
Minia Journal of Agricultural Research and Development

Journal homepage & Available online at:

https://mjard.journals.ekb.eg

Fungicidal effect of hydrogen sulfide, iodine, and peroxy-acetic acid on tuber potato dry rot disease

Marzouk R. Abdel-Latif¹, Anwar G. Abdel-Aziz¹, Hanaa A.H. Armanious¹, Farag M. Farag², and Thanaa A.A. Mousa¹

¹Plant Pathology Department, Faculty of Agriculture, Minia University ² Plant Pathology Research Institute, (ARC), Giza, Egypt.

Received: 26 Oct. 2025 Accepted: 3 Nov. 2025

ABSTRACT

The current study investigates potato dry rot disease caused by *Fusarium oxysporum*, *Alternaria alternata*, and other fungi during storage and marketing. Both in vitro and in vivo experiments were conducted to evaluate the efficacy of iodine, hydrogen sulfide, peroxy-acetic acid (PAA), and the fungicide Diabolo® 10% SL in controlling F. *oxysporum* and A. *alternata*, the main pathogens associated with dry rot.

Amendment of the growth medium with any of the tested compounds significantly reduced the mycelial growth of the pathogens. The greatest reduction was observed with H₂S, followed by iodine, while PAA showed the lowest inhibitory effect. Complete inhibition of fungal growth occurred when Diabolo® 10% SL (150 ppm) was incorporated into the medium. A synergistic effect was recorded when PAA was combined with either H₂S or iodine. The highest inhibition was achieved when 1% H₂S or iodine was mixed with PAA (containing 4 mg/L H2O2 and 0.4 mg/L acetic acid).

Pre-planting treatment of potato tubers (cv. Cara) with iodine, H₂S, PAA, or Diabolo® 10% SL also significantly reduced disease incidence (DI%) and disease severity (DS%) of wilt symptoms caused by F. *oxysporum* and A. *alternata*. Among the treatments, the fungicide and H2S showed the highest effectiveness. The combination of PAA with iodine or H2S enhanced their individual effects, with the H₂S + PAA mixture providing greater disease reduction than the iodine + PAA mixture.

Overall, the study demonstrates that mixing PAA with either iodine or H2S can safely protect stored potato tubers and effectively control dry rot pathogens.

Keywords: Iodine, H₂S, PAA, Diabolo, F. oxysporun, A. alternata

INTRODUCTION

Potato (*Solanum tuberosum* L.) is the most important non-cereal food crop for human consumption and can significantly improve food security in developing countries. It is a sustainable food crop worldwide due to its varied distribution pattern and substantial cultivation as a cash crop in regions with high levels of poverty and malnutrition (**Devaux** et al. 2020; and Lal et al. 2020-a). Globally, 388 million tons of potatoes are produced annually on 19 million hectares of land (**FAOSTAT**, 2019). The fact that emerging countries consistently produce more potatoes than developed ones shows the importance of potatoes as a source of food, revenue, and jobs, particularly in Africa, Latin America, and Asia (**Devaux** et al., 2020).

The main causes of potato production loss and nutritional profile degradation are poor crop and postharvest management, field and storage diseases, frost, and severe rains (Lal et al., 2020-b; Tiwari et al., 2020-a). Potato tubers are susceptible to rots, galls, and blemishes during handling, storage, and transportation following harvest because they contain over 70% water. More than 40 pathogens exist, including fungi, bacteria, viruses, nematodes, and insects, harm potato tubers and foliar portions (Kumar et al., 2019 and 2020). The tuber quality and yield are at risk due to these biotic agents, which can result in up to 22% direct or indirect losses in the potato production chain. In the past, potato rots were thought to be small and unavoidable; however, as consumer preferences have changed, producers are now quite concerned about them because they damage seed tubers and potatoes in cold storage (Bojanowski et al., 2013).

Dry rot is a fungal disease characterized by tuber surface lesions that shrink, shrivel, and remain non-slimy (Fiers et al., 2012). Potato dry rot is caused by several species of the genus Fusarium or others and is a highly destructive disease with a global impact. Although soil- and seed-borne inoculum can infect plants in the field, the most significant damage typically occurs during storage. Dry rot hampers crop establishment by suppressing sprout development and can lead to yield losses of up to 25%, with

infection levels reaching as high as 60% during storage (**Wharton**, **2007**). The severity of the disease is further exacerbated when it occurs alongside other storage diseases, such as soft rot and late blight.

One of the main strategies for managing postharvest deterioration is the use of synthetic chemicals such as germicides (Tripathi and Dubey, However, there 2004). are unsolvable challenges with chemical control: first, pathogen resistance will inevitably evolve, second, a number of commonly used germicides are being reviewed in several countries because of health and safety concerns (Deng et al., 2013). Therefore, there is an increasing need to create safer and more effective alternative therapies for postharvest diseases.

Hydrogen sulfide (H₂S), which previously believed to be a poisonous gas, is a gaseous signaling molecule in mammals, following carbon monoxide and nitric oxide (Wang, 2012). The relationship between postharvest pathogens and H₂S is not well understood. Marsh (1929) published the first relevant study on this subject and discovered that H₂S was poisonous to Sclerotinia fructicola spores that were just beginning to germinate. Although the underlying mechanism of H₂S's antifungal effect is unknown. H₂S plays various roles in plant development, abiotic stressors, and postharvest senescence (Zhang et al., 2008; Jin et al., 2011; Hu et al., 2012; Jin et al., 2013). Researchers pointed to H₂S released by 0.5 mM NaHS solution effectively controlled the fruit caused by A. decay *niger* and *P*. italicum (Fu et al., 2014). Haneklaus et al. (2007) reported that the uptake of 10 μM/h H₂S by the pathogen would produce a fungicidal effect. H₂S acts as a Diabolo® 10%SL fungicide against the pear decay pathogens Penicillium expansum and Aspergillus *niger* and prolongs the postharvest storage of fresh-cut pears (Hu et al., 2014). Fu et al. (2014) suggested that H₂S might be associated with increased accumulation in H₂S-treated storage tested fungi, i.e., A. niger, P. italicum, and R. oryzae, yeasts, and several food-borne bacteria. Exogenous H₂S application extends the postharvest storage of fresh-cut kiwifruit, strawberries, broccoli, and mulberries by modifying the antioxidant system (Hu et al., 2012; Gao et al., 2013; Li et al., 2014). Hu et al. (2014) recently demonstrated that H₂S might prevent fungal development and prolong the postharvest storage of fresh-cut pears.

Iodine is a necessary component for human health. It contributes to the production of thyroid hormones, which are crucial for metabolism and growth 2018). (Velasco et al., **Iodine** enrichment of fruits and vegetables can successfully increase human iodine intake (biofortification). Numerous farming methods (pot, field tests, hydroponics) have been developed to increase iodine concentration in the edible parts of different cultivated plants (e.g., lettuce (Blasco et al., 2008, Hong et al., 2008, Voogt et al., 2010, Blasco et al., 2012, Lawson et al., 2015 and], spinach (Zhu et al., 2003, Zhu et al., 2004, Dai et al., 2006, and Weng et al., 2008-b), pakchoi (Hong et al., 2009-a), cabbage (Weng *et al.*, 2008-a). cabbage, tomato, carrot (Hong et al., 2008, Caffagni et al., 2011 and Landini et al., 2011), strawberry (Li et al., 2016), cucumber (Voogt et al., 2014), celery (Hong et al., 2009-a), radish (Lawson et al., 2015), potato (Caffagni et al., 2011), rice (Hong et al., 2018) and bean (Dobosy et al., 2020). compounds **Iodine-based** effectively control certain tomato fungal infections (Lantz, 2003). Both the stomata and the cuticular waxes in the root and aerial structures absorb iodine (Tschiersch et al., 2009). After being absorbed, it travels through the

xylem and accumulates in leaves in larger quantities (Lawson et al., 2015). Iodine is considered less harmful to the environment and preserves plants (Lantz, 2003).

