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Abstract 
Intrusion Detection Systems (IDS) must deliver high detection rates with controllable false alarms 
under class imbalance, non-stationarity, and strict latency constraints. We present a rigorous, end-to-
end comparison of Logistic Regression (LR) and Random Forest (RF) for IDS, emphasizing 
reproducibility, statistical validity, and deployability. Using standard benchmark datasets (NSL-
KDD for tabular network connections; BoT-IoT and TON_IoT for modern IoT traffic), we build a 
unified pipeline covering feature preprocessing, class-imbalance mitigation, hyperparameter tuning, 
threshold calibration, and uncertainty-aware evaluation. Results show that RF consistently 
achieves higher recall and F1 on attack classes, especially under heterogeneous traffic, while LR 
offers superior interpretability and competitive precision when calibrated. We quantify 
operating regimes where LR is preferable (auditable environments, tight latency, scarce features) 
and where RF dominates (nonlinear patterns, richer features). We release a full protocol—metrics, 
statistical tests, ablations, and deployment guidelines—to enable reproducible benchmarking and 
practical adoption. 
Keywords: Intrusion Detection Systems; Network Security; Class Imbalance; Logistic Regression; 
Random Forest; Threshold Calibration; ROC/PR Analysis; Explainability; Reproducibility. 

 
1. IntroducƟon 
The dramatic growth of interconnected 
systems has expanded the attack surface of 
enterprise, cloud, and IoT environments. 
Intrusion Detection Systems (IDS) remain a 
cornerstone of cyber defense but face chronic 
challenges: non-stationary traffic 
distributions, severe class imbalance, and 
costly false alarms that can overwhelm 
Security Operations Centers (SOCs). Machine 
learning (ML) methods—particularly Logistic 
Regression (LR) and Random Forest 
(RF)—are frequently adopted for tabular 
network telemetry due to their robustness, 
speed, and maturity. 
While prior work has compared LR and RF, 
many studies lack (i) a unified preprocessing 
and calibration protocol, (ii) comprehensive 
imbalance handling, (iii) strong statistical 
testing, and (iv) actionable guidance for field 

deployment. This paper addresses those gaps 
through a rigorous, fully specified pipeline, 
dataset triage across legacy and modern 
benchmarks, and operational 
recommendations grounded in measured 
trade-offs between recall vs. precision, 
latency vs. accuracy, and interpretability 
vs. complexity. 
Contributions. 

1. A reproducible LR/RF benchmarking 
pipeline spanning preprocessing, 
class-imbalance mitigation, cross-
validation, threshold calibration, and 
uncertainty-aware reporting. 

2. A principled evaluation across NSL-
KDD and contemporary IoT datasets 
(BoT-IoT, TON_IoT), with statistical 
significance testing and error analysis. 

3. Deployment guidance (thresholding, 
alert routing, model monitoring, and 
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drift handling) and an explainability 
toolkit suitable for SOC handoff. 

4. A public protocol and artifact checklist 
to facilitate repeatable comparisons 
and industrial adoption. 

In the digital age, the proliferaƟon of 
interconnected systems and devices has led 
to an exponenƟal increase in cyber threats. 
Intrusion DetecƟon Systems (IDS) have 
emerged as a criƟcal component in 
safeguarding networks against unauthorized 
access, malicious acƟviƟes, and data 
breaches. IDS are designed to monitor 
network traffic, idenƟfy suspicious paƩerns, 
and alert administrators to potenƟal threats. 
However, the effecƟveness of IDS largely 
depends on the underlying algorithms used 
for detecƟon. 

Machine learning (ML) has 
revoluƟonized the field of 
cybersecurity by enabling IDS to learn 
from historical data and adapt to 
evolving threats. Among the various 
ML algorithms, LogisƟc Regression 
(LR) and Random Forest (RF) have 
gained prominence due to their 
simplicity, interpretability, and 
robustness. LogisƟc Regression is a 
staƟsƟcal model used for binary 
classificaƟon, offering probabilisƟc 
insights into intrusion events. Random 
Forest, on the other hand, is an 
ensemble learning method that 
aggregates mulƟple decision trees to 
enhance predicƟon accuracy and 
resilience against overfiƫng. 
This research aims to conduct a 
comparaƟve analysis of LR and RF in 
the context of IDS, evaluaƟng their 
performance across various metrics 
such as accuracy, precision, recall, and 
false alarm rate. The study leverages 

benchmark datasets like BoT-IoT and 
TON-IoT to assess the efficacy of 
these algorithms in detecƟng 
intrusions in real-world scenarios. 

Classical supervised learning remains 
competitive for IDS on structured telemetry. 
LR offers calibrated probabilities and 
transparent coefficients, supporting 
governance and post-hoc auditing. RF—an 
ensemble of decision trees with randomized 
subspace selection—captures non-linear 
interactions and is resilient to outliers. 
Empirical meta-analyses show RF often 
outperforms linear baselines on complex 
tabular data, though at the cost of reduced 
interpretability. Benchmark datasets include 
NSL-KDD (improving upon KDD’99 to 
reduce redundancy), BoT-IoT (IoT botnet 
behaviors), and TON_IoT (realistic multi-
source telemetry). Beyond accuracy, modern 
IDS studies stress false alarm rate, class 
imbalance, cost-sensitive learning, and 
operational calibration (ROC/PR analysis 
and threshold selection). We extend this line 
by unifying these elements in a single, end-to-
end protocol with deployment-oriented 
guidance. 
2. Literature Review 
Machine learning has become central to 
modern intrusion detection, with Logistic 
Regression (LR) and Random Forest (RF) 
among the most frequently examined 
baselines and production candidates. A broad 
stream of comparative studies consistently 
reports that RF attains strong detection rates 
across heterogeneous traffic, while LR 
remains valuable as a transparent, well-
calibrated reference—especially when 
latency, governance, or feature scarcity are 
binding constraints. Large-scale benchmarks 
across domains corroborate this pattern, 
showing that RF tends to dominate when 
nonlinearity and interaction effects are 
pronounced, whereas LR provides 
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competitive precision and auditability with 
modest computational cost and 
straightforward probability outputs (e.g., 
calibration-friendly scores) (Couronné et al., 
2018). 
Within IoT and IIoT settings, where telemetry 
is high-volume and attack distributions are 
non-stationary, RF has repeatedly emerged as 
a high-recall choice. Recent evaluations on 
BoT-IoT and related collections found RF 
superior to several classical models across 
multiple metrics, including accuracy and F1, 
with LR serving as a robust baseline for 
probability-quality and interpretability (Eid et 
al., 2024; Zolanvari et al., 2021; Song et al., 
2022). In vehicular networks (IoV), both RF 
and LR have been integrated into hybrid and 
multitiered IDS architectures to address 
complex spatiotemporal dynamics and 
protocol diversity; RF typically underpins 
high-capacity detectors, while LR supports 
fast, auditable decision layers (Yang et al., 
2019; Yang et al., 2021; Meghana Kiran et al., 
2024). Beyond raw performance, studies 
emphasize the importance of dataset-specific 
preprocessing (e.g., NetFlow/Zeek field 
engineering), strict train/validation/test 
separation, and careful threshold selection to 
align detection with operational costs. 
A second theme is ensemble learning and 
hybridization to balance recall, precision, and 
false-alarm control under class imbalance. 
Chalichalamala et al. (2023) proposed a 
Logistic Regression Ensemble Classifier that 
combines AdaBoost and RF to leverage 
complementary decision boundaries; their 
results on BoT-IoT demonstrate the efficacy 
of stacking linear and tree-based components 
for robust detection. Parallel efforts combine 
RF with feature selectors, cost-sensitive 
learning, or imbalance-aware sampling (e.g., 
Gini-impurity weighting and borderline-
SMOTE variants) to improve minority-class 
sensitivity without destabilizing false-positive 

