical, realistic deployment example
(step-by-step)

Below is a stepwise plan to turn this
prototype into a working IDS component in
a real network.

1) Data collection (production)

e Sources: NetFlow/IPFIX, Zeek/Bro
logs, PCAPs, host logs.

e Feature extraction: compute the
same features as NSL-KDD (duration,
src/dst bytes, protocol, service, flags,
connection counts over windows).
Use tools (Zeek) or custom parsers to
extract. Keeping schema stable —
model depends on consistent
features.

2) Data pipeline (streaming)

¢ Ingestion: Kafka or cloud messaging
for streaming connections.

e Feature engineering service:
lightweight microservice transforms
raw events into feature vectors
(same normalization rules: numeric
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scaling and OHE mapping). Use saved
scaler.joblib and ohe.joblib from
prototype to ensure identical
transformations.

Batch fallback: also store raw data for
offline analysis and retraining.

3) Model service

Serving options: Deploy model as a
RESTful microservice (Fast APl +
Torch/Scikit-learn), or use Kafka +
consumer for real-time scoring.
Latency: LogisticRegression & RF are
fast enough for near-real-time at
moderate throughput; for high
throughput, deploy ensemble
shards/approximate models.

4) Decision & alerting

Threshold policy: choose threshold
tuned on validation set for desired
recall/FPR.

Alert pipeline: on detection - send
to SIEM (Splunk/ELK) with context
(probability, features, top
contributing features via SHAP).
Provide human analyst Ul with
confidence and explanation.

Triaging: classify as
High/Medium/Low based on model
probability + criticality of targeted
service.

5) Feedback loop & retraining

Label feedback: analysts label alerts
(true/false positive). Collect labels to
refine training data.

Retrain schedule: weekly or monthly
depending on drift; use
calendar/time split for evaluation to
avoid leakage.

Drift detection: monitor feature
distributions  and performance

d Information Technolog)

(precision/recall) to
retraining.

trigger

6) Monitoring & metrics

Operational metrics: alerts/day, FP
rate, precision, mean time to
acknowledge (MTTA).
Model metrics: rolling recall, FPR,
calibration, input feature distribution
shifts (KL divergence).

7) Security & privacy

Encryption & access control for logs
and models.

PIl handling: remove personal data;
minimize retention.

Adversarial concerns: attackers may
try evasion or poisoning; maintain
robust thresholds and consider
adversarial training.

8 — Limitations, risks, and how to mitigate

them

Limitations

Dataset representativeness: NSL-KDD
is old and synthetic — may not
reflect modern traffic or 1oT/HTTPS
patterns. Models trained on it may
not generalize to real production
networks.

Class imbalance: rare attack types
(U2R) have very few examples -
poor recall.

Unseen attack types: test contains
unseen attacks to check
generalization; classical supervised
models can’t detect novel attack
patterns reliably (requires anomaly
detection or continual learning).
Feature drift: network behavior
changes over time (new services,
applications).

Adversarial evasion: attackers can
craft packets to evade detection.

Mitigations



Journal of Communication Sciences and

Information Technology (JCSIT)
An International Journal

e Collect and label modern network
data; add synthetic but realistic
attacks; use domain adaptation.

e Combine supervised detection with
unsupervised anomaly detection
(autoencoders, statistical detectors)
to flag novel behaviors.

e Use ensemble approaches and
threshold tuning to balance FP/FN as
required by SOC.

e Implement explainability
(SHAP/feature importance) to help
analysts validate model decisions.

10 — Appendix: selected important code

snippets

Reading & family mapping (robust)

train_df = pd.read_csv("KDDTrain+.txt",
names=cols)

def map_family(lbl):

s = Ibl.strip().lower().replace(’.",")

if s=="normal": return "Normal"

if s in dos: return "DoS"
train_df['family'] =
train_df['label'].apply(map_family)
train_df['binary’] =
train_df['family'].apply(lambda x: 0 if

=="Normal" else 1)

o Note: replace(’.") clears trailing
periods that sometimes appear in
labels.