Terrestrial species with the capacity to volatilize iodine include plants (Saini et al., 1995; Redeker et al., 2004a) and soil bacteria (Amachi et al., 2003). With the exception of ectomycorrhizal fungi (Redeker et al., **2004b**) and the wood-rotting fungus Phellinus pomaceus (Harper, 1985). Filamentous fungi can affect iodine and speciation mobility through accumulation and volatilization (Bannai et al., 2006). Alternaria alternata Cladosporium cladosporioides accumulate more than 40% of the iodine in their hyphae, showing high concentration factors of 22 and 18, respectively. Peroxyacetic acid (PAA) mixture of acetic acid and hydrogen peroxide (PAA) has been evaluated for eco-friendly management of many fungal, viral, and bacterial diseases, such as sunflower root/collar rot pathogen (Sclerotium rolfsii) (El-Ashmony et al., 2017), Septoria tritici, which causes leaf blotch in wheat (Shetty et al., 2007), tomato bacterial wilt induced by Ralstonia pseudosolanacearum (Hong et al., **2018),** Acidovorax avenae citrulli, which causes seedling blight bacterial fruit blotch. Fusarium oxysporum and Didymella bryoniae, which cause wilt and A gummy stem blight in cucurbits (Hopkins et al., 2003). El-Ashmony et al. (2017) reported that drenching soil with PAA significantly reduced the severity of crown blight and root rot induced by Sclerotinia sclerotiorum compared with untreated control treatment.

The objective of this study was to evaluate the fungicidal effect of hydrogen sulfide, iodine, and peroxyacetic acid on tuber potato dry rot disease

MATERIALS AND METHODS Pathogens:

The most virulent isolates of *Fusarium oxysporum* (isolate F4) and *Alternaria alternata* (isolate A10) were previously isolated from rotted potato tubers, and their pathogenicity was tested (**Mousa** *et al.*, **2025**).

Chemical compounds

Sodium hydrosulfide (NaHS, 9H₂O) was purchased from Piochym, 6th October City, Egypt, was used as a source of H₂S producing, iodine, H₂O₂ and Acetic acid were purchased from El-Nasr Pharmaceutical Chemical Company, Egypt. Diabolo® 10%SL fungicide Diabolo® 10%SL (Imazalil active ingredient) was produced by Domiatec Agri-Group, Egypt.

Stocks of different solutions were prepared as following: Na_2S and Iodine solutions were used at 0.1, 0.5, and 1.0%, and PAA was a mixture of H_2O_2 and Acetic acid was used by concentrations 0.1+ 1 mg/l, 0.2 + 2 mg/l, and 0.4+ 4 mg/l, respectively), whereas Diabolo® was used at 50, 100, and 150 ppm in the laboratory tests.

1- Efficacy of H₂S, iodine, PAA (Acetic acid and H₂O₂) and Diabolo® 10% SL fungicide on mycelial growth

In this experiment, 13 treatments were carried out as follows: NaHS solution (0.5 mM) was used to release H_2S , and stock solutions of two mixtures of acetic acid (AA) and hydrogen peroxide (H_2O_2) were prepared with distilled water and left for at least 10 days to form a PAA solution (**EPA**, 2004).

 H_2S was used at concentrations of 0.1 % (T1), 0.5 % (T2), and 1% (T3). Iodine was also used at concentrations of 0.1 % (T5), 0.5 % (T6), and 1% (T7). PAA was used at concentrations of 0.1% + 1.0 % (T8), 0.2% + 2.0 % (T9), and 0.4% + 4.0% (T10). Diabolo® 10% SL fungicide was used at concentrations of 50 ppm (T11), 100

ppm (T12), and 150 ppm (T13). PD broth media free of compounds was used as control (T4).

The prepared different concentrations of tested chemicals (T1-T13) were added to 100 ml of autoclaved potato dextrose broth (PDB) medium in 250 ml conical flasks and inoculated with 5mm discs, cut with a sterile cork borer from the advancing margins of 5 days cultures of each pathogen. The inoculated flasks were incubated at 25±2°C for 10 days. Control flasks with only PD broth free of compounds served as the control. Fungal growth samples were collected after 10 days through filtration using Whatman filter paper. The collected fungal mass was dried in a hot air oven at 70±5°C for 1 day. The weight of dry mycelium was then calculated. Three replicates were used for each treatment. The percentages of growth inhibition were calculated as

Inhibition (%) = (Control mycelial dry weight - Treatment mycelial dry weight) /Control mycelial dry weight.

2- Effect of mixing H₂S or iodine with PAA on mycelial growth

Seven mixtures of PAA and H₂S or iodine were tested as follows:

T4 = control, free of any chemical substance; T14 = (0.4+4.0) PAA+ 0.1 H₂S %, T15 = (0.4+4.0) PAA + 0.5 % H₂S; T16 = (0.4+4.0) PAA + 1% H₂S; T17 = (0.4+4.0) PAA + 0.1 % Iodine; T18 = (0.4+4.0) PAA + 0.5 % Iodine; and T19 = (0.4+4.0) PAA + 1% Iodine. In addition, 1.35 ml of Diabolo® (recommended dose)/70 tubers (T20) was applied.

As previously mentioned, the conical flasks (250 ml) each contained 100 ml of autoclaved PD broth medium amended with different concentrations (T14–T19 treatments) of the tested substances, inoculated with 5mm discs, and cut from the advancing margins of 5 days cultures. The inoculated flasks were incubated

at 25±2°C for 10 days. Control flasks with only PD broth free of compounds served as the control (T4 treatment). The mycelial dry weight was measured, and the growth inhibition percentage was calculated as described before. Randomized Complete Design with 3 replicates was applied.

3-Efficacy of H₂S or iodine without or mixing with PAA on potato wilt

Cara potato tubers were gathered from a private farm in El-Minia Governorate at commercial maturity (mid-January 2022). The tubers were selected for their consistent size, color, and lack of mechanical or pathological damage. The tuber samples were packaged in net plastic boxes weighing 5 kg each, transferred to Department of Plant Pathology research laboratory, surfaceand disinfected with 2% sodium hypochlorite for 2 min. The samples were then rinsed with distilled water and air-dried.

Tubers were dipped in different solutions tested (H₂S at 5%; T2, iodine at 1%; T7, PAA at 0.4 AA + 4 mg/l H₂S₂; T10) for 20 min., and their mixtures of iodine or H₂S with PAA with concentrations [T15; (0.4+4.0) PAA + 0.5 % H₂S or; (0.4+4.0) PAA + 1% Iodine; T19]. Tubers dipped for 20 minutes in iodine or H₂S solutions for 20 min and then dipped in PAA solution for 20 min.