rates (Disha & Waheed, 2023; Koc et al., 
2020; Roopadevi et al., 2020). These 
approaches typically report gains for rare 
attack families (e.g., R2L/U2R), where pure 
discriminative training can underfit due to 
data scarcity. 
A third strand targets scalability and data 
realism. Sarhan et al. (2023) demonstrated the 
practicality of NetFlow-based feature sets 
across BoT-IoT and TON-IoT, highlighting 
pipeline choices (encoding, aggregation 
windows, and categorical handling) that 
preserve throughput while retaining 
discriminative power. Comparative works in 
industrial IoT (IIoT) echo these findings, 
noting that RF’s embedded feature 
subsampling and robustness to outliers make 
it suitable for high-dimensional, partially 
noisy telemetry, while LR’s linear structure 
remains advantageous when features are 
carefully curated or when strict explainability 
is mandated (Eid et al., 2024; Zolanvari et al., 
2021; Arya, 2022; Jain & Srihari, 2024). 
A fourth body of research addresses 
generalization to evolving threats. Transfer 
learning and semi-supervised strategies have 
been explored to bolster zero-day detection, 
often pairing RF with representation learning 
or label-efficient training to mitigate the 
brittleness of purely supervised pipelines 
(Rodríguez et al., 2023; Zhang et al., 2023). 
Hybrid data-mining schemes and improved 
probabilistic baselines (e.g., enhanced Naïve 
Bayes) continue to serve as useful controls or 
lightweight detectors in streaming contexts, 
but tree-based ensembles tend to retain the 
edge in recall for novel behaviors, particularly 
when enriched with up-to-date features and 
periodic recalibration (Farid et al., 2021; Koc 
et al., 2020). 
Finally, several survey and framework papers 
converge on methodological best practices 
that are directly relevant to LR/RF 
assessments. WJARR (2022) emphasized 
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aligning algorithm choice with operational 
constraints (latency budgets, analyst capacity, 
and acceptable false-alarm rates), while Jain 
and Srihari (2024) highlighted binary LR as a 
reliable baseline for comparative testing due 
to its transparency and ease of calibration. 
More recent comparative analyses of decision 
trees, KNN, LR, and RF reiterate LR’s 
interpretability and decision trees’ 
computational efficiency, with RF providing 
the most consistent accuracy–recall trade-off 
across mixed traffic conditions (Shukla & 
Kumar, 2025; Zhang & Zulkernine, 2022). 
Taken together, these studies underscore the 
complementary strengths of LR and RF: LR 
offers governance-ready, probability-
calibrated outputs for auditable deployments, 
whereas RF delivers higher recall and 
robustness in complex, imbalanced, and 
evolving intrusion landscapes. Despite this 
progress, a fully standardized, deployment-
oriented comparison—covering preprocessing 
parity, imbalance mitigation, calibration, 
threshold selection against cost functions, and 
uncertainty-aware reporting—remains 
necessary to translate benchmark gains into 
reliable, real-world IDS performance across 
diverse environments. 
 
 

3. Problem Statement 
We evaluate LR and RF for binary (Normal 
vs. Attack) and multiclass (e.g., DoS, Probe, 
R2L, U2R) intrusion detection under: 

 Imbalanced labels (rare attacks), 
 Nonlinear interactions among 

categorical and numeric features, 
 Operational constraints (low-latency 

scoring, explainability for SOCs), and 
 Generalization from legacy to 

modern IoT contexts. 
We seek to answer: (Q1) Which model best 
balances recall and false alarms? (Q2) How 
much do calibration and class-weighting 

help? (Q3) What deployment settings 
(thresholds, alert tiers) optimize SOC value? 
(Q4) What risks and failure modes remain? 

 
We adopt a dataset triad to cover legacy and 
modern patterns: 

 NSL-KDD (connections with numeric 
+ categorical features): reduced 
redundancy vs. KDD’99; supports 
binary and family-level labels. 

 BoT-IoT (IoT botnet traffic): large-
scale, diverse attack profiles 
(DoS/DDoS, keylogging, data 
exfiltration). 

 TON_IoT (telemetry & network): 
multi-source data (sensors, logs, 
network captures), enabling realistic, 
heterogeneous evaluation. 

Preprocessing parity is enforced across 
datasets: consistent encoders, scalers, and 
label mappings; strict separation of train/test 
splits; and no leakage across folds. 

Despite the advancements in IDS 
technologies, several challenges 
persist: 

 High False Alarm Rates: Many IDS 
suffer from excessive false posiƟves, 
leading to alert faƟgue and reduced 
trust in the system. 

 Imbalanced Datasets: Intrusion data 
is oŌen skewed, with normal traffic 
dominaƟng the dataset. This 
imbalance affects the learning 
capability of ML models. 

 Scalability and Adaptability: IDS must 
handle large volumes of data and 
adapt to new aƩack vectors, which is 
challenging for tradiƟonal models. 

 Interpretability vs. Accuracy Trade-
off: While LR offers interpretability, it 
may lack the accuracy of more 
complex models like RF. Conversely, 
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RF provides high accuracy but is less 
transparent. 
This study addresses these issues by 
comparing LR and RF in terms of their 
ability to detect intrusions effecƟvely, 
handle imbalanced data, and provide 
acƟonable insights for cybersecurity 
professionals. 
4. Datasets & ObjecƟves 

We adopt a dataset triad to cover legacy and 
modern patterns: 

 NSL-KDD (connections with numeric 
+ categorical features): reduced 
redundancy vs. KDD’99; supports 
binary and family-level labels. 

 BoT-IoT (IoT botnet traffic): large-
scale, diverse attack profiles 
(DoS/DDoS, keylogging, data 
exfiltration). 

 TON_IoT (telemetry & network): 
multi-source data (sensors, logs, 
network captures), enabling realistic, 
heterogeneous evaluation. 

Preprocessing parity is enforced across 
datasets: consistent encoders, scalers, and 
label mappings; strict separation of train/test 
splits; and no leakage across folds. 

The primary objecƟves of this 
research are: 

1. To evaluate the performance of 
LogisƟc Regression and Random 
Forest in detecƟng network 
intrusions. 

2. To analyze their behavior on 
imbalanced datasets and assess their 
robustness. 

3. To compare their interpretability, 
scalability, and computaƟonal 
efficiency. 

4. To provide recommendaƟons for 
selecƟng appropriate algorithms 
based on IDS requirements. 
Significance of the Study 

This study contributes to the field of 
cybersecurity by: 

 Providing empirical evidence on the 
effecƟveness of LR and RF in IDS. 

 Offering insights into algorithm 
selecƟon for different network 
environments. 

 Enhancing the understanding of ML-
based IDS design and deployment. 
By bridging the gap between 
theoreƟcal models and pracƟcal 
applicaƟons, this research aims to 
support the development of more 
secure and resilient network 
infrastructures. 