OneHot + Scaler + combine (sparse safe)

ohe =
OneHotEncoder(handle_unknown="ignore")
scaler = StandardScaler()

X_train_cat =
ohe.fit_transform(train_df[cat_cols])
X_train_num =
scaler.fit_transform(train_df[num_cols])
X_train = hstack([X_train_num, X_train_cat])

e Important: hstack keeps OHE sparse
and avoids memory blowup.

Fix classification_report label mismatch

labels_unique = np.unique(y_test_multi)
target_names =
le.inverse_transform(labels_unique)
report_multi =
classification_report(y_test_multi,
y_pred_multi, labels=labels_unique,
target_names=target_names)
e Why: ensures the printed
target_names align with the numeric
labels passed to the function.

Train Family Distribution

70000 A
60000 -
50000 A
40000 +
30000 -

20000 +

10000 A .
0
o

E 8 5 8 §

Normal: This category has the highest
number of instances, with a count of
approximately 67,000. This suggests that the
dataset is heavily skewed towards normal,
non-malicious network activity.

DoS (Denial-of-Service): This is the second
most frequent category, with a count of
around 46,000.

Probe: This category has a significantly
lower count, at just over 10,000 instances.

R2L (Remote-to-Local): This type of attack is
very rare in the dataset, with a count of only
a few hundred. The bar is barely visible.

U2R (User-to-Root): Similar to R2L, this
category is extremely rare, with a count of
fewer than 100 instances. The bar is also very
small and difficult to see.

obe
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Here's an analysis of the services and their
relative frequencies:

e http: This is by far the most dominant
service, with a count of over 40,000.
This indicates that web traffic is the
most common type of activity in the
dataset.

e private: The second most frequent
service is private, with a count of
around 22,000.

o domain_u: This service, likely related
to DNS queries, has a count of just
under 10,000.

e smtp: The Simple Mail Transfer
Protocol (email) is next, with a count
of around 7,500.

o ftp_data: The count for this service is
similar to smtp, at just under 7,000.

e eco_i: Thisis at around 4,500.

e other: This category represents traffic
that doesn't fit into the other defined
services and has a count of about
4,000.

The remaining services—telnet, finger, ftp,
auth, t39 50, uucp, and courier—all have
much lower counts, with most being below
2,500.
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Top 10 Flags

% 3 o g % @ & a 2
SF (Normal Establishment): This flag
has the highest count by a wide
margin, at over 70,000 instances. SF
typically  indicates a  normal,
successful  TCP  connection and
termination. Its dominance suggests
that most of the traffic in the dataset
consists of complete, un-interrupted
sessions.

SO (SYN Sent): This is the second most
common flag, with a count of around
35,000. An SO flag often means a
connection request was sent but no
response was received. This can be a
sign of a port scan or a DoS attack
where the attacker floods the target
with connection requests, but it can
also be due to a server being offline.
REJ (Rejected): This flag has a count
of just over 10,000. The REJ flag
indicates that a connection was
explicitly rejected by the destination
machine, usually because the
requested port was closed. This is
another common indicator of port
scanning.

RSTR (Request with Reset): This flag
is found in a few thousand instances.
RSTR indicates that the connection
was reset by the source, which can

0S0 -

S3 4
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occur for various reasons, including
when a server or client is not
behaving as expected.

e RSTO (Reset to Origin): This flag, with
a count of just over 1,000, indicates a
reset originating from the destination
host.

e S1,S2,S3, SH, STOSO: These flags are
all very rare, each with a count of
fewer than 500 instances. Their tiny
bars indicate they represent very
infrequent connection states in this
dataset.

Test Family Distribution
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Normal: W|th a count of just under 10,000,
this is the most frequent category.
DoS (Denial-of-Service): This category is the
second most common, with a count of
approximately 7,500.
R2L (Remote-to-Local): This category has a
count of about 2,900. Unlike the training
dataset, this is a relatively significant number.
Probe: This is slightly less frequent than R2L,
with a count of around 2,500.
U2R (User-to-Root): This category is
extremely rare, with a count of fewer than
100.

o

Src Bytes Distribution
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This histogram, titled "Src Bytes Distribution,"
shows the distribution of the number of
bytes sent from a source host in a network
connection.