Seven-day-old PDA cultures of isolates F4 of F. oxsporum and A10 of A. alternata were used to prepare the inocula. In 500 ml Erlenmeyer flasks, 150 g of autoclaved barley grains were mixed with 200 ml of water, then the flasks were inoculated with 5 mm discs cut from the actively growing margins of 7-daysfungal cultures. inoculated flasks were incubated at 25±1°C for 15 days. After incubation, the inoculum was used to infest the soil. The sterilized pots (30 cm in diameter) were filled with sterilized Nile clay soil. Soil infestation was

performed 7 days before planting by thoroughly mixing each fungal isolate into the soil at a concentration of 2% (w/w). The inoculum was previously standardized to contain 4×10^5 conidia/g. After infestation, the soil was irrigated daily until planting, and the fertilizers recommended by the Ministry of Agriculture were applied.

For each treatment, five pots were used as a replicate and three replicates were used, with three tubers planted per pot. The control pots received sterilized, uninoculated barley grain medium only. A randomized complete block design was designed. All pots were irrigated when necessary. Plants were regularly monitored for disease symptoms, and final observations were recorded 60 days after planting.

Disease assessment:

Disease incidence (DI, %) and disease severity were recorded. A disease index was used to evaluate disease severity of wilt following Jiménez-Fernández et al. (2013) with minor modification using a scale (0 to based on root rot or leaf discoloration as follows: 0 = No symptoms (healthy), 1 =Yellowing on less than 25% of the plants, 2 =Yellowing on (25-50%) of the plants, 3 = Yellowing on 75% of the plants with root rot, and 4 = Over 75 % of the plants with wilted and plant death. Disease severity (DS%) was calculated as follows:

Disease severity index (DSI) = $(\Sigma d/d \max x N) \times 100$.

where d = the disease rating possible, and N = the total number of plants.

Statistical analysis:

Least significant difference (LSD) values at P<0.05 were determined to test the variants among treatments (Gomez and Gomez, 1984).

RESULTS

1- Effect of H₂S, iodine, PAA, and Diabolo® 10% SL fungicide on mycelial dry weight:

The effects of H_2S , iodine, PAA, and Diabolo® 10% SL fungicide on the growth of Fusarium oxysporium (F4 isolate) and Alternaria alternate (A10 isolate), the causal pathogens of potato tuber dry rot, were studied under laboratory conditions. The data in Figures (1 and 2) show that a positive effect occurred when fungi were grown on PD broth medium amended with the tested compounds. Fusarium oxysporium (F4 isolate) was reduced by 46.38%, 41.88%, and 28.05% when treated with H₂S, iodine, and PAA, respectively, whereas the growth of Alternaria alternate (A10

isolate) was reduced by 39.55%, 36.08%, and 26.33 % when treated with the mentioned compounds. The highest reduction was recorded when Diabolo® 10% SL was applied. The fungal growth was reduced by 55.9% and 55.38%, respectively, followed by H₂S or iodine. The lowest effect occurred when the fungi were treated with PAA. Complete growth inhibition occurred for both pathogens with Diabolo® 10%SL fungicide treatment at 150 ppm. The fungal growth significantly decreased with increase in concentration of the compound. The maximum reduction was recorded when iodine or H₂S was used at a concentration of 1%, and PAA was applied at 4 H₂O₂ and 0.4% acetic acid.

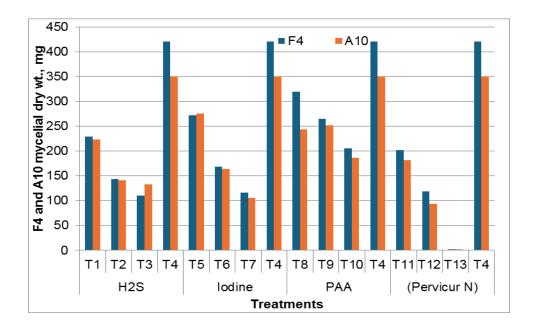


Figure (1): Effect of H₂S, iodine, PAA, and Diabolo® 10% SL fungicide treatments on the mycelial dry weight (mg) of F4 and A10 isolates.

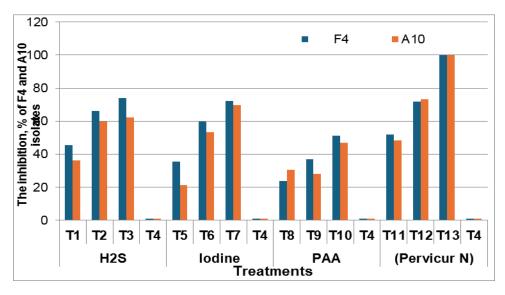


Figure (2): Mycelial growth inhibition of F4 and A10 isolates due to H_2S , iodine, PAA, and Diabolo® 10% SL treatments

2- Effect of the combination between PAA and H₂S or Iodine on mycelial growth of *F. oxysporum* and *A. alternata*, the causal pathogens of potato tuber dry rot

Data presented in Figures (3 and 4) demonstrated that combination PAA (4 mg/l of H_2O_2 and 0.4 mg/l Acetic acid) with different concentrations of H_2S or iodine significantly increased the effect of

any tested substance alone and reduced the growth of both tested pathogens. A synergistic effect was observed when PAA was added to H_2S or iodine. The maximum effect was recorded when H_2S or iodine (at 1%) was mixed with PAA (4 and 0.4 mg/l of H_2O_2 and Acetic acid, respectively), inducing the reduction of F4 growth by 83.0% and 86.5% and 83.3%—88.1% for A10 isolate, respectively.

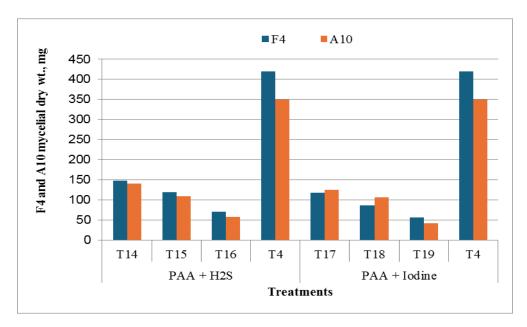


Figure (3): Effect of PAA + H_2S and PAA + iodine treatments on the mycelial dry weight (mg) of F4 and A10 isolates.

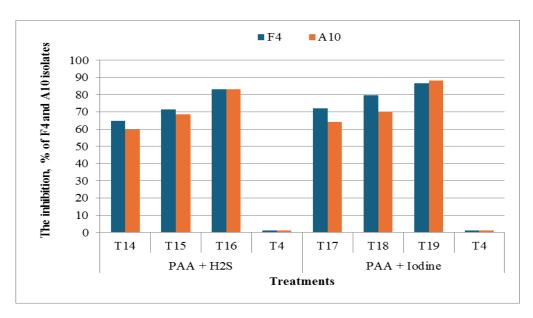


Figure (4): Mycelial growth inhibition of F4 and A10 isolates due to PAA + H₂S and PAA + iodine treatments.

3-Effect of H_2S , iodine, and their mixtures on potato wilt disease

Pre-planting potato tubers (Cara cv.) were dipped in H_2S at 0.5%, iodine at 1%, PAA (at 4 + 0.4 ml/100 ml H_2O_2 and AA) or Diabolo® 10% SL (at the recommended dose) solutions and then grown on pre-infested soil with F4 isolate of *F. oxysporum* or A10 of *A. alternata*. Figures (5 and 6) showed that the best treatment was H_2S , inducing a highest reduction in both DI% and DS% (41.3 and 40.9% for

F4 isolate and 36.1 and 40.9% for A10 isolate, respectively), followed by iodine and PAA treatments.