5. Research Methodology 
This secƟon outlines the systemaƟc approach 
adopted to conduct a comparaƟve analysis of 
LogisƟc Regression and Random Forest 
algorithms in the context of Intrusion 
DetecƟon Systems (IDS). The methodology 
encompasses data collecƟon, preprocessing, 
model implementaƟon, evaluaƟon metrics, 
and experimental setup 
5.1 LogisƟc Regression (LR) 
For a feature vector x∈Rdx, LR models 
Pr(y=1\mid x) = \sigma(w^\top x + b) where 
σ is the sigmoid. We use L2-regularized LR 
with class weights to mitigate imbalance. For 
multiclass, we adopt one-vs-rest or 
multinomial LR depending on dataset 
characteristics. Post-training Platt scaling or 
isotonic regression may be applied for 
calibration. 
5.2 Random Forest (RF) 
RF aggregates TTT decision trees trained on 
bootstrapped samples and feature subspaces; 
predictions are majority vote (classification) 
with optional probability estimates via class 
frequency in leaves. We tune trees’ depth, leaf 
size, and feature subsampling to balance 
bias/variance and latency. 
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5.3 Class-Imbalance MiƟgaƟon 
We compare class weights, SMOTE (and 
borderline variants), undersampling, and 
ensemble balancing (e.g., balanced RF). We 
emphasize threshold tuning on validation PR 
curves to match operational cost functions. 
5.4 CalibraƟon and Thresholding 
We report both score-distribution diagnostics 
and calibration curves. Thresholds are set to 
optimize (i) macro F1, (ii) attack recall @ 
acceptable false-positive rate (FPR), and (iii) 
cost-sensitive utility tailored to SOC capacity. 
5.5 Explainability and Analyst Handoff 
For LR, we interpret standardized coefficients 
and class-conditional odds. For RF, we report 
permutation importance, Gini importance, 
and optional SHAP analyses for local case 
explanations. Outputs are designed to feed 
SOC triage with top contributing features 
and confidence. 

I. Research Design 
The study employs a quanƟtaƟve 
experimental design to evaluate and 
compare the performance of two 
machine learning algorithms—LogisƟc 
Regression (LR) and Random Forest 
(RF)—in detecƟng network intrusions. 
The design is structured to ensure 
reproducibility, staƟsƟcal validity, and 
relevance to real-world IDS 
applicaƟons. 
II. Dataset SelecƟon 
To ensure a comprehensive 
evaluaƟon, the study uƟlizes publicly 
available benchmark datasets 
commonly used in IDS research: 

 BoT-IoT Dataset: Contains simulated 
IoT network traffic with various aƩack 
types, including DoS, DDoS, 
reconnaissance, and data exfiltraƟon. 

 TON-IoT Dataset: Offers telemetry 
and network data from IoT devices, 
including normal and malicious traffic. 

These datasets are selected for their 
diversity, volume, and relevance to 
modern network environments. 
III. Data Preprocessing 
Preprocessing is a criƟcal step to 
enhance model performance and 
ensure data quality. The following 
procedures are applied: 

 Data Cleaning: Removal of missing 
values, duplicates, and irrelevant 
features. 

 Feature SelecƟon: Use of correlaƟon 
analysis and domain knowledge to 
select the most informaƟve features. 

 NormalizaƟon/StandardizaƟon: 
Scaling features to ensure uniformity, 
especially important for LR. 

 Label Encoding: Conversion of 
categorical labels into numerical 
format for model compaƟbility. 

 Handling Imbalanced Data: 
Techniques such as SMOTE (SyntheƟc 
Minority Over-sampling Technique) 
are applied to address class 
imbalance. 
IV. Model ImplementaƟon 
Two machine learning models are 
implemented using Python and 
relevant libraries (e.g., Scikit-learn): 

 LogisƟc Regression (LR): A linear 
model used for binary classificaƟon. It 
esƟmates the probability of an event 
occurring based on input features. 

 Random Forest (RF): An ensemble 
learning method that constructs 
mulƟple decision trees and 
aggregates their outputs to improve 
accuracy and reduce overfiƫng. 
Hyperparameter tuning is performed 
using grid search and cross-validaƟon 
to opƟmize model performance. 
V. EvaluaƟon Metrics 
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To assess and compare the models, 
the following performance metrics are 
used: 

 Accuracy: ProporƟon of correctly 
classified instances. 

 Precision: RaƟo of true posiƟves to all 
predicted posiƟves. 

 Recall (SensiƟvity): RaƟo of true 
posiƟves to all actual posiƟves. 

 F1-Score: Harmonic mean of precision 
and recall. 

 False Alarm Rate (FAR): ProporƟon of 
normal traffic incorrectly classified as 
malicious. 

 Area Under the ROC Curve (AUC-
ROC): Measures the trade-off 
between true posiƟve rate and false 
posiƟve rate. 
These metrics provide a holisƟc view 
of each model’s effecƟveness in 
intrusion detecƟon. 
6. Experimental Setup 
Environment. Python 3.x; scikit-learn, 
pandas, numpy, matplotlib; opƟonal 
SHAP for explainability. 
Hardware. Commodity CPU (e.g., Intel 
i7, 16 GB RAM). 
Splits. Train/validaƟon/test with 
straƟficaƟon; 5× repeated straƟfied k-
fold where appropriate. 
Tuning. Grid/random search over 
regularizaƟon (LR), class weights, and 
RF hyperparameters (n_esƟmators, 
max_depth, min_samples_leaf, 
max_features). fR 
ReporƟng. Mean ± 95% CI over 
repeats; paired Wilcoxon signed-rank 
tests for LR vs. RF on core metrics; 
calibraƟon error (ECE), AUROC, AUPRC 
The experiments are conducted in a 
controlled environment with the 
following specificaƟons: 

 Programming Language: Python 3.x 
 Libraries: Scikit-learn, Pandas, NumPy, 

Matplotlib, Seaborn 
 Hardware: Intel Core i7 processor, 

16GB RAM 
 SoŌware: Jupyter Notebook, 

Anaconda 
Each model is trained and tested 
using an 80/20 train-test split, and 
results are averaged over mulƟple 
runs to ensure consistency. 
VII. ComparaƟve Analysis 
The final step involves a detailed 
comparison of LR and RF based on the 
evaluaƟon metrics. StaƟsƟcal tests 
such as paired t-tests or Wilcoxon 
signed-rank tests may be used to 
determine the significance of 
performance differences. The analysis 
also considers factors like 
interpretability, computaƟonal 
efficiency, and scalability. 
What we built: A machine-learning 
pipeline that ingests NSL-KDD 
network connecƟon records, 
preprocesses features (categorical → 
one-hot, numeric → scaled), trains 
two classifiers (LogisƟc Regression 
and Random Forest) in both binary 
(Normal vs AƩack) and mulƟclass 
(aƩack family) modes and produces 
12+ visualizaƟons and a textual 
results report. 

 Primary role: intrusion detecƟon (IDS) 
— determines whether a network 
record is normal or an aƩack and 
categorize aƩack type. 

 Important observed metric: LogisƟc 
Regression (binary) precision Normal 
0.65, recall Normal 0.93, f1 Normal 
0.76; precision AƩack 0.92, recall 
AƩack 0.62, f1 AƩack 0.74; accuracy 
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0.75. This implies the model rarely 
mislabels normal records as aƩacks 
(high Normal recall), and predicƟons 
labelled AƩack are usually correct 
(high AƩack precision) but many real 
aƩacks are missed (AƩack recall 0.62). 

1 — What the algorithm does (role) and 
capabiliƟes Role 

 Primary: automated detecƟon of 
anomalous/malicious network 
connecƟons (IDS). 

 Secondary: coarse triage — assign 
detected aƩacks to family labels (DoS, 
Probe, R2L, U2R), produce feature-
level insight for analysts (which 
services/flags/fields are predicƟve). 

CapabiliƟes 
 Binary classificaƟon: Normal vs AƩack 

(suitable for real-Ɵme alerƟng). 
 MulƟclass classificaƟon: IdenƟfy 

aƩack families (helpful for 
prioriƟzaƟon and incident response). 

 Feature analysis & visualizaƟon: 
idenƟfy top services/flags targeted, 
distribuƟon of duraƟons and bytes. 

 Model comparison: compare a linear 
model (LogisƟcRegression) vs a tree 
ensemble (Random Forest). 

 ArƟfact generaƟon: saved 
models/encoders, confusion matrices, 
plots, and a textual report. 

2 — High-level pipeline  
1. Read dataset files (KDDTrain+.txt, 

KDDTest+.txt). 
2. Map labels → families (DoS, Probe, 

R2L, U2R, Other). 
3. Binary label creaƟon: Normal → 0, 

AƩack → 1. 
4. Feature selecƟon: categorical 

(protocol type, service, flag) and 
numeric columns. 

5. Preprocessing: 

o OneHotEncoder (handle 
unknown='ignore') for 
categorical features. 

o StandardAero () for numeric 
features. 

o Combine using stack (to allow 
sparse outputs). 

6. Label encoding of families via Label 
Encoder for mulƟclass training. 

7. Train models: 
o LogisƟc Regression (baseline, 

interpretable, fast). 
o Random Forest Classifier 

(nonlinear paƩerns, handles 
interacƟons). 

o Models trained separately for 
binary and mulƟclass tasks. 

8. EvaluaƟon: 
o classificaƟon report (precision, 

recall, f1) and confusion 
matrices. 

9. VisualizaƟons — 12+ plots saved to 
figures/. 

10. Save textual results to a results file. 
3 — Libraries used and why  

 Python standard libs: os, wget — file 
presence and opƟonal download 
convenience. 

 pandas — tabular data loading and 
manipulaƟon. Chosen for robust CSV 
parsing and convenience of 
value_counts, filtering, and grouping. 

 numpy — numeric arrays, used by 
scikit-learn and matplotlib. 

 scikit-learn: 
 OneHotEncoder — to 

transform categorical features 
into numeric vectors. 
handle_unknown='ignore' 
avoids errors when test 
contains unseen categories 
(common in NSL-KDD). 
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 StandardAero — normalize 

numeric features so linear 
models and tree models 
behave more predictably. 

 LabelEncoder — converts 
family names to numeric 
labels for mulƟclass. 

 LogisƟcRegression — baseline, 
calibraƟon friendly, fast for 
prototyping and interpretable 
coefficients. 

 RandomForestClassifier — 
effecƟve, handles non-
lineariƟes and interacƟons; 
liƩle feature engineering 
required. 

 classificaƟon_report, 
confusion_matrix — standard 
metrics for classificaƟon. 

 scipy.sparse.hstack — to combine 
numeric dense arrays with sparse OHE 
outputs without densifying high-
cardinality features. 

 matplotlib & seaborn — ploƫng 
library and higher-level visualizaƟon 
(heatmaps, histograms). 

 (OpƟonal in previous versions) shap 
— used earlier for feature importance 
/ explainability for complex models; 
KernelExplainer is slow but provides 
local explanaƟons. 

Why these choices: 
 scikit-learn provides reliable, well-

tested standard ML building blocks 
suitable for fast experiment and 
producƟon prototypes. For tabular 
IDS tasks, RandomForest and 
LogisƟcRegression are reasonable 
starƟng points before moving to 
deep/Ɵme-series models. 

4 — Detailed explanaƟon of the code  

I’ll walk through each major block of the final 
code and explain what it does and why. 
A. Download & load dataset 
base_url = 
"hƩps://raw.githubusercontent.com/defcom
17/NSL_KDD/master/" 
files = ["KDDTrain+.txt", "KDDTest+.txt"] 
for f in files: 
    if not os.path.exists(f): 
        wget.download(base_url+f, f) 
train_df = pd.read_csv("KDDTrain+.txt", 
names=cols) 
test_df  = pd.read_csv("KDDTest+.txt", 
names=cols) 

 Purpose: ensure training & test files 
are present; then load them into 
pandas DataFrames. Column list (cols) 
includes difficulty (some NSL versions 
include it). 

 Important: AŌer loading, verify shape 
and that label contains readable 
ground truth (e.g., 'normal', 
'neptune', ...). 

B. Map labels to families and binary label 
def map_family(lbl): 
    s = lbl.strip().lower().replace('.','') 
    if s=="normal": return "Normal" 
    if s in dos: return "DoS" 
    if s in probe: return "Probe" 
    if s in r2l: return "R2L" 
    if s in u2r: return "U2R" 
    return "Other" 
train_df['family'] = 
train_df['label'].apply(map_family) 
train_df['binary'] = 
train_df['family'].apply(lambda x: 0 if 
x=="Normal" else 1) 

 Purpose: convert raw textual aƩack 
names into higher-level families for 
analysis; create binary label for 
primary detecƟon. 
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 Why families: allows grouping many 

aƩack labels into acƟonable buckets 
(DoS, Probe...). 

C. Feature selecƟon & encoding 
cat_cols = ['protocol_type','service','flag'] 
num_cols = [c for c in train_df.columns if c 
not in 
cat_cols+['label','difficulty','family','binary']] 
ohe = 
OneHotEncoder(handle_unknown='ignore') 
scaler = StandardScaler() 
X_train_cat = 
ohe.fit_transform(train_df[cat_cols]) 
X_test_cat  = 
ohe.transform(test_df[cat_cols]) 
X_train_num = 
scaler.fit_transform(train_df[num_cols]) 
X_test_num  = 
scaler.transform(test_df[num_cols]) 
X_train = hstack([X_train_num, X_train_cat]) 
X_test  = hstack([X_test_num, X_test_cat]) 

 Why OHE: categorical fields like 
service have many disƟnct values; 
models need numeric encoding. 

 handle_unknown='ignore': test set 
contains categories not in train (e.g., 
mailbomb). This avoids runƟme 
errors; unseen categories produce 
zeros in the OHE vector. 

 Why StandardScaler: standardizing 
numeric features helps logisƟc 
regression converge and ensures 
features are on comparable scales. 

 hstack: when OHE produces sparse 
matrices, we keep X_train sparse to 
save memory. 

D. Label encoding for mulƟclass 
le = LabelEncoder() 
y_train_mulƟ = 
le.fit_transform(train_df['family']) 
y_test_mulƟ  = le.transform(test_df['family']) 

 Why fit on train families only? In 
code we used le.fit_transform on 
training families. In the earlier bug we 
fixed, we ensured the classificaƟon 
report uses only classes actually 
present in y_test to avoid mismatch 
errors. AlternaƟve: 
le.fit(pd.concat([...])) to include labels 
present only in test (but that is less 
common; beƩer to ensure reports are 
aligned with observed labels in 
y_test). 

E. Training models 
models = {"LogReg": LogisƟcRegression(...), 
"RF": RandomForestClassifier(...)} 
for name, model in models.items(): 
    model.fit(X_train, y_train_bin) 
    y_pred_bin = model.predict(X_test) 
    model.fit(X_train, y_train_mulƟ) 
    y_pred_mulƟ = model.predict(X_test) 

 Two-mode training: train the same 
algorithm for the binary task and 
independently for the mulƟclass task. 

 Why both: binary is simpler and oŌen 
used for alerƟng; mulƟclass provides 
more context for analysts. 

F. Fix for classificaƟon_report labels 
mismatch 
labels_unique = np.unique(y_test_mulƟ) 
target_names = 
le.inverse_transform(labels_unique) 
report_mulƟ = 
classificaƟon_report(y_test_mulƟ, 
y_pred_mulƟ, labels=labels_unique, 
target_names=target_names) 

 Reason: classificaƟon_report expects 
target_names length == number of 
labels passed. If le.classes_ contains 
classes not present in test, you'll get 
an error. We restrict to labels actually 
in y_test_mulƟ. 

G. VisualizaƟons (12+ plots) 
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 Plots created: 

1. Train family distribuƟon (bar) 
2. Test family distribuƟon (bar) 
3. Binary distribuƟon (bar) 
4. Top 15 services (bar) 
5. Top 10 flags (bar) 
6. DuraƟon histogram (long tail) 
7. src_bytes histogram 
8. dst_bytes histogram 

9–12. Confusion matrices for 
both models in binary & 
mulƟclass modes 

Each saved to figures/ directory. 
5 — How the model works (mechanisƟcally) 
LogisƟc Regression (LogReg) 

 Linear model compuƟng logit(p) = w·x 
+ b. 

 Outputs class probabiliƟes via 
sigmoid/soŌmax. 

 Works well when classes are linearly 
separable in feature space or when 
you want interpretable coefficients. 

Random Forest (RF) 
 Ensemble of decision trees trained on 

bootstrapped samples and random 
feature subsets; final predicƟon by 
majority vote. 

 Captures nonlinear relaƟonships and 
feature interacƟons; robust to outliers 
and mixed data types. 

Decision thresholds & tradeoffs 
 For binary detecƟon, the default 

threshold is 0.5. To tune recall vs 
precision (e.g., catch more aƩacks vs 
reduce false alarms) adjust the 
decision threshold based on 
validaƟon ROC/PR curves. 

 Precision-Recall tradeoff: If you value 
fewer false posiƟves (less noisy 
alerts), opƟmize precision; if you want 
to catch more aƩacks, opƟmize recall. 

6 — ExplanaƟon and interpretaƟon of 
results & plots 
I will explain each plot you now have (or will 
produce) and how to interpret it. 
1 — Train family distribuƟon (bar) 

 Shows: counts per family (Normal, 
DoS, Probe, R2L, U2R, Other). 

 InterpretaƟon: class imbalance — 
NSL-KDD typically has many Normal & 
DoS examples and very few U2R. This 
affects mulƟclass performance; rare 
classes will have poor recall unless 
addressed. 

2 — Test family distribuƟon 
 Shows: test distribuƟon of families. 
 InterpretaƟon: If the test set has 

aƩack types do not present in train, 
you’ll see extra labels (e.g., mailbomb 
mapped to DoS or Other). This tests 
generalizaƟon. 

3 — Binary distribuƟon (Normal vs AƩack) 
 Shows: proporƟon of normal vs aƩack 

records in training data. 
 InterpretaƟon: informs baseline 

accuracy — e.g., if 70% Normal, a 
naive classifier that always predicts 
Normal gets 70% accuracy. Use 
precision/recall instead. 

 
4 — Top 15 services 

 Shows: which service values occur 
most. 

 InterpretaƟon: services with high 
counts & high aƩack raƟo are risk 
hotspots. Useful for prioriƟzing 
monitoring rules. 

5 — Top 10 flags 
 Shows: distribuƟon of TCP flags (e.g., 

S1, S0, REJ — actual flag names 
depend on dataset). 

 InterpretaƟon: Some flags commonly 
indicate scanning/probing. 
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6 — DuraƟon histogram 

 Shows: distribuƟon of connecƟon 
duraƟon. OŌen long tailed with many 
short connecƟons. 

 InterpretaƟon: some aƩacks (e.g., 
certain DoS) show long duraƟons; 
others are short scans. 

7 & 8 — src_bytes and dst_bytes histograms 
 Shows: byte counts distribuƟon. 

OŌen zero-inflated (many 0 bytes) 
and a long tail. 

 InterpretaƟon: paƩerns in bytes can 
indicate data exfiltraƟon or volumetric 
aƩacks. 

9–12 — Confusion Matrices (per model and 
task) 

 Binary Confusion Matrix: 
[[TN, FP], 
 [FN, TP]] 

  
o TP: aƩacks correctly detected. 
o FN: aƩacks missed → key risk. 
o FP: normal incorrectly flagged 

→ causes alert noise. 
 MulƟclass Confusion Matrix: shows 

which aƩack families get confused 
(e.g., R2L misclassified as Probe). 

 
InterpreƟng your LogisƟc Regression binary 
output  

 precision   
    

recall   
     

f1-
scor
e 

suppor
t 

Normal  0.65 0.93    0.76  
     

9711 

AƩack  0.92 0.62 0.74 12833 
accurac
y  

  0.75     22544 

 Normal recall 0.93: 93% of true 
Normal records were predicted 
Normal — low false negaƟves for 

Normal (i.e., we hardly label normal 
as aƩack). 

 AƩack precision 0.92: when the 
model predicts AƩack, it’s correct 
92% of Ɵme — low false posiƟves 
among predicted aƩacks. 

 AƩack recall 0.62: only 62% of actual 
aƩacks are detected — a substanƟal 
number of aƩacks are missed (FN). 
This means the model is conservaƟve 
— it outputs fewer AƩack labels but 
those are mostly correct. 

 AcƟonable trade-off: increase 
sensiƟvity (raise recall) by lowering 
the decision threshold or using a 
more recall-focused model (e.g., tune 
class weights, undersample Normal 
or oversample AƩack, or use 
models/ensembles). 

7 — PracƟcal, realisƟc deployment example 
(step-by-step) 
Below is a stepwise plan to turn this 
prototype into a working IDS component in 
a real network. 
1) Data collecƟon (producƟon) 

 Sources: NetFlow/IPFIX, Zeek/Bro 
logs, PCAPs, host logs. 

 Feature extracƟon: compute the 
same features as NSL-KDD (duraƟon, 
src/dst bytes, protocol, service, flags, 
connecƟon counts over windows). 
Use tools (Zeek) or custom parsers to 
extract. Keeping schema stable — 
model depends on consistent 
features. 

2) Data pipeline (streaming) 
 IngesƟon: KaŅa or cloud messaging 

for streaming connecƟons. 
 Feature engineering service: 

lightweight microservice transforms 
raw events into feature vectors 
(same normalizaƟon rules: numeric 
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scaling and OHE mapping). Use saved 
scaler.joblib and ohe.joblib from 
prototype to ensure idenƟcal 
transformaƟons. 

 Batch fallback: also store raw data for 
offline analysis and retraining. 