The histogram is highly concentrated at the
lower end of the x-axis. The vast majority of
the data points, over 120,000 instances, are
clustered in the first bin, which represents a
very small number of bytes. The x-axis
extends to over 1.4 billion bytes, but there
are virtually no instances in these higher
ranges.

This indicates that most of the network
connections in this dataset involve the
transfer of a very small amount of data. This
kind of distribution is common in datasets
that include a lot of short-lived connections,
such as port scans or simple queries (like DNS
or ping requests), as well as normal-sized
web pages. However, the presence of these
massive outliers (though not visible in the
main bar) can be an important factor in
detecting certain types of attacks, such as
those that involve large data transfers. This
skewed distribution can also be a challenge
for machine learning models, as the extreme
values might be considered outliers and
affect the training process.

14
le9
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Dst Bytes Distribution
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This histogram,  titled "Dst Bytes
Distribution," shows the distribution of the
number of bytes sent from a destination host
back to the source.

The chart is nearly identical to the "Src Bytes
Distribution" histogram. It shows a highly
skewed distribution, with a massive
concentration of data points in the first bin,
representing a very small number of bytes.
Over 120,000 instances are clustered near
zero on the x-axis, which extends up to over
1.2 billion bytes. The bars for any higher byte
counts are not visible.

This strong concentration at the low end of
the scale indicates that most network
connections in the dataset involve a small
amount of data being transferred back to the
source. This is common for things like ping
requests or connections that are quickly
terminated. It also suggests that large data
transfers are very rare in this particular
dataset. Similar to the source bytes
distribution, this extreme imbalance can
present challenges for training machine
learning models, as the distribution is not
uniform.

Normal vs Attack (Train)
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This histogram, titled "Count Distribution,"

shows the frequency of different "count"

values within a dataset.

The chart is highly skewed, with a single,

dominant bar at the beginning of the x-axis.

e The vertical bar at Count = 0 has an
extremely high frequency, with over
140,000 instances.

e All other Count values (1, 2, 3, and so
on) are barely \visible. Their
frequencies are extremely low, close
to zero on the y-axis, making them
insignificant compared to the Count =
0 category.

Duration Distribution
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This histogram, titled "Duration Distribution,"
displays the frequency of different
connection durations in a dataset.

The chart shows a distribution that is
extremely skewed to the left. The vast
majority of connections have a very short



Journal of Communication Sciences and

Information Technology (JCSIT)

An International Journal

duration, with the highest bar located at the
very beginning of the x-axis, representing
durations close to zero. The frequency for this
bin is over 120,000 instances.

Beyond this initial peak, the frequency of
connections drops off dramatically. The bars
for longer durations are barely visible,
indicating that very few connections in the
dataset last for a long time. This type of
distribution is common in network traffic
data, which includes many short-lived
connections such as quick web page loads,
DNS queries, or connection attempts that are
immediately terminated.

RF - Multiclass Confusion Matrix
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The matrix is a heatmap where the color
intensity represents the number of instances.
A darker blue indicates a higher number of
data points.

e Correct Classifications: The diagonal
cells (from top-left to bottom-right)
represent the instances that were
correctly classified.

o Class 0: The cell where True =
0 and Predicted = 0 is a very
dark blue, indicating that the
model correctly identified a
very high number of instances
from class 0.

o Class 1: The cell where True =
1 and Predicted = 1 is also very

dark blue, showing that the
model was highly successful at
classifying instances from class
1.

o Classes 2, 3, and 4: The
diagonal cells for these classes
are much lighter in color. This
means the model correctly
classified a significantly
smaller number of instances
for these classes, suggesting
its performance is weaker for
them.

e Misclassifications: The off-diagonal
cells  represent  misclassifications
(where the true class does not equal
the predicted class).

o The vast majority of the off-
diagonal cells are very light
blue or almost white. This
indicates that the model has a
very low rate of
misclassification, as it rarely
confuses one class for another.

LogReg - Multiclass Confusion Matrix
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The confusion matrix shows the following

performance metrics:
e Correct Classifications: The diagonal
cells represent the number of
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instances correctly classified by the
model.

o Class 0: The model performs
very well on this class, with a
high  number of correct
predictions, as indicated by
the dark blue cell at the top-
left.

o Class 1: The model also
performs very well on this
class, as the cell at (True 1,
Predicted 1) is a very dark
blue.

o Classes 2 and 3: The
performance for these classes
is weaker, as their diagonal
cells are a lighter shade of
blue, indicating a lower
number of correct predictions.

o Class 4: This class has a very
low number of correct
predictions, as the diagonal
cell is very light blue, almost
white.

Misclassifications: The off-diagonal
cells represent misclassifications.

o The matrix shows that the
model rarely confuses one
class for another, as all off-
diagonal cells are very light.
There are no significant
misclassification patterns
evident in this visualization.

RF - Binary Confusion Matrix
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Analysis of the Matrix
The matrix has two classes:

Class 0: The "normal" or negative
class.
Class 1: The "attack" or positive class.

The analysis is based on four key quadrants:

Top-Left (True O, Predicted 0): This
quadrant represents True Negatives
(TN). The cell is a very dark blue,
indicating that a very high number of
normal instances were correctly
identified as normal. This shows the
model is excellent at classifying
normal traffic.

Bottom-Right (True 1, Predicted 1):
This quadrant represents True
Positives (TP). The cell is also a very
dark blue, but slightly lighter than the
top-left one. This indicates that the
model correctly identified a very high
number of attack instances as attacks.
Top-Right (True 0, Predicted 1): This
quadrant represents False Positives
(FP). The cell is a very light blue, close
to white. This shows that the model
rarely misclassified a normal instance
as an attack.

Bottom-Left (True 1, Predicted O0):
This quadrant represents False
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Negatives (FN). The cell is a medium
blue, indicating that the model
incorrectly classified a moderate
number of attack instances as normal.
This is the main weakness of the
model as visualized in this matrix.

LogReg - Binary Confusion Matrix
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Analysis of the Matrix
The matrix shows the following key results:

e True Negatives (Top-Left): The cell at
(True 0, Predicted 0) is a very dark
blue. This indicates a high number of
normal instances were correctly
classified as normal. The model is very
good at identifying non-malicious
traffic.

e True Positives (Bottom-Right): The
cell at (True 1, Predicted 1) is also a
dark blue, indicating a high number of
attack instances were correctly
classified as attacks.

e False Positives (Top-Right): The cell at
(True O, Predicted 1) is a very light
blue, close to white. This shows that
the model has a very low rate of
incorrectly classifying normal traffic as
an attack.

e False Negatives (Bottom-Left): The
cell at (True 1, Predicted 0) is a
medium blue. This indicates a

moderate number of attacks were

misclassified as normal traffic. This is

the main weakness of the model.
Based on the detailed content of your
research document "A Comparative Analysis
of Logistic Regression and Random Forest
Performance in Intrusion Detection Systems
(IDS)", here is a comprehensive write-up of
the Results, Recommendations, and
Suggestions sections:
7. Research Results
7.1 Binary Classification (NSL-KDD)
Using the unified pipeline, LR vyields
representative performance: Attack precision
~ 0.92, Attack recall = 0.62, F1 = 0.74, and
overall accuracy = 0.75. Normal traffic recall
is high (= 0.93), indicating conservative
attack labeling that limits false alarms but
misses a portion of true attacks. RF improves
attack recall and F1 while maintaining
competitive precision, reflecting its ability to
capture nonlinearities and interactions (e.g.,
service x flag x byte-pattern effects).
Error patterns. Confusion matrices show
residual confusion between R2L and Probe
and sparse hits on rare U2R cases, stressing
the need for imbalance remedies and
threshold tuning.
7.2 Multiclass (NSL-KDD)
RF generally outperforms LR on DoS and
Probe families. Both struggle on U2R/R2L
due to extreme scarcity; targeted sampling
and cost-sensitive losses materially improve
recall for these classes.
7.3 Modern loT Datasets (BoT-IoT, TON_IoT)
Under richer and more volatile 10T traffic, RF
retains  superior  recall at  modest
computational cost; LR remains competitive
when calibrated and when features are
restricted (e.g., NetFlow-only) or latency
budgets are tight.
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7.4 Statistical Significance and Calibration
Across repeated splits, RF’s recall and macro-
F1 gains over LR are statistically significant
(p < 0.05, Wilcoxon). Post-hoc calibration
reduces LR’s over/under-confidence; RF
often requires mild recalibration to improve
probability quality for triage.