Mixing H₂S or iodine with PAA increased their effect compared with each one alone. The reductions were 55.1 and 56.1% (DI%), while the DS% was 60.3 and 62.7% for F4 and A10, respectively, when the tubers were treated with PAA + H₂S (T15). The fungicide Diabolo® (T20) induced a reduction in both DI and DS% when plants were inoculated with either F4 or A10 isolates.

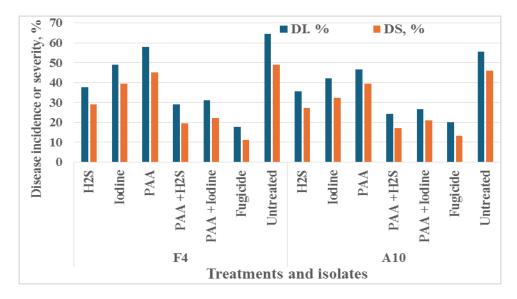


Figure (5): Effect of H_2S , iodine, PAA, Diabolo® 10% SL fungicide, PAA $+H_2S$, and PAA + iodine on disease incidence (DI, %) and disease severity (DS, %) induced by F. oxysporum (isolate F4) and A. alternata (isolate A10).

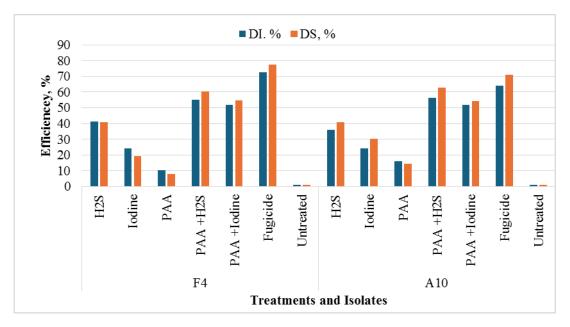


Figure (6): Efficiency (%) of H₂S, iodine, PAA, Diabolo® 10% SL fungicide, PAA +H₂S, and PAA + iodine on disease incidence (DI, %) and disease severity (DS, %) induced by *F. oxysporum* (isolate F4) and *A. alternata* (isolate A10).

DISCUSSION

Fusarium dry rot of potato is a disease of economic significance on a global scale during the storage period (Hay et al., 2019). Depending on the kind of inoculum, cropping seasons, and storage circumstances, fusarium dry rot (FDR) of potato tubers is especially common in Egypt and other regions in the world and can cause partial or complete loss of stored tubers. More than 13 species of Fusarium, which cause dry rot, have been identified globally, and their genetic diversity varies by region. Fusarium sambucinum, F. solani, F. graminearum, and F. oxysporum f. sp. tuberosi are the most frequently isolated species from sick tubers (Mejdoub-Trabelsi et al.. Fusarium oxysporum is the most invasive fungus in Michigan, United States. and other places worldwide (Tiwari et al., 2020-b). The prevalence and severity of dry rotcausing Fusarium strains or other soilborne fungi vary by region and are also influenced by dominant cultivars and environmental factors. To create a susceptibility and resistance rating, it is crucial to test newly created germplasm and existing cultivars against the disease.

The main purpose of fungicides is to prevent potato tuber rots, which are extremely dangerous for both the environment and human health. Nevertheless, eco-friendly management methods are necessary because they may lessen the demand for synthetic fungicides. The use of iodine compounds is an alternate technique.

Alternatives to fungicides, ecofriendly methods of controlling plant diseases have become essential to prevent the negative impacts of such dangerous fungicides on the environment and human health. H₂O₂based chemicals are widely used as fungicides (Adam et al., 1993), disinfectants (Gómez-López, 2012), and bactericides (Kachroo et al., 2003) as alternatives to fungicides. Significant antifungal activities against potato tuber dry rot pathogens were demonstrated in this investigation.

In this study, we used H₂S, iodine, and PAA as eco-friendly agents compared with Diabolo® 10%SL as a fungicide for controlling potato dry rot disease. This study showed that this chemical induced significant efficiency against the growth of Fusarium oxysporum (isolate F4) and Alternaria alternata (isolate A10) in vitro. The growth of F. oxysporum was reduced by 46.38%, 41.88%, and 28.05% but A. alternata growth was reduced by 39.55, 36.08, and 26.33% when treated H_2S , with iodine, and PAA, respectively. H₂S induced the highest reduction for the two tested pathogens, followed by iodine and PAA, which exhibited the lowest effect.

Synergistic effects were observed when PAA was added to either H₂S or iodine. The reduction ranged from 83% to 88.1% when F4 or A10 isolates were grown on PD broth medium amended with H2S or iodine mixed with PAA. These results are consistent those obtained by several researchers. Fu et al. (2014) reported that the H₂S generated by 2.5 mM NaHS has a microbicidal effect in addition to preventing the development of bacteria, yeasts, and molds. They proposed that H₂S may directly cause A. niger to produce ROS and that excessive ROS damages molecules essential for mycelial growth and spore germination. They also proposed that H₂S may suppress gene expression and reduce superoxide dismutase (SOD) and catalase (CAT) enzyme activities, which may help explain the elevated ROS levels observed in A. niger treated with H2S. Bloem et al. (2004 2012) proposed that and when agricultural crops had fungal a infection, endogenous H_2S released.

Iodine has fungistatic effects in plant pathogen management (Ajiwe et al., 2019). It is effective in controlling

Botrytis cinerea in tomatoes and Fusarium wilt in basil (Adams et al., 2003; and Lantz, 2003). Eleven of the tested fungal strains volatilized a significant amount of iodine, in the form of methyl iodide (CH₃I), with the Basidiomectes fungus, Lentinula exhibiting edodes. the highest volatilization rate of 3.4% (Ban-nai et 2006). They proposed filamentous fungi can affect iodine and speciation volatilization and accumulation. With concentration values >1.0, six of the 12 fungal strains acquired a significant quantity of iodine from the medium. Of them, A. alternata and *C*. cladosporioides exhibited high concentration factors of 22 and 18, respectively, and gathered over 40% of the iodine in their hyphae. Iodine plays several roles in the plant resistant against the pathogens, as follows 1) iodine transport is mostly xylematic; 2) iodide translocation and accumulation in the aerial portion of plants are larger than those of iodate; and 3) iodine concentration in plants diminishes from the root to the fruit (Umaly et al., 1971, Hong et al., 2007, Xie et al., 2007, Hong et al., 2009-b, and Yu et al., 2011). It should be noted, meanwhile, that iodine has a toxic on plants higher impact at concentrations, which lowers biomass output (Weng et al., 2008, Hong et al., **2009-b, and Kiferle** et al., **2013**). The natural concentration of iodine in various soils ranges greatly from 0.1 to 150 mg/kg (Johnson, 2003 and Medrano-Macías et al., 2016). Its chemical form and bioavailability are also affected by a number of soil characteristics, including pH, microbial activity, and the amount of OM or oxide minerals (Medrano-Macías et al., 2016). Because it is absorbed by positively charged iron and aluminum oxides or bonded to fulvic and humic acids, plants cannot absorb comparatively large amount of iodine in the soil. Soil contains iodine in various chemical forms, including organic molecules, iodate (IO₃₋), and iodide (I). Inorganic iodide compounds undergo a significantly quicker conversion to organoiodine than to iodate (Yamaguchi *et al.*, 2010 and Seki *et al.*, 2013).

According to several reports, H₂O₂ and acetic acid interact to generate peroxy acetic acid (PAA), a potent molecule (Kitis, Thipaksorn et al., 2012; Wessels and **Ingmer**, 2013). The environmentally friendly treatment of several bacterial, viral, and fungal plant diseases was assessed using PAA. Hong et al. (2018) reported that PAA significantly inhibited the growth of pseudosolanacearum, the causal agent of tomato bacterial wilt, in vitro. Peroxyacetic acid (PAA) acts as a broad-spectrum biocide, effectively reducing bacterial (Hong et al., 2018) and fungal infections, such as Botrytis cinerea, the most redoubtable threat of tomato plants (Ayoub et al., 2017), soft rot, powdery mildew, and late wilt 2023). (Abbas. This powerful oxidizing agent can be applied in various ways, such as foliar spray, post-harvest dip, seed treatment, or for disinfecting growth media equipment, depending on the dosage and application method. PAA is a sustainable option for integrated pest management because it breaks down into harmless by products like acetic acid, water, and oxygen (Carrasco and Urrestarazu, 2010).

Our study revealed that dipping potato tubers in H₂S (0.5%), iodine (1%), PAA (at 4 + 0.4 ml/100 ml H_2O_2 and AA, respecivel), or Diabolo® 10%SL (1.35 ml/70 tubers as a recommended dose) solutions significantly decreased the wilt incidence (41.3% and 36.1%. respectively) and severity (40.9%) induced by F. oxysporum (isolate F4) or Alternaria alternata (isolate A10) compared with the control. When PAA was mixed with H_2S or iodine, the disease incidence and severity were reduced to 55.1 60.3% and 56.1-62.7% for *F. oxysporum* and *A. alternata*, respectively.

Soil drenching with 1% **PAA** significantly decreased R. pseudosolanacearum seedling wilt (Hong et al., 2018). In detached tomato leaves, treatment with PAA decreased pН and phytotoxicity. Compared with the application of 0.01% clove oil, the efficacy of PAA in preventing tomato bacterial wilt was relatively lower (Lee et al., 2012). The emergence of fungicide-resistant strains necessitates the use of generally recognized safe GRAS) compounds, antagonists, and microbial nanoparticles to manage the disease with less environmental hazards and minimum pest resurgence. Novel phytohormones, such as melatonin and strigolactones, should also used.

In the past, synthetic chemicals, such as isopropyl-(n-3-chlorophenyl) carbamate, were used to prevent sprouting and infections after harvest (Elbashir et al., 2011). However, these chemicals are no longer recommended because they can be toxic, harmful to the environment and human health, and may lead to pathogen resistance. In addition, harmful residues may remain in the treated potatoes (Elbashir et al., **2011).** For these reasons, researchers have sought safer alternatives (Tian et al., 2002). Boosting the natural disease resistance of fruits and vegetables using natural substances such as salicylic acid (Bokshi et al., 2003), calcium chloride, and jasmonic acid (Qin et al., 2003) is a promising These natural chemical approach. treatments are safer and more costeffective than synthetic pesticides for controlling disease and keeping potatoes in good condition after harvest (Sánchez-González et al., 2011). Salicylic acid and jasmonic acid have been shown to reduce sprouting and infections after harvest (**Tian** et al., 2002), while calcium chloride helps strengthen cell walls and prevent the breakdown of potato tissue (**John**, 1987). This approach could be a practical and eco-friendly alternative to current disease control methods.

By altering the antioxidant system, exogenous H₂S administration can extend the postharvest storage of freshcut kiwifruit, strawberries, broccoli, and mulberries (Hu et al., 2012; Gao et al., 2013; Li et al., 2014) . Fu et al. (2014) suggested the possibility of an alternative strategy for postharvest fruit storage based on the exposure of infected fruit to H₂S released by NaHS. Ajiwe et al. (2019) found that the application of iodine compounds (potassium iodide, KI, and potassium iodate, KIO₃) at lower concentrations (0.5 and 1 mM, respectively) reduced the incidence and severity of Fusarium wilt and increased tomato yield.

CONCLUSION:

Dry rot is one of the most significant diseases that affects potato tubers during storage. According to our research, H₂S, iodine, and PAA, as well as their mixes, suppress the growth and development of fungi while also potentially protecting potato tubers against infection by dry rot fungi and extending the postharvest storage of fresh-harvested potato tubers.

REFERENCES:

- **Abbas (Abeer) H. 2023.** Effect of peroxyacetic acid (PAA) on controlling maize late wilt disease caused by *Magnaporthiopses maydis*. Middle East Journal of Agriculture Research, 12 (04): 896-909.
- Adam AL, Bestwick CS, Galal AA, Manninger K and Barna B. 1993. What is the putative source of free radical generation during hypersensitive response in plants?

- In: Mozsik, G.Y.; Emerit, I.; Feher, J.; Mathovics, B. and Vincz, A. (Eds.). Oxygen free radicals and scavengers in the natural sciences. Akademiai Kido, Budapest, pp. 35-43.
- Adams PD, Kokalis-Burelle N and Basinger WH. 2003. Efficacy of Plantpro 45 as a seed and soil treatment for managing *Fusarium* wilt of Basil. Int J Hortic Sci Technol., 13 (1): 77-80.
- Ajiwe ST, Popoola AR, Afolabi CG, Oduwaye OA, Ganiyu SA, Fajinmi OB, Chikaleke VA, Imonmion JE, Adigun JA, Taiwo BF and Uzoemeka, IP. 2019. Effect of iodine biofortification on incidence and severity of Fusarium wilt and yield of tomato (*Solanum lycopersicum* L.). Nig. J. Biotech., 36 (1): 146-151. https://dx.doi.org/10.4314/njb.v36i 1.19.
- Amachi S, Kasahara M, Hanada S, Kamagata Y, Shinoyama H, Fujii T and Muramatsu Y. 2003. Microbial participation in iodine volatilization from soils. Environmental Science&Technology 37, 3885-3890.
- Ayoub (Fatima), Ben oujji (Najwa), Chebli (Bouchra), Ayoub M, Hafidi A, Salghi R, Jodeh S. 2017. Antifungal effectiveness of fungicide and peroxyacetic acid mixture on the growth of Botrytis cinerea. Microbial Pathogenesis, 105: 74-80.
- Ban-nai T, Muramatsu Y and Amachi S. 2006. Rate of iodine volatilization and accumulation by filamentous fungi through laboratory cultures. Chemosphere 65: 2216–2222.
- Blasco B, Rios JJ, Cervilla LM, Sánchez-Rodrigez E, Ruiz JM and Romero L. 2008. Iodine biofortification and antioxidant capacity of lettuce: Potential benefits for cultivation and human health. Ann. App. Biol., 152: 289–299.
- Blasco B, Ríos JJ, Sánchez-Rodríguez E, Rubio-Wilhelmi

- MM, Leyva R, Romero L and Ruiz MJ. 2012. Study of the interactions between iodine and mineral nutrients in lettuce plants. J. Plant Nutr., 35: 1958–1969.
- **Bloem E, Haneklaus S, Kesselmeier J, Schnug E. 2012**. Sulfur fertilization and fungal infections affect the exchange of H₂S and COS from agricultural crops. J Agric Food Chem., 60: 7588–7596
- Bloem E, Riemenschneider (Anja), Volker (Julia), **Papenbrock** Schmidt A, Salac (Jutta), (Ioana), Haneklaus (Silvia), Schnug E. 2004. Sulphur and infection supply with Pyrenopeziza brassicae influence L-cysteine desulphydrase activity in Brassica napus L. J Exp Bot., 55(406): 2305-2312.
- Bojanowski A, Avis TJ, Pelletier S and Tweddell RJ. 2013. Management of potato dry rot. Postharvest Biol. Technol.,84: 99-109.
- Bokshi A, Morris S C and Deverall B J. 2003. Effects of benzothiadiazole and acetylsalicylic acid on b-1,3-glucanase activity and disease resistance in potato. J. Plant Pathol., 52: 22–27.
- Caffagni A, Arru L, Meriggi P, Milc J, Perata P and Pecchioni N. 2011. Iodine fortification plant screening process and accumulation in tomato fruits and potato tubers. Commun. Soil Sci. Plant., 42: 706-718.
- Carrasco G and Urrestarazu M. 2010. Green Chemistry in Protected Horticulture: The Use of Peroxyacetic Acid as a Sustainable Strategy. Int. J. Mol. Sci., 2010, 11: 1999-2009.
 - https://doi.org/10.3390/ijms110519
- Dai JL, Zhu YG, Huang YZ., Zhang M and Song J.L. 2006. Availability of iodide and iodate to spinach (*Spinacia oleracea* L.) in relation to total iodine in soil solution. Plant Soil, 289: 301–308.

- Deng J, Li W, Peng XL, and Hao XH. 2013. Study on the potential of antifungal activity of essential oils against fungal pathogens of fruits and vegetables. J Chem Pharm Res 5: 443–446.
- Devaux A, Goffart JP, Petsakos A, Kromann P, Gatto M, Okello JJ, Suarez V and Hareau G. 2020. Global food security, contributions from sustainable potato agri-food systems. In: The potato crop. Springer International Publishing, pp 3–35.
- Dobosy P, Kröpfl K, Óvá M, Sandil S, Németh K, Engloner A, Tünde T, and Záray G Y. 2020. Biofortification of green bean (*Phaseolus vulgaris* L.) and lettuce (*Lactuca sativa* L.) with iodine in a plant-calcareous sandy soil system irrigated with water containing KI. J. Food Compos. Anal., 88: 103434.
- EL-Ashmony (Ranya) MS, Abdel-Latif MR, Abdou ELS and Galal AA. 2017. Influence of hydrogen peroxide (H₂O₂) on *Trichoderma harzianum* potentiality to control sunflower root/collar rot pathogen *Sclerotium rolfsii*. Egypt. J. of Phytopath., 45(2): 103-113.
- Elbashir H A, Ahmed R A and Yousif K S. 2011. Effect of Spearmint Oil on Sprouting and Processing Quality of Diamant and Sinora Potato Varieties. Current Research Journal of Biological Sciences, 3(5): 530-534.
- (Environmental **EPA Protection** Agency). 2004. Registration eligibility decision (RED) PAKTM (sodium carbonate 27 peroxyhydrate with active hydrogen ingredient peroxide), EPA File Symbol No. 68660-O; US EPA, Office of Pesticide Program, November 2004.14 9. Massachusetts Department Environmental Protection Massachusetts Department Agricultural Resources.
- **FAOSTAT. 2019**. Food and agriculture data.
- Fiers M, Edel-Hermann V, Chatot C, Le Hingrat Y, Alabouvette C

- and Steinberg C. 2012. Potato soil-borne diseases. A review. Agron Sustain Dev., 32: 93-132.
- Fu L-H, Hu K-D, Hu L-Y, Li Y-H, Hu L-B, Li YH, Han Y, Wang HL, Lv K, Liu Y and Zhang H. **2014.** An antifungal role of Hydrogen sulfide on the postharvest pathogens Aspergillus niger and Penicillium italicum. PLoS ONE, 9(8): e104206. https://doi.org/10.1371/journal.pon e.0104206
- Gao SP, Hu KD, Hu LY, Li YH, Han Y, Hu K, Han Y, Wang HL, Lv K, Liu Y and Zhang H. 2013. Hydrogen sulfide delays postharvest senescence and plays an antioxidative role in fresh-cut kiwifruit. Hort. Science, 48: 1385–1392.
- Gomez K A and Gomez A A. 1984. Statistical Procedures for Agricultural Research. John Willey and Sons. New York, Second Ed. Pp. 680.
- Gómez-López VM. 2012.

 Decontamination of Fresh and Minimally Processed Fresh Produce, first edition John Wiley and Sons, Inc.
- Haneklaus S, Bloem E and Schnug E. 2007. Sulfur and plant disease. In: Datnoff L, Elmer W, Huber D, editors. Mineral nutrition and plant diseases. St Paul, MN: APS Harper D B. 1985. Halomethane from halide ion-a highly efficient fungal conversion of environmental significance. Nature 315, 55-57. Press., pp.101–118.
- Hay WT, Fanta GF, Rich JO, Schisler DA, and Selling GW. 2019. Antifungal activity of a fatty ammonium chloride amylose inclusion complex against *Fusarium sambucinum*; control of dry rot on multiple potato varieties. Am. J. Potato Res., 96: 79–85. https://doi.org/10.1007/s12230-018-9683-8.
- Hong JK, Jang SJ, Lee YH, Jo YS, Yun JG, Jo H, Park C-J, and Kim HJ. 2018. Reduced bacterial wilt in tomato plants by bactericidal peroxyacetic acid

- mixture treatment. Plant Pathol. J., 34(1): 78-84. https://doi.org/10.5423/PPJ.NT.06. 2017.0131
- Hong CL, Weng HX, Qin YC, Yan AL and Xie LL. 2008. Transfer of iodine from soil to vegetables by applying exogenous iodine. Agron. Sustain. Dev., 28: 575–583.
- Hong, C. L.; Weng, H. X.; Yan, A. L. and Xie, L. L. 2007. Characteristics of iodine uptake and accumulation by vegetables. Chin. J. App. Ecol., 18, 2313–2318.
- Hong, C. L.; Weng, H. X.; Yan, A. L. and Xie, L. L. 2009-a. Dynamic characterization of iodine uptake in vegetable plants. Acta Ecol. Sin., 29, 1438–1447.
- Hong CL, Weng HX, Yan AL and Islam EU. 2009-b. The fate of exogenous iodine in pot soil cultivated with vegetable. Environ. Geochem. Hlth., 31, 99–108.
- Hopkins DL, Thompson CM, Hilgren J, and Lovic B. 2003. Wet seed treatment with peroxyacetic acid for the control of bacterial fruit blotch and other seedborne diseases of watermelon. Plant Dis., 87:1495-1499.
- Hu LY, Hu SL, Wu J, Li YH, Zheng JL, Wei ZJ, Liu J, Wang HL, Liu YS and Zhang H. 2012. Hydrogen sulfide prolongs postharvest shelf life of strawberry and plays an antioxidative role in fruits. J Agric Food Chem, 60(35): 8684–8693
- Hu KD, Wang Q, Hu LY, Gao SP, Wu J, Li YH, Zheng JL, Han Y, Liu YS and Zhang H. 2014. Hydrogen sulfide prolongs postharvest storage of fresh-cut pears (*Pyrus pyrifolia*) by alleviation of oxidative damage and inhibition of fungal growth. PLoS One 9: e85524.
- Jiménez-Fernández D, Landa BB, Kang S, Jiménez-Díaz RM and Navas-Cortés JA. 2013. Quantitative and microscopic compatible and assessment of incompatible interactions between chickpea cultivars and Fusarium oxysporum f. sp. ciceris races. PLoS ONE 8(4): e61360.

- Jin Z, Shen J, Qiao Z, Yang G, Wang R. 2011. Hydrogen sulfide improve and rough to resistance in *Arabidopsis thaliana*. Biochem Biophys Res Commun, 414–481-486: .
- Jin Z, Xue S, Luo Y, Tian B, Fang H. 2013. Hydrogen sulfide interacting with abscisic acid in stomatal regulation responses to drought stress in Arabidopsis. Plant Physiol Biochem., 62: 41–46.
- John M A. 1987. Fruit Softening. In: Mangoes a Review, R.T. Prinsley and G. Tucker, (Eds.). The Commonwealth Secretariat, London: 98-106.
- Johnson CC. 2003. The geochemistry of iodine and its application to environmental strategies for reducing the risks from iodine deficiency disorders. In British Geological Survey Commissioned Report Number CR/03/057; British Geological Survey: Nottingham, UK, pp. 1–48.
- Kachroo A, He Z, Patkar R, Zhu Q, Zhong J, Li D, Ronald P, Lamb C and Chattoo BB. 2003. Induction of H₂O₂ in transgenic rice leads to cell death and enhanced resistance to both bacterial and fungal pathogens. Transgenic Research, 12: 577-586.
- Kiferle C, Gonzali S, Holwerda HT, Ibaceta RR and Perata P. 2013. Tomato fruits: A good target for iodine biofortification. Front. Plant Sci., 4: 1–10.
- **Kitis M. 2004**. Disinfection of wastewater with peracetic acid: a Review. Environmental International. J., 30(1): 47-55.
- Kumar R, Kaundal P, Arjunan J, Sharma S and Chakrabarti SK. 2020. Development of a visual detection method for Potato virus S by reverse transcription loopmediated isothermal amplification.

 3 Biotech, 10: 213.https://doi.org/10.1007/s13205-020-02214-4
- Kumar R, Tiwari RK, Jeevalatha A, Kaundal P, Sharma S and Chakrabarti SK. 2019. Potato viruses and their diagnostic

- techniques: an overview. J Pharm Phytochem, 8(6):1932-1944.
- Lal MK, Kumar A, Kardile HB, Raigond P, Changan SS, Thakur N, Dutt S, Tiwari RK, Chourasia KN, Kumar D and Singh B. 2020-a. Biofortification of Vegetables. In: Sharma TR, Deshmukh R, Sonah H (eds) Advances in agrifood biotechnology. Springer, Singapore. 105-129.
- Lal MK, Kumar A, Raigond P, Dutt S, Changan SS, Chourasia KN, Tiwari RK, Kumar D, Sharma S, Chakrabarti SK and Singh B. 2020-b. Impact of starch storage condition on glycemic index and resistant starch of cooked potato (Solanum tuberosum) tubers. Starch-Stärke., 72(9-10): 1900281.
- **Landini M, Gonzali S and Perata P. 2011**. Iodine biofortification in tomato. J. Plant Nutr. Soil Sci., 174: 480-486.
- Lantz K. 2003. Treatments against gray mold (Botrytis cinerea) on tomato (*Lycopersicon esculentum*) with mechanical, Biological and chemical methods. J. Internal Med. 254: 272-279
- Lawson PG, Daum D, Czauderna R, Meuser H and Hartling JW. 2015. Soil versus foliar iodine fertilization as a biofortification strategy for field-grown vegetables. Front. Plant Sci., 6: 450: 1-11
- Lee YH, Choi CW, Kim SH, Yun JG, Chang SW, Kim YS and Hong JK. 2012. Chemical pesticides and plant essential oils for disease control of tomato bacterial wilt. Plant Pathol. J., 28: 32-39.
- Marsh RW. 1929. Investigations on the fungicidal action of sulphur. III. Studies on the toxicity of sulphuretted hydrogen and on the interaction of sulphur with fungi. J Hortic Sci., 7: 237–250.
- Medrano-Macías J, Leija-Martínez P, González-Morales S, Juárez-Maldonado A and Benavides-Mendoza A. 2016. Use of iodine to biofortify and promote growth and stress tolerance in crops. Front. Plant Sci., 7: 1146.

- Mejdoub-Trabelsi B, Jabnoun-Khiareddine H, Daami-Remadi M. 2012. Effect of Fusarium species and temperature of storage on the susceptibility ranking of potato cultivars to tuber dry rot. Pest Tech., 6: 41-46.
- Mousa (Thanaa) AA., Galal AA, Farag FM, Armanious (Hanaa) AH and Abdel-latif MR. 2025. Isolation and characterization of fungi associated with dry rot of potato tubers in Minya Governorate. Egyptian Journal of Phytopathology, 53(2): 21-36. DOI:10.21608/EJP.2025.380243.11
- Qin G Z, Tian S P, Xu Y and Wan Y K. 2003. Enhancement of biocontrol efficacy of antagonistic yeasts by salicylic acid in sweet cherry fruit. Physiol. Mol .Plant Pathol. 62, 147–154.
- Redeker K R, Treseder K K and Allen M F .2004a. Ectomycorrhizalfungi: A new source of atmospheric methyl halides?, Global ChangeBiol., 10, 1009-1016.
- Redeker K R, Meinardi S, Blake D and Sass R. 2004b. Gaseous emissions from flooded rice paddy agriculture, J. Geophys. Res., 108(D13), 4386.
- Saini H, Attieh J and Hanson A. 1995. Biosynthesis of halomethanes and methanethiol by higher plants via a novel methyltransferase system. Plant Cell and Environment 18, 1027-1033.
- Sánchez-González L, Pastor C, Varga M, Chiralt A, González-Martínez C and Cháfer M. 2011. Effect of hydroxypropylmethylcellulose and chitosan coatings with and without bergamot essential oil on quality and safety of cold-stored grapes . Postharvest Biol. Technol. 60, 57-63.
- Seki M, Oikawa J, Taguchi T, Ohnuki T, Muramatsu Y, Sakamoto K and Amachi S. 2013. Laccase-catalyzed oxidation of iodide and formation of organically bound iodine in soils.

- Environ. Sci. Technol., 47: 390–397.
- Sharma (Shikha) and Ratnoo RS. 2019. Study on effect of host range host age and host range of Alternaria porri. Journal of Pharmacognosy and Phytochemistry, 8(1): 1295-1297.
- Shetty NP, Mehrabi R, Lütken H, Haldrup A, Kema GHJ, Collinge DB and Jørgensen HJL. 2007. Role of hydrogen peroxide during the interaction between the hemibiotrophic fungal pathogen Septoria tritici and wheat. Journal Compilation © New Phytologist.,174: 637 647.
- Tian S P, Fan Q, Xu Y and Jiang A L. 2002. Effects of calcium on biocontrol activity of yeast antagonists against the postharvest decay fungal pathogen Rhizopus stolonifer. Plant Pathology, 51: 352-358.
- Thipaksorn CN, Rattanapanone A and Boonyakiat D 2012. Effects of peroxyacetic acid, peroxycitric acid, sodium bicarbonate, potassium sorbate, and potassium metabisulfite on the control of green mold in Sai Nam phueng tangerine Fruit. CMU. J. Nat. Sci., 11(2): 203-211.
- Tiwari RK, Kumar R, Sharma S, Naga KC, Subhash S and Sagar V. 2020-a. Continuous and emerging challenges of silver scurf disease in potato. Int J Pest Manag. 1: 1-13. https://doi.org/10.1080/09670874.2 020.1795302.
- Tiwari RK, Kumar R, Sharma S, Sagar V, Aggarwal R, Naga KC, Lal MK, Chourasia KN, Kumar D and Kumar M., 2020-b. Potato dry rot disease: current status, pathogenomics and management. 3 Biotech 10: 503. https://doi.org/10.1007/s13205-020-02496-8
- **Tripathi P and Dubey NK. 2004.** Exploitation of natural products as an alternative strategy to control postharvest fungal rotting of fruit and vegetables. Postharvest Biol Technol., 32: 235–245

- **Tschiersch J, Shinonaga T and Heuberger H. 2009.** Dry deposition of gaseous radio iodine and particulate radio caesium onto leafy vegetables. Sci Total Environ., 407 (21): 85–93.
- Umaly RC and Poel LW. 1971. Effects of iodine in various formulations on the growth of barley and pea plants in nutrient solution culture. Ann. Bot., 35: 127–131.
- Velasco I, Bath SC and Rayman MP. 2018. Iodine as essential nutrient during the first 1,000 days of life. Nutrients, 10: 290.
- Voogt W, Holwerda HT and Khodabaks R. 2010.

 Biofortification of lettuce (*Lactuca sativa* L.) with iodine: The effect of iodine form and concentration in the nutrient solution on growth, development and iodine uptake of lettuce grown in water culture. J. Sci. Food Agric., 90: 906–913.
- Voogt W, Steenhuizen J and Eveleens B. 2014. Uptake and distribution of iodine in cucumber, sweet pepper, round, and cherry tomato. Rep. Wagening. UR Greenh. Horicult., 1329: 1–72.
- Wang R. 2012. Physiological implications of hydrogen sulfide: a whiff exploration that blossomed. Physiol Rev., 92: 791–896.
- Weng HX, Hong C L, Yan AL, Pan LH, Qin YC, Bao LT and Xie LL. 2008-a. Mechanism of iodine uptake by cabbage: Effects of iodine species and where it is stored. Biol. Trace Elem. Res., 125, 59–71.
- Weng HX, Yan A, Hong CL, Xie LL, Qin YC and Cheng CQ. 2008-b. Uptake of different species of iodine by water spinach and its effect to growth. Biol. Trace Elem. Res., 125: 184–194.

- Wessels S. and Ingmer H. 2013.

 Modes of action of three disinfectant active substances: A review. Regulatory Toxicology and Pharmacology, 67(3): 456- 467.
- Wharton P, Hammerschmidt R and Kirk W. 2007. Fusarium dry rot. Michigan potato diseases series. Michigan State University, Michigan, pp 531-532.
- **Xie LL, Weng HX, Hong CL and Yan AL. 2007**. Uptake of bok-choy and Ipomoea aquatica Forsk to iodine species. Plant Nutr. Fert. Sci., 13: 123–128.
- Yamaguchi N, Nakano M, Takamatsuc R and Tanida H. 2010. Inorganic iodine incorporation into soil organic matter: Evidence from iodine K-edge X-ray absorption near-edge structure. J. Environ. Radioact., 101: 451–457.
- Yu WJ, Yao Y, Wei HM, Long MH and Tang XF. 2011. Absorption of exogenous iodine in rhizosphere and its effects on physiological parameters of cherry tomato plants. Guihaia, 31: 513–519.
- Zhang H, Hu LY, Hu KD, He YD, Wang SH, (2008). Hydrogen sulfide promotes wheat seed germination and alleviates oxidative damage against copper stress. J Integr Plant Biol.,50: 1518–1529.
- **Zhu YG, Huang YZ, Hu Y and Liu YX.** 2003. Iodine up take by spinach (*Spinacia oleracea* L.) plants grown in solution culture: Effects of iodine species and solution concentrations. Environ. Int., 29: 33–37.
- Zhu YG, Huang Y, Hu Y, Liu Y and Christie P. 2004. Interactions between selenium and iodine uptake by spinach (*Spinacia oleracea* L.) in solution culture. Plant Soil, 261: 99-105.

الملخص العربي

التأثير المبيد الفطرى لكبريتيد الهيدروجين، اليود و مركب بيروكسى حمض الخليك على التأثير المبيد العفن الجاف في درنات البطاطس

مرزوق رجب عبد اللطيف، أنور جلال عبد العزيز، هناء عياد حليم أرمانيوس، فرج محمد فرج وثناء أبو العزم موسي كلية الزراعة جامعة المنيا ومركز البحوث الزراعية

أجريت هذه الدراسة بهدف الوصول إلى طريقة آمنه لمقاومة مرض العفن الجاف للبطاطس الناتج عن فطريات الفيوزاريوم أوكسبوروم والألترناريا الترناتا وفطريات أخرى أثناء التخزين والتسويق. أجريت فطريات أفي المختبر وفي الصوبة لتحديد فعالية مركبات اليود وكبريتيد الهيدروجين H_2S ومركب بيروكسي حمض الخليك PAA والمبيد الفطري T_2S 10% Diabolo على نمو الفطرين المسببان للمون الجاف في البطاطس. انخفض النمو الجاف الفطرين المسببان للمرض عند إضافة أي من المركبات المختبرة للوسط الغذائي. وكان أعلى انخفاض النمو الفطرى بواسطة كبريتيد الهيدروجين، يليه اليود، ثم بيروكسي حمض الخليك الذي تسبب في أقل تثبيط المنمو الفطرى ي المعمل عند استخدام كل من هذه المركبات على انفراد، بينما زاد هذا التأثير عند إضافة بيروكسي حمض الخليك T_1S الي أي من كبريتيد الهيدروجين أو اليود بتركيز الألي الهيدروجين أو اليود بتركيز الألي الم بيروكسي حمض الخليك (بتركيز ٤ ملج / لتر وكسي حمض الخليك)، كما حدث تثبيط كامل النمو الفطرى عند إضافة المبيد الفطرى T_1S النمو الفطرى عند إضافة المبيد الفطرى T_1S الفطرى عند إضافة المبيد الفطرى T_2S الفطرى عند إضافة المبيد الفطرى T_1S الفطرى عند إضافة المبيد الفطرى الخليك الفطرى عند إضافة المبيد الفطرى الملاء الغذائي...

كذلك، أدت معاملة درنات البطاطس (صنف كارا) قبل الزراعة بالغمر في محلول اليود، أو كبريتيد الهيدروجين، أو ال بيروكسي حمض الخليك (PAA)، أو المبيد الفطرى ديابولو \mathbb{R} $\mathbb{R$