Journal of Agricultural Chemistry and Biotechnology

Journal homepage & Available online at: www.jacb.journals.ekb.eg

Screening for Blue-green Pigment Production by *Pseudomonas* Isolates Dina S. M. A. Shaaban¹; M. A. E. Selim¹; W. I. A. Saber² and A. M. M. Elattaapy^{1*}

¹Microbiology Dept., Fac. of Agric., Mansoura Univ., Egypt

²Microbial Activity Unit, Microbiology Department, Soils, Water and Environment Research Institute, Agricultural Research Center, Giza 12619, Egypt

Cross Mark

Article Information Received 22/10/2025 Accepted 29/10/2025

ABSTRACT

Eight isolates belonging to the genus *Pseudomonas* were isolated from various environmental sources, including soil, water, and food material, and tested for blue-green pigment production. All selected isolates exhibited good production of the blue-green pigment, with three isolates showing high levels of pigment production, yielding 2.13, 3.47, and 5.74 μg/mL when cultured in nutrient broth medium supplemented with 1% waste oil. In an attempt to select an appropriate medium for blue-green pigment production, six different media were tested with all isolates. The Obtained data indicate a significant variation in microbial pigment production among the different culture media. The data revealed that King's medium was the most effective for pigment production compared to nutrient broth and Bushnell Haas media with all tested *Pseudomonas* isolates. On the other hand, the results demonstrated that the supplementation of nutrient broth and Bushnell Haas media enhanced pigment production. Nutrient broth (Oxoid) showed high productivity with all isolates when supplemented with waste oil or glycerol. Maximum pigment production was achieved by isolate W4, yielding 4.98 μg/mL when cultured in waste oil-supplemented nutrient broth.

Keywords: Blue-green pigment, Waste-oil, Pseudomonas

INTRODUCTION

Pigments are chromophores that have been widely utilized due to their vibrant colors, which they impart to various substances. Biopigments, or biocolors, are naturally occurring pigments extracted from sources such as plants, animals, and minerals, and have been utilized since ancient times. With the revolution of industry, synthetic dyes gained rapid popularity due to their high productivity, high intensity and high stability and low cost of production (Padhan et al., 2021). Consequently, natural pigments were gradually replaced by synthetic dyes, which have been used in a wide range of applications, including food, agriculture, textiles, electronics and cosmetics (Azman et al., 2018; Huang et al., 2024). Although their commercial advantages, synthetic dyes contribute to environmental pollution because of their nondegradable, toxic and carcinogenic effects on human health (Tkaczyk et al., 2020). Moreover, removing these substances from the contaminated environments requires a complex addressing process and high cost (Mehdizadeh et al., 2020; Orooji et al., 2020).

Increasing awareness of consumers and their interest in safe, eco-friendly products have caused a shift toward naturally occurring pigments. Natural pigments were increasingly used as a sustainable alternative to synthetic dyes due to their biodegradable, non-toxic, and non-carcinogenic properties (Cristea and Vilarem, 2006). Microorganisms, which are considered one of such pigments, have garnered special attention due to their ability to overcome a number of drawbacks associated with pigments obtained from plants or animals. Among microorganisms, bacteria are preferred because of their advantages including short life cycles, independence from weather condition, production of diverse

pigments, and ease of large-scale fermentation and downstream processing (Sutthiwong *et al.*, 2014; Celedón and Díaz, 2021; Finger *et al.*, 2019, Pankaj and kumar, 2016). Furthermore, many bacterial strains are capable of utilizing waste materials that are environmental pollutants to secrete bacterial pigments, which made this process more sustainable (Joshi *et al.*, 2003; Kamla *et al.*, 2012). This not only enhances pigment production but also contributes to sustainable waste management, aligning with the principles of a circular economy (Banu et *al.*, 2021; Muscat *et al.*, 2021; Yaashikaa *et al.*, 2022, Grewal *et al.*, 2022).