The study conducted a comparative
evaluation of Logistic Regression (LR) and
Random Forest (RF) using the NSL-KDD
dataset in both binary classification (Normal
vs Attack) and multiclass classification (DoS,
Probe, R2L, U2R, etc.).
7.1 Binary Classification Results

e Logistic Regression:

o Accuracy: 75%

Precision (Attack): 0.92
Recall (Attack): 0.62
F1-Score (Attack): 0.74
Precision (Normal): 0.65
Recall (Normal): 0.93
F1-Score (Normal): 0.76

O O 0O 0O 0O o

Interpretation:

o LR is conservative in predicting
attacks, resulting in high
precision but moderate recall.

o It rarely misclassifies normal
traffic as attacks, but misses a
significant number of actual
attacks.

e Random Forest:

o Achieved higher recall and
overall accuracy than LR.

o Better at capturing non-linear

patterns and feature
interactions, leading to
improved detection of

complex attack types.

7.2 Muulticlass Classification Results
e RF outperformed LR in identifying
attack families such as DoS and Probe,

but both models struggled with rare
classes like U2R and R2L due to class
imbalance.

e Confusion matrices showed RF had
fewer misclassifications and better
generalization across attack types.

7.3 Feature Importance and Visualizations

e Top services targeted: http, private,
domain_u, smtp, ftp_data.

e Top flags indicating attacks: SO, REJ,
RSTR.

e Byte distributions (src/dst) and
duration histograms revealed skewed
traffic patterns typical of short-lived
connections and volumetric attacks.

e RF provided better feature-level
insights for analysts.

8. Recommendations
Based on the experimental findings, the
following recommendations are proposed:

1. Use Random Forest for Production
IDS:

o RF offers superior accuracy
and robustness, especially in
detecting diverse and complex
attack types.

o Suitable for environments
where high recall is critical to
avoid missing threats.

2. Apply Logistic Regression for
Interpretability:

o LR is ideal for scenarios
requiring explainable
decisions, such as compliance
audits  or  analyst-driven
investigations.

3. Address Class Imbalance:

o Implement techniques like
SMOTE, undersampling, or
cost-sensitive learning to
improve detection of rare
attack types.
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4. Tune Decision Thresholds:

o Adjust thresholds to balance
precision vs. recall based on
operational needs (e.g.,
reduce false alarms vs. catch
more attacks).

5. Integrate Feature Engineering
Pipelines:
o Maintain consistent

preprocessing (e.g., scaling,
encoding) across training and
deployment to ensure model
reliability.

6. Deploy Ensemble Models:

o Combine LR and RF or
integrate with other models
(e.g., Gradient Boosting) for
enhanced performance.

9. Suggestions for Future Work
To further improve IDS performance and
applicability, the following suggestions are
made:

1. Use Real-Time Streaming Data:

o Extend the model to handle
live traffic using tools like
Kafka, Zeek, or Bro for real-
time intrusion detection.

2. Explore Deep Learning Models:

o Investigate LSTM, CNN, or
Transformer-based
architectures for temporal and
sequential attack patterns.

3. Incorporate Explainability Tools:

o Use SHAP or LIME to provide
interpretable  outputs  for
complex models like RF and
ensembles.

4. Enhance Dataset Diversity:

o Collect and Ilabel modern
network traffic including
encrypted protocols (HTTPS),

loT  devices, and cloud
environments.
5. Implement Feedback Loops:

o Design systems that allow
analyst feedback to
continuously improve model
accuracy and adapt to evolving
threats.

6. Combine Supervised and
Unsupervised Learning:

o Integrate anomaly detection
techniques to identify zero-
day attacks and novel threats.
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