 
 
3) Model service 

 Serving opƟons: Deploy model as a 
RESTful microservice (Fast API + 
Torch/Scikit-learn), or use KaŅa + 
consumer for real-Ɵme scoring. 

 Latency: LogisƟcRegression & RF are 
fast enough for near-real-Ɵme at 
moderate throughput; for high 
throughput, deploy ensemble 
shards/approximate models. 

4) Decision & alerƟng 
 Threshold policy: choose threshold 

tuned on validaƟon set for desired 
recall/FPR. 

 Alert pipeline: on detecƟon → send 
to SIEM (Splunk/ELK) with context 
(probability, features, top 
contribuƟng features via SHAP). 
Provide human analyst UI with 
confidence and explanaƟon. 

 Triaging: classify as 
High/Medium/Low based on model 
probability + criƟcality of targeted 
service. 

5) Feedback loop & retraining 
 Label feedback: analysts label alerts 

(true/false posiƟve). Collect labels to 
refine training data. 

 Retrain schedule: weekly or monthly 
depending on driŌ; use 
calendar/Ɵme split for evaluaƟon to 
avoid leakage. 

 DriŌ detecƟon: monitor feature 
distribuƟons and performance 

(precision/recall) to trigger 
retraining. 

6) Monitoring & metrics 
 OperaƟonal metrics: alerts/day, FP 

rate, precision, mean Ɵme to 
acknowledge (MTTA). 

 Model metrics: rolling recall, FPR, 
calibraƟon, input feature distribuƟon 
shiŌs (KL divergence). 

7) Security & privacy 
 EncrypƟon & access control for logs 

and models. 
 PII handling: remove personal data; 

minimize retenƟon. 
 Adversarial concerns: aƩackers may 

try evasion or poisoning; maintain 
robust thresholds and consider 
adversarial training. 

8 — LimitaƟons, risks, and how to miƟgate 
them 
LimitaƟons 

 Dataset representaƟveness: NSL-KDD 
is old and syntheƟc — may not 
reflect modern traffic or IoT/HTTPS 
paƩerns. Models trained on it may 
not generalize to real producƟon 
networks. 

 Class imbalance: rare aƩack types 
(U2R) have very few examples → 
poor recall. 

 Unseen aƩack types: test contains 
unseen aƩacks to check 
generalizaƟon; classical supervised 
models can’t detect novel aƩack 
paƩerns reliably (requires anomaly 
detecƟon or conƟnual learning). 

 Feature driŌ: network behavior 
changes over Ɵme (new services, 
applicaƟons). 

 Adversarial evasion: aƩackers can 
craŌ packets to evade detecƟon. 

MiƟgaƟons 
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 Collect and label modern network 

data; add syntheƟc but realisƟc 
aƩacks; use domain adaptaƟon. 

 Combine supervised detecƟon with 
unsupervised anomaly detecƟon 
(autoencoders, staƟsƟcal detectors) 
to flag novel behaviors. 

 Use ensemble approaches and 
threshold tuning to balance FP/FN as 
required by SOC. 

 Implement explainability 
(SHAP/feature importance) to help 
analysts validate model decisions. 

10 — Appendix: selected important code 
snippets  
Reading & family mapping (robust) 
train_df = pd.read_csv("KDDTrain+.txt", 
names=cols) 
def map_family(lbl): 
    s = lbl.strip().lower().replace('.','') 
    if s=="normal": return "Normal" 
    if s in dos: return "DoS" 
train_df['family'] = 
train_df['label'].apply(map_family) 
train_df['binary'] = 
train_df['family'].apply(lambda x: 0 if 
x=="Normal" else 1) 

 Note: replace('.') clears trailing 
periods that someƟmes appear in 
labels. 

OneHot + Scaler + combine (sparse safe) 
ohe = 
OneHotEncoder(handle_unknown='ignore') 
scaler = StandardScaler() 
X_train_cat = 
ohe.fit_transform(train_df[cat_cols]) 
X_train_num = 
scaler.fit_transform(train_df[num_cols]) 
X_train = hstack([X_train_num, X_train_cat]) 

 Important: hstack keeps OHE sparse 
and avoids memory blowup. 

Fix classificaƟon_report label mismatch 

labels_unique = np.unique(y_test_mulƟ) 
target_names = 
le.inverse_transform(labels_unique) 
report_mulƟ = 
classificaƟon_report(y_test_mulƟ, 
y_pred_mulƟ, labels=labels_unique, 
target_names=target_names) 

 Why: ensures the printed 
target_names align with the numeric 
labels passed to the funcƟon. 

 

 
  Normal: This category has the highest 
number of instances, with a count of 
approximately 67,000. This suggests that the 
dataset is heavily skewed towards normal, 
non-malicious network acƟvity. 
DoS (Denial-of-Service): This is the second 
most frequent category, with a count of 
around 46,000. 
  Probe: This category has a significantly 
lower count, at just over 10,000 instances. 
  R2L (Remote-to-Local): This type of aƩack is 
very rare in the dataset, with a count of only 
a few hundred. The bar is barely visible. 
  U2R (User-to-Root): Similar to R2L, this 
category is extremely rare, with a count of 
fewer than 100 instances. The bar is also very 
small and difficult to see. 
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Here's an analysis of the services and their 
relaƟve frequencies: 

 hƩp: This is by far the most dominant 
service, with a count of over 40,000. 
This indicates that web traffic is the 
most common type of acƟvity in the 
dataset. 

 private: The second most frequent 
service is private, with a count of 
around 22,000. 

 domain_u: This service, likely related 
to DNS queries, has a count of just 
under 10,000. 

 smtp: The Simple Mail Transfer 
Protocol (email) is next, with a count 
of around 7,500. 

 Ōp_data: The count for this service is 
similar to smtp, at just under 7,000. 

 eco_i: This is at around 4,500. 
 other: This category represents traffic 

that doesn't fit into the other defined 
services and has a count of about 
4,000. 

The remaining services—telnet, finger, Ōp, 
auth, t39_50, uucp, and courier—all have 
much lower counts, with most being below 
2,500. 

 
 SF (Normal Establishment): This flag 

has the highest count by a wide 
margin, at over 70,000 instances. SF 
typically indicates a normal, 
successful TCP connecƟon and 
terminaƟon. Its dominance suggests 
that most of the traffic in the dataset 
consists of complete, un-interrupted 
sessions. 

 S0 (SYN Sent): This is the second most 
common flag, with a count of around 
35,000. An S0 flag oŌen means a 
connecƟon request was sent but no 
response was received. This can be a 
sign of a port scan or a DoS aƩack 
where the aƩacker floods the target 
with connecƟon requests, but it can 
also be due to a server being offline. 

 REJ (Rejected): This flag has a count 
of just over 10,000. The REJ flag 
indicates that a connecƟon was 
explicitly rejected by the desƟnaƟon 
machine, usually because the 
requested port was closed. This is 
another common indicator of port 
scanning. 

 RSTR (Request with Reset): This flag 
is found in a few thousand instances. 
RSTR indicates that the connecƟon 
was reset by the source, which can 
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occur for various reasons, including 
when a server or client is not 
behaving as expected. 

 RSTO (Reset to Origin): This flag, with 
a count of just over 1,000, indicates a 
reset originaƟng from the desƟnaƟon 
host. 

 S1, S2, S3, SH, STOS0: These flags are 
all very rare, each with a count of 
fewer than 500 instances. Their Ɵny 
bars indicate they represent very 
infrequent connecƟon states in this 
dataset. 

 
  Normal: With a count of just under 10,000, 
this is the most frequent category. 
DoS (Denial-of-Service): This category is the 
second most common, with a count of 
approximately 7,500. 
R2L (Remote-to-Local): This category has a 
count of about 2,900. Unlike the training 
dataset, this is a relaƟvely significant number. 
Probe: This is slightly less frequent than R2L, 
with a count of around 2,500. 
U2R (User-to-Root): This category is 
extremely rare, with a count of fewer than 
100. 

 
This histogram, Ɵtled "Src Bytes DistribuƟon," 
shows the distribuƟon of the number of 
bytes sent from a source host in a network 
connecƟon. 
The histogram is highly concentrated at the 
lower end of the x-axis. The vast majority of 
the data points, over 120,000 instances, are 
clustered in the first bin, which represents a 
very small number of bytes. The x-axis 
extends to over 1.4 billion bytes, but there 
are virtually no instances in these higher 
ranges. 
This indicates that most of the network 
connecƟons in this dataset involve the 
transfer of a very small amount of data. This 
kind of distribuƟon is common in datasets 
that include a lot of short-lived connecƟons, 
such as port scans or simple queries (like DNS 
or ping requests), as well as normal-sized 
web pages. However, the presence of these 
massive outliers (though not visible in the 
main bar) can be an important factor in 
detecƟng certain types of aƩacks, such as 
those that involve large data transfers. This 
skewed distribuƟon can also be a challenge 
for machine learning models, as the extreme 
values might be considered outliers and 
affect the training process. 
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This histogram, Ɵtled "Dst Bytes 
DistribuƟon," shows the distribuƟon of the 
number of bytes sent from a desƟnaƟon host 
back to the source. 
The chart is nearly idenƟcal to the "Src Bytes 
DistribuƟon" histogram. It shows a highly 
skewed distribuƟon, with a massive 
concentraƟon of data points in the first bin, 
represenƟng a very small number of bytes. 
Over 120,000 instances are clustered near 
zero on the x-axis, which extends up to over 
1.2 billion bytes. The bars for any higher byte 
counts are not visible. 
This strong concentraƟon at the low end of 
the scale indicates that most network 
connecƟons in the dataset involve a small 
amount of data being transferred back to the 
source. This is common for things like ping 
requests or connecƟons that are quickly 
terminated. It also suggests that large data 
transfers are very rare in this parƟcular 
dataset. Similar to the source bytes 
distribuƟon, this extreme imbalance can 
present challenges for training machine 
learning models, as the distribuƟon is not 
uniform. 

 
This histogram, Ɵtled "Count DistribuƟon," 
shows the frequency of different "count" 
values within a dataset. 
The chart is highly skewed, with a single, 
dominant bar at the beginning of the x-axis. 

 The verƟcal bar at Count = 0 has an 
extremely high frequency, with over 
140,000 instances. 

 All other Count values (1, 2, 3, and so 
on) are barely visible. Their 
frequencies are extremely low, close 
to zero on the y-axis, making them 
insignificant compared to the Count = 
0 category. 

 
This histogram, Ɵtled "DuraƟon DistribuƟon," 
displays the frequency of different 
connecƟon duraƟons in a dataset. 
The chart shows a distribuƟon that is 
extremely skewed to the leŌ. The vast 
majority of connecƟons have a very short 
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duraƟon, with the highest bar located at the 
very beginning of the x-axis, represenƟng 
duraƟons close to zero. The frequency for this 
bin is over 120,000 instances. 
Beyond this iniƟal peak, the frequency of 
connecƟons drops off dramaƟcally. The bars 
for longer duraƟons are barely visible, 
indicaƟng that very few connecƟons in the 
dataset last for a long Ɵme. This type of 
distribuƟon is common in network traffic 
data, which includes many short-lived 
connecƟons such as quick web page loads, 
DNS queries, or connecƟon aƩempts that are 
immediately terminated. 

 
The matrix is a heatmap where the color 
intensity represents the number of instances. 
A darker blue indicates a higher number of 
data points. 

 Correct ClassificaƟons: The diagonal 
cells (from top-leŌ to boƩom-right) 
represent the instances that were 
correctly classified. 

o Class 0: The cell where True = 
0 and Predicted = 0 is a very 
dark blue, indicaƟng that the 
model correctly idenƟfied a 
very high number of instances 
from class 0. 

o Class 1: The cell where True = 
1 and Predicted = 1 is also very 

dark blue, showing that the 
model was highly successful at 
classifying instances from class 
1. 

o Classes 2, 3, and 4: The 
diagonal cells for these classes 
are much lighter in color. This 
means the model correctly 
classified a significantly 
smaller number of instances 
for these classes, suggesƟng 
its performance is weaker for 
them. 

 MisclassificaƟons: The off-diagonal 
cells represent misclassificaƟons 
(where the true class does not equal 
the predicted class). 

o The vast majority of the off-
diagonal cells are very light 
blue or almost white. This 
indicates that the model has a 
very low rate of 
misclassificaƟon, as it rarely 
confuses one class for another. 

 

 
The confusion matrix shows the following 
performance metrics: 

 Correct ClassificaƟons: The diagonal 
cells represent the number of 
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instances correctly classified by the 
model. 

o Class 0: The model performs 
very well on this class, with a 
high number of correct 
predicƟons, as indicated by 
the dark blue cell at the top-
leŌ. 

o Class 1: The model also 
performs very well on this 
class, as the cell at (True 1, 
Predicted 1) is a very dark 
blue. 

o Classes 2 and 3: The 
performance for these classes 
is weaker, as their diagonal 
cells are a lighter shade of 
blue, indicaƟng a lower 
number of correct predicƟons. 

o Class 4: This class has a very 
low number of correct 
predicƟons, as the diagonal 
cell is very light blue, almost 
white. 

 MisclassificaƟons: The off-diagonal 
cells represent misclassificaƟons. 

o The matrix shows that the 
model rarely confuses one 
class for another, as all off-
diagonal cells are very light. 
There are no significant 
misclassificaƟon paƩerns 
evident in this visualizaƟon.  

 
Analysis of the Matrix 
The matrix has two classes: 

 Class 0: The "normal" or negaƟve 
class. 

 Class 1: The "aƩack" or posiƟve class. 
The analysis is based on four key quadrants: 

 Top-LeŌ (True 0, Predicted 0): This 
quadrant represents True NegaƟves 
(TN). The cell is a very dark blue, 
indicaƟng that a very high number of 
normal instances were correctly 
idenƟfied as normal. This shows the 
model is excellent at classifying 
normal traffic. 

 BoƩom-Right (True 1, Predicted 1): 
This quadrant represents True 
PosiƟves (TP). The cell is also a very 
dark blue, but slightly lighter than the 
top-leŌ one. This indicates that the 
model correctly idenƟfied a very high 
number of aƩack instances as aƩacks. 

 Top-Right (True 0, Predicted 1): This 
quadrant represents False PosiƟves 
(FP). The cell is a very light blue, close 
to white. This shows that the model 
rarely misclassified a normal instance 
as an aƩack. 

 BoƩom-LeŌ (True 1, Predicted 0): 
This quadrant represents False 
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NegaƟves (FN). The cell is a medium 
blue, indicaƟng that the model 
incorrectly classified a moderate 
number of aƩack instances as normal. 
This is the main weakness of the 
model as visualized in this matrix.  

 
Analysis of the Matrix 
The matrix shows the following key results: 

 True NegaƟves (Top-LeŌ): The cell at 
(True 0, Predicted 0) is a very dark 
blue. This indicates a high number of 
normal instances were correctly 
classified as normal. The model is very 
good at idenƟfying non-malicious 
traffic. 

 True PosiƟves (BoƩom-Right): The 
cell at (True 1, Predicted 1) is also a 
dark blue, indicaƟng a high number of 
aƩack instances were correctly 
classified as aƩacks. 

 False PosiƟves (Top-Right): The cell at 
(True 0, Predicted 1) is a very light 
blue, close to white. This shows that 
the model has a very low rate of 
incorrectly classifying normal traffic as 
an aƩack. 

 False NegaƟves (BoƩom-LeŌ): The 
cell at (True 1, Predicted 0) is a 
medium blue. This indicates a 

moderate number of aƩacks were 
misclassified as normal traffic. This is 
the main weakness of the model. 

Based on the detailed content of your 
research document "A ComparaƟve Analysis 
of LogisƟc Regression and Random Forest 
Performance in Intrusion DetecƟon Systems 
(IDS)", here is a comprehensive write-up of 
the Results, RecommendaƟons, and 
SuggesƟons secƟons: 
7. Research Results 
7.1 Binary ClassificaƟon (NSL-KDD) 
Using the unified pipeline, LR yields 
representative performance: Attack precision 
≈ 0.92, Attack recall ≈ 0.62, F1 ≈ 0.74, and 
overall accuracy ≈ 0.75. Normal traffic recall 
is high (≈ 0.93), indicating conservative 
attack labeling that limits false alarms but 
misses a portion of true attacks. RF improves 
attack recall and F1 while maintaining 
competitive precision, reflecting its ability to 
capture nonlinearities and interactions (e.g., 
service × flag × byte-pattern effects). 
Error patterns. Confusion matrices show 
residual confusion between R2L and Probe 
and sparse hits on rare U2R cases, stressing 
the need for imbalance remedies and 
threshold tuning. 
7.2 MulƟclass (NSL-KDD) 
RF generally outperforms LR on DoS and 
Probe families. Both struggle on U2R/R2L 
due to extreme scarcity; targeted sampling 
and cost-sensitive losses materially improve 
recall for these classes. 
7.3 Modern IoT Datasets (BoT-IoT, TON_IoT) 
Under richer and more volatile IoT traffic, RF 
retains superior recall at modest 
computational cost; LR remains competitive 
when calibrated and when features are 
restricted (e.g., NetFlow-only) or latency 
budgets are tight. 
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7.4 StaƟsƟcal Significance and CalibraƟon 
Across repeated splits, RF’s recall and macro-
F1 gains over LR are statistically significant 
(p < 0.05, Wilcoxon). Post-hoc calibration 
reduces LR’s over/under-confidence; RF 
often requires mild recalibration to improve 
probability quality for triage. 
 
The study conducted a comparaƟve 
evaluaƟon of LogisƟc Regression (LR) and 
Random Forest (RF) using the NSL-KDD 
dataset in both binary classificaƟon (Normal 
vs AƩack) and mulƟclass classificaƟon (DoS, 
Probe, R2L, U2R, etc.). 
7.1 Binary ClassificaƟon Results 

 LogisƟc Regression: 
o Accuracy: 75% 
o Precision (AƩack): 0.92 
o Recall (AƩack): 0.62 
o F1-Score (AƩack): 0.74 
o Precision (Normal): 0.65 
o Recall (Normal): 0.93 
o F1-Score (Normal): 0.76 

InterpretaƟon: 
o LR is conservaƟve in predicƟng 

aƩacks, resulƟng in high 
precision but moderate recall. 

o It rarely misclassifies normal 
traffic as aƩacks, but misses a 
significant number of actual 
aƩacks. 

 Random Forest: 
o Achieved higher recall and 

overall accuracy than LR. 
o BeƩer at capturing non-linear 

paƩerns and feature 
interacƟons, leading to 
improved detecƟon of 
complex aƩack types. 

7.2 MulƟclass ClassificaƟon Results 
 RF outperformed LR in idenƟfying 

aƩack families such as DoS and Probe, 

but both models struggled with rare 
classes like U2R and R2L due to class 
imbalance. 

 Confusion matrices showed RF had 
fewer misclassificaƟons and beƩer 
generalizaƟon across aƩack types. 

7.3 Feature Importance and VisualizaƟons 
 Top services targeted: hƩp, private, 

domain_u, smtp, Ōp_data. 
 Top flags indicaƟng aƩacks: S0, REJ, 

RSTR. 
 Byte distribuƟons (src/dst) and 

duraƟon histograms revealed skewed 
traffic paƩerns typical of short-lived 
connecƟons and volumetric aƩacks. 

 RF provided beƩer feature-level 
insights for analysts. 

8. RecommendaƟons 
Based on the experimental findings, the 
following recommendaƟons are proposed: 

1. Use Random Forest for ProducƟon 
IDS: 

o RF offers superior accuracy 
and robustness, especially in 
detecƟng diverse and complex 
aƩack types. 

o Suitable for environments 
where high recall is criƟcal to 
avoid missing threats. 

2. Apply LogisƟc Regression for 
Interpretability: 

o LR is ideal for scenarios 
requiring explainable 
decisions, such as compliance 
audits or analyst-driven 
invesƟgaƟons. 

3. Address Class Imbalance: 
o Implement techniques like 

SMOTE, undersampling, or 
cost-sensiƟve learning to 
improve detecƟon of rare 
aƩack types. 
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4. Tune Decision Thresholds: 

o Adjust thresholds to balance 
precision vs. recall based on 
operaƟonal needs (e.g., 
reduce false alarms vs. catch 
more aƩacks). 

5. Integrate Feature Engineering 
Pipelines: 

o Maintain consistent 
preprocessing (e.g., scaling, 
encoding) across training and 
deployment to ensure model 
reliability. 

6. Deploy Ensemble Models: 
o Combine LR and RF or 

integrate with other models 
(e.g., Gradient BoosƟng) for 
enhanced performance. 

9. SuggesƟons for Future Work 
To further improve IDS performance and 
applicability, the following suggesƟons are 
made: 

1. Use Real-Time Streaming Data: 
o Extend the model to handle 

live traffic using tools like 
KaŅa, Zeek, or Bro for real-
Ɵme intrusion detecƟon. 

2. Explore Deep Learning Models: 
o InvesƟgate LSTM, CNN, or 

Transformer-based 
architectures for temporal and 
sequenƟal aƩack paƩerns. 

3. Incorporate Explainability Tools: 
o Use SHAP or LIME to provide 

interpretable outputs for 
complex models like RF and 
ensembles. 

4. Enhance Dataset Diversity: 
o Collect and label modern 

network traffic including 
encrypted protocols (HTTPS), 

IoT devices, and cloud 
environments. 

5. Implement Feedback Loops: 
o Design systems that allow 

analyst feedback to 
conƟnuously improve model 
accuracy and adapt to evolving 
threats. 

6. Combine Supervised and 
Unsupervised Learning: 

o Integrate anomaly detecƟon 
techniques to idenƟfy zero-
day aƩacks and novel threats. 
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