Bacterial pigments are secondary metabolites distinguished by their various colors, unique molecular structures, and relatively low molecular weights (Grewal et al., 2022). They play significant roles in biological and ecological functions, including photosynthesis (Nowicka & Kruk, 2016), protection against ultraviolet radiation (Moeller et al., 2005), iron acquisition (Cornelis & Dingemans, 2013), signaling pathways linked to quorum sensing (Liu & Nizet, 2009) and ecological interactions with other organisms (Viana et al., 2017). Among these pigments, phenazines represent a unique class of nitrogen-containing heterocyclic compounds with diverse physicochemical properties (Pierson & Pierson, 2010). More than 50 naturally occurring phenazines have been identified, with at least 10 types often coexisting in a single organism. Among them, pyocyanin a blue-green pigment produced primarily by Pseudomonas aeruginosa is considered the most significant due to its multifaceted biological activities and broad biotechnological potential (Shanmugaiah et al., 2010).

The aim of the present study is to isolate highly effective blue-green pigment producing bacteria and study their productivity on different media.

MATERIALS AND METHODS

isolation and Screening of pigment producing microorganisms

Various samples of soil, water, and minced meat collected from different locations in Dakahlia Governorate, Egypt, during a screening study for blue-green pigmentproducing bacteria using nutrient agar medium (Oxoid, UK). Pigmented colonies were selected and streaked onto nutrient agar plates for purification. Pigmented colonies with a grapelike odor and shiny appearance were subcultured on blood and MacConkey agar (Oxoid, UK) and incubated at 37°C for 24 h. Colonies showing β-hemolysis and non-lactose fermentation were selected as potential Pseudomonas isolates (Vandepitte et al., 2003). Standard biochemical tests, including catalase, oxidase, and gelatin liquefaction, as well as the ability to grow at 42°C were performed to confirm identification, based on the methods described by Palleroni (1992). Also, Morphological characteristics such as Gram staining, motility, shape and pigment production were performed as described by (Holt et al. 1994).

Selective Isolation of blue-green Pigment Producing bacteria

The different *Pseudomonas* isolates were cultured in 250 ml conical flasks containing 50 ml of nutrient broth supplemented with waste oil. The cultures were incubated in a shaker at 150 rpm and 32 °C for 48 h. Blue-green pigment production was estimated at the end of the incubation period. For comparison, six different synthetic media were evaluated for their effect on pigment production by the selected Pseudomonas isolates. These media included: (1) nutrient broth, (2) nutrient broth supplemented with 1% waste oil, (3) nutrient broth supplemented with 1% glycerol, (4) King's A medium (King *et al.*, 1954), (5) Bushnell-Haas medium (Bushnell and Haas, 1941), and (6) Bushnell-Haas medium supplemented with 5 g/L peptone.

Extraction and estimation of blue-green pigment

The extraction protocol was followed as described previously by (Saha *et al.*, 2008). After incubation, the production medium was centrifuged for 20 min at 5000 rpm, and then the cell pellet was discarded while the cell-free supernatant was extracted directly. In a separating funnel, 3

ml of the supernatant was combined thoroughly with 6 ml of chloroform. After vigorously shaking, the chloroform layer was separated from the aqueous solution and its color changed to blue. The concentration of the blue pigment was estimated by measuring the absorbance of acidic solution at 520 nm. Pigment concentration was calculated by micrograms per milliliter according to the following equation (Essar *et al.*, 1990):

Concentration of Pigment (μ g/ml) = OD _{520nm} x 17.072 Statistical analysis:

All experiments were conducted in triplicate, and the data are presented as mean \pm standard deviation (SD). Statistical analysis was performed using one-way ANOVA (Duncan's multiple range test) with CoStat software version 6.303 to determine significant differences between means.

RESULTS AND DISCUSSION

Data in Table No. 1 show the number of bacterial isolates obtained from soil, water, and food samples. The presented data also indicates the number of isolates presumptively identified as *Pseudomonas* based on their morphological characteristics and pigment production. The data show that one isolate was isolated from agricultural wastewater. The data presented in the table (1) show that three bacterial isolates were isolated from agricultural wastewater in Dakahlia Governorate, one of which was expected to be Pseudomonas. Two bacterial isolates were isolated from benzene-contaminated soil, one of which was expected to be Pseudomonas. From Nile River water, 12 isolates were isolated, three of which were suspected to be *Pseudomonas*. Three isolates were obtained from irrigation water, one of which was expected to be Pseudomonas. Finally, three isolates were isolated from minced meat, two of which were expected to be Pseudomonas.

The isolation results can be summarized as 8 isolates were obtained, which are expected to belong to the genus *Pseudomonas*, and which were selected based on the characteristic of the bacterial colonies in the culture medium and on the color of the blue-green pigment produced by the colonies.

Table 1. Classification of isolated bacteria from different samples:

Tuble 1. Chassification of isolated bacteria if our afficient samples.					
Source of isolation	Number of pigmented bacterial isolates	Number of expected Pseudomonas sp. isolates			
Agricultural drainage water from Dakahlia governorate	3	1			
Soil polluted by gasoline from Dakahlia governorate	2	1			
Nile river water from Dakahlia governorate	12	3			
Irrigation water from Dakahlia governorate	3	1			
Minced meat sample	3	2			

The eight bacterial isolates which are expected to be *Pseudomonas* were tested for their ability of the production of the blue-green pigment by growing them in nutrient broth medium for 48 h. at 30°C with shaking at 160 rpm. The results shown in Table 2 show that all isolated bacteria can produce

blue green pigment on nutrient broth medium. Also, data show that there was a clear variation in the ability of the isolates to produce the blue-green pigment and the results recorded clear significant differences.

Table 2. Screening of Pseudomonas isolates for blue-green pigment production in waste-oil-supplemented nutrient broth after 48 h of incubation at 30 °C.

Isolate code	Source of isolation	Blue-green pigment production (μg/ml ±SD)
P. Dg	Agricultural drainage water sample from Dakahlia governorate	3.47 ± 0.075 b
P1	Soil polluted by gasoline from Dakahlia governorate	$2.13 \pm 0.115c$
W1	Nile river water sample from Dakahlia governorate	$0.94 \pm 0.090e$
W2	Nile river water sample from Dakahlia governorate	$1.11 \pm 0.090e$
W3	Nile river water sample from Dakahlia governorate	$1.72 \pm 0.205 d$
W4	Irrigation water sample from Dakahlia governorate	5.74±0.271a
M1	Minced meat sample	$1.60 \pm 0.135d$
M2	Minced meat sample	$1.03 \pm 0.115e$

Data show that the bacterial isolate (W4), which is isolated from irrigation water, show a clear superiority in

pigment production over the other isolates, as it produced 5.74 $\mu g/ml$, while isolate (P. Dg), which isolated from agricultural

drainage water came in second place, producing 3.47 μ g/ml of blue-green pigment. On the other hand, the isolate (W1) which isolated from Nile River was the least pigment producer, recording 0.94 μ g/ml which is a very low amounts of blue-green pigment.

Identification tests were performed in vitro on the isolated bacteria to confirm that they belong to the genus *Pseudomonas*. Tests includes morphological tests (bacterial shape and motility test), and biochemical tests as gram staining, oxidase production, catalase test, gelatin liquefication, and lactose fermentation. Also isolates were tested for their ability to grow at 42°C as shown in table (3). The results of some tests were consistent with the characteristics of the genus *Pseudomonas*, as all isolates were short, Gram-negative, motile rods. All isolates also produced

catalase and had the ability of gelatin liquefication. Data also show that all isolates do not have the ability of lactose fermentation, as it is a characteristic associated with the genus *Pseudomonas* and through which it can be distinguished from similar genera such as the coliform group species. Data also appeared that all isolates could produce oxidase except the isolate W4. The cultivation of isolates on 42°C could help in the differentiation of *Pseudomonas* sp., as *Pseudomonas aeruginosa* has the ability to grow at 42°C, while other *Pseudomonas* species do not grow at the same temperature.

From the results in Table 3, it can be confirmed that the selected isolates belong to the genus *Pseudomonas*. It can also be confirmed that the isolates; P. Dg, W2, W3, M1 and M2 could be *Pseudomonas aeruginosa*, as it is among the other isolates that can grow at 42°C.

Table 3. Some morphological and biochemical Characteristics of selected blue-green pigment producing Pseudomonas isolates:

Isolate code	Gram stain	Motility	Oxidase production	Catalase Test	Gelatin liquefaction	Lactose fermentation	Growth at 42°C
P. Dg	G-ve rods	Motile	+	+	+	-	+
P1	G-ve rods	Motile	+	+	+	-	-
W1	G-ve rods	Motile	+	+	+	-	-
W2	G-ve rods	Motile	+	+	+	-	+
W3	G-ve rods	Motile	+	+	+	-	+
W4	G-ve rods	Motile	-	+	+	-	-
M1	G-ve rods	Motile	+	+	+	-	+
M2	G-ve rods	Motile	+	+	+	_	+

The data presented in Table 4 illustrate the effect of different media, with various additives, on blue-green pigment production by the selected *Pseudomonas* isolates. The results presented in Table (4) indicate a significant variation in microbial pigment production among the different culture media. The findings revealed that King's medium was the most effective for pigment production compared to nutrient broth and Bushnell Haas media with all tested *Pseudomonas* isolates. On the other hand, the results demonstrated that the supplementation of nutrient broth and

Bushnell Haas media enhanced pigment production. The addition of waste oil and glycerol to the nutrient broth medium resulted in significant increases in pigment production compared to nutrient broth medium without additives by all *Pseudomonas* isolates. Similarly, the enrichment of Bushnell Haas medium with peptone led to a marked enhancement in blue-green pigment production in all *Pseudomonas* isolates, compared to the unsupplemented Bushnell Haas medium.

Table 4. Effect of different media on blue-green pigment production by selected Pseudomonas isolates:

Table 4. Effect of different media on blue-green pigment production by selected I seddomonas isolates.						
Isolate	Nutrient	Nutrient broth +	Nutrient broth+	Kings A	Bushnell-Haas	Bushnell-Haas
code	broth	Waste-oil	glycerol	Medium	medium	medium + peptone
P. Dg	0.311±0.006d	3.21±0.12a	3.34±0.03a	2.12±0.14c	0.11±0.02e	2.36±0.12b
P1	$0.092\pm0.008d$	$2.34\pm0.07a$	$2.36\pm0.09a$	$1.86\pm0.06b$	$0.17\pm0.03d$	$1.54\pm0.13c$
W1	$0.033\pm0.009d$	$1.01\pm0.04a$	0.98±0.11a	$0.54\pm0.03c$	$0.02\pm0.01d$	$0.87 \pm 0.06b$
W2	$0.042\pm0.005e$	$1.05\pm0.08a$	1.21±0.11a	$0.84\pm0.09c$	$0.05\pm0.02e$	$0.68\pm0.1d$
W3	$0.061\pm0.004e$	$1.84\pm0.07b$	$2.14\pm0.07a$	$1.47\pm0.1c$	$0.06\pm0.01e$	$0.64\pm0.08d$
W4	$0.97 \pm 0.05e$	4.98±0.26a	$3.68\pm0.17b$	$2.65\pm0.017c$	$0.18\pm0.06f$	$1.54\pm0.07d$
M1	$0.077\pm0.012e$	1.57±0.06b	2.02±0.15a	$1.32\pm0.09c$	0.10±0.03e	$0.47\pm0.06d$
M2	$0.081\pm0.014d$	$1.21\pm0.11b$	$1.74\pm0.19a$	$1.57\pm0.12a$	$0.03\pm0.01d$	$0.83 \pm 0.06c$

The Pseudomonas genus is considered a widespread bacterium that can be obtained from various sources and which widely produces a variety of extra-cellular pigments (El-Fouly et al, 2015). In this work, the blue green pigment producers of Pseudomonas were isolated from different ecological sources to study the production of the pigment. We focused on the effect of media and supplements on the production of blue-green pigment. We have found that the highest pigment production with different media were achieved by using waste-oil or glycerol as supplements to the nutrient broth medium, compared to the other tested conditions, where the isolate W4 recorded the highest pigment production among all treatments in the experiment when waste oil was used as a supplement to the nutrient broth medium, reaching a value of 4.98 µg/mL. In agreement with our results, Elbargisy, (2021) reported that using king's

medium outperformed nutrient broth medium in the production of blue-green pigment with *Pseudomonas auroginosa*.

Gahlout *et al.*, (2021) used nutrient agar medium for the production of pyocyanin from *Pseudomonas auroginosa* as it consists the most suitable nutrients for the pigment production. Also, they found that addition of glycerol to nutrient agar medium enhanced the pyocyanin dye by *Pseudomonas aeruginosa* compared with control medium.

REFERENCES

Azman, A. S., Mawang, C. I., & Abubakar, S. (2018). Bacterial pigments: The bioactivities and as an alternative for therapeutic applications. *Natural Product Communications*, *13*(12), 1747-1754.

- Banu, J. R., Kavitha, S., Tyagi, V. K., Gunasekaran, M., Karthikeyan, O. P., & Kumar, G. (2021). Lignocellulosic biomass-based biorefinery: A successful platform towards circular bioeconomy. *Fuel*, 302, 121086.
- Bushnell, L. D., & Haas, H. F. (1941). The utilization of certain hydrocarbons by microorganisms. *Journal of Bacteriology*, *41*(5), 655–673.
- Celedón, R. S., & Díaz, L. B. (2021). Natural pigments of bacterial origin and their possible biomedical applications. *Microorganisms*, 9(4), 739. https://doi.org/10.3390/microorganisms9040739
 Usman, H. M., Abdulkadir, N., Gani, M., & Maiturare, H. M. (2017). *Bacterial pigments and its significance*. MOJ Bioequivalence & Bioavailability, 4(3), 285-288.
- Cornelis, P., & Dingemans, J. (2013). Pseudomonas aeruginosa adapts its iron uptake strategies in function of the type of infections. Frontiers in Cellular and Infection Microbiology, 3, 75.
- Cristea, D., & Vilarem, G. (2006). Improving light fastness of natural dyes on cotton yarn. *Dyes and Pigments*, 70(3), 238–245.
- Elbargisy, R. M. (2021). Optimization of nutritional and environmental conditions for pyocyanin production by urine isolates of Pseudomonas aeruginosa. *Saudi journal of biological sciences*, 28(1), 993-1000.
- El-Fouly, M. Z., Sharaf, A. M., Shahin, A. A. M., El-Bialy, H. A., & Omara, A. M. A. (2015). Biosynthesis of pyocyanin pigment by Pseudomonas aeruginosa. *Journal of Radiation Research and Applied Sciences*, 8(1), 36-48.
- Essar, D. W., Eberly, L., Hadero, A., & Crawford, I. P. (1990). Identification and characterization of genes for a second anthranilate synthase in Pseudomonas aeruginosa: interchangeability of the two anthranilate synthases and evolutionary implications. Journal of Bacteriology, 172, 884e900.
- Finger, S., Godoy, F. A., Wittwer, G., Aranda, C. P., Calderón, R., & Miranda, C. D. (2019). Purification and characterization of indochrome type blue pigment produced by *Pseudarthrobacter* sp. 34LCH1 isolated from Atacama Desert. *Journal of Industrial Microbiology & Biotechnology*, 46(1), 101-111.
- Gahlout, M., Chauhan, P. B., Prajapati, H., Tandel, N., Rana, S., Solanki, D., & Patel, N. (2021). Characterization, application and statistical optimization approach for enhanced production of pyocyanin pigment by Pseudomonas aeruginosa DN9. Systems Microbiology and Biomanufacturing, 1(4), 459-470.
- Grewal, J., Wołącewicz, M., Pyter, W., Joshi, N., Drewniak, L., & Kumar, P. (2022). Colorful treasure from agroindustrial wastes: A sustainable chassis for microbial pigment production. *Frontiers in Microbiology*, 13, Article 832918.
- Holt JG, Krieg NR, Sneath PHA, Staley JT, Williams ST (1994) Bergey's Manual of Determinative Bacteriology, 9th edn. Williams and Wilkins, Baltimore

- Huang, X., Gan, L., He, Z., Jiang, G., & He, T. (2024).

 Bacterial pigments as a promising alternative to synthetic colorants: From fundamentals to applications. Journal of Microbiology and Biotechnology, 34(11), 2153–2165.
- Joshi, V. K., Attri, D., Bala, A., & Bhushan, S. (2003). Microbial pigments. *Indian Journal of Biotechnology*, 2, 362–369.
- Kamla, M., Jayanti, T., & Sneh, G. (2012). A review on microbial pigment. *International Journal of Microbial Research Technology*, *1*(4), 361–365.
- King, E. O., Ward, M. K., & Raney, D. E. (1954). Two simple media for the demonstration of pyocyanin and fluorescin. The Journal of Laboratory and Clinical Medicine, 44, 301e307.
- Liu, G. Y., & Nizet, V. (2009). Color me bad: Microbial pigments as virulence factors. *Trends in Microbiology*, *17*(9), 406–413.
- Mehdizadeh, P., Orooji, Y., Amiri, O., & Salavati-Niasari, M. (2020). Green synthesis using cherry and orange juice and characterization of TbFeO₃ ceramic nanostructures and their application as photocatalysts under UV light for removal of organic dyes in water. *Journal of Cleaner Production*, 252, 119765.
- Moeller, R., Horneck, G., Facius, R., & Stackebrandt, E. (2005). Role of pigmentation in protecting Bacillus sp. endospores against environmental UV radiation. *FEMS Microbiology Ecology*, *51*(2), 231–236.
- Muscat, A., de Olde, E. M., Ripoll-Bosch, R., van Zanten, H. H. E., Metze, T. A. P., Termeer, C. J. A. M., & de Boer, I. J. M. (2021). Principles, drivers and opportunities of a circular bioeconomy. *Nature Food*, 2(8), 561–566.
- Nowicka, B., & Kruk, J. (2016). Powered by light: Phototrophy and photosynthesis in prokaryotes and its evolution. *Microbiological Research*, *186–187*, 99–118.
- Orooji, Y., Ghanbari, M., Amiri, O., & Salavati-Niasari, M. (2020). Facile fabrication of silver iodide/graphitic carbon nitride nanocomposites by notable photocatalytic performance through sunlight and antimicrobial activity. *Journal of Hazardous Materials*, 389, 122079.
- Padhan, B., Poddar, K., Sarkar, D., & Sarkar, A. (2021). Production, purification, and process optimization of intracellular pigment from novel psychrotolerant *Paenibacillus* sp. BPW19. *Biotechnology Reports*, 29, e00592.
- Palleroni, N. J. (1992). Present situation of the taxonomy of aerobic pseudomonads molecular biology and biotechnology (1st ed.). Washington: Molecular Biology and Biotechnology.
- Pankaj, V. P., & Kumar, R. (2016). Microbial pigment as a potential natural colorant for contributing to mankind. In *Research Trends in Molecular Biology* (pp. 85–98). AkiNik Publications.
- Pierson, L. S., & Pierson, E. A. (2010). Metabolism and function of phenazines in bacteria: Impacts on the behaviour of bacteria in the environment and biotechnological process. *Applied Microbiology and Biotechnology*, 86(6), 1659–1670.

J. of Agricultural Chemistry and Biotechnology, Mansoura Univ., Vol 16 (10): October, 2025

- Saha, S., Thavasi, R., & Jayalakshmi, S. (2008). Phenazine pigments from Pseudomonas aeruginosa and their application as antibacterial agent and food colourants. Research Journal of Microbiology, 3, 122e128.
- Shanmugaiah, V., Mathivanan, N., & Varghese, B. (2010). Purification, crystal structure and antimicrobial activity of phenazine-1-carboxamide produced by a growth-promoting biocontrol Pseudomonas aeruginosa MML2212. Journal of Applied Microbiology, 108(2), 703-711
- Sutthiwong, N., Fouillaud, M., Valla, A., Caro, Y., & Dufossé, L. (2014). Bacteria belonging to the extremely versatile genus Arthrobacter as novel source of natural pigments with extended hue range. Food Research International, 65, 156–162.
- Tkaczyk, A., Mitrowska, K., & Posyniak, A. (2020). Synthetic organic dyes as contaminants of the aquatic environment and their implications for ecosystems: A review. Science of the Total Environment, 717, 137222.

- Vandepitte, J. (2003). Basic laboratory procedures in clinical bacteriology. World Health Organization.
- Viana, A. A. G., Martins, R. X., Ferreira, G. F., Zenaide-Neto, H., Amaral, I. P. G., & Vasconcelos, U. (2017). Pseudomonas aeruginosa and pyocyanin negatively act on the establishment of Enterobacteriaceae biofilm on a ceramic surface. International Journal of Engineering Research and Applications, 7(2), 23–30.
- Yaashikaa, P. R., Senthil Kumar, P., & Varjani, S. (2022). Valorization of agro-industrial wastes for biorefinery process and circular bioeconomy: A critical review. Bioresource Technology, 343, 126126.

التحري عن إنتاج الصبغة الزرقاء المخضرة بواسطة عزلات Pseudomonas

دينا شعبان محمد على شعبان٬ ، محمد عبدالله العوضي سليم ٬ ، وسام الدين اسماعيل على صابر٬ وعبد الرحمن محمد محمود العتابي٬

اقسم الميكروبيولوجيا الزراعية ــ كلية الزراعة ــ جامعة المنصورة ـ مصر 2وحدة النشاط الميكروبي- قسم الميكروبيولوجي- معهد بحوث الأراضي والمياه والبيئةـ مركز البحوث الزراعيةـ الجيزةـ مصر

الملخص

تم عزل ثمانية عزلات تنتمي إلى جنس سيدوموناس من مصادر بيئية مختلفة، بما في ذلك التربة والماء والمواد الغذائية، واختبار ها لإنتاج الصبغة الزرقاء المخضرة. أظهرت جميع العزلات المختارة إنتاجًا جيدًا للصبغة الزرقاء المخضرة، مع ثلاث عزلات أظهرت إنتاجية عالية، حيث بلغت ٢,١٣ و٣,٥ و٢,٤ ميكر وجرام/مل عند زراعتها في وسط غذائي مدعم بـ ١٪ من مخلفات الزيت. في محاولة لاختيار وسط مناسب لإنتاج الصبغة الزرقاء المخضرة، تم اختبار ستة أوساط مختلفة مع جميع العز لآت. تشير البيانات التي تم الحصول عليهاً إلى وجود تباين كبير في إنتاج الصبغة الميكروبية بين الأوساط البيئية المختلفة. كشفت النتائج المتحصل عليها أن بيئة كينج كانت الأكثر فعالية لإنتاج الصبغة مقارنة ببيئة البويون المغذي وبيئة بوشنل هاس مع جميّع عزلات السيدوموناس المختبرة. من ناحية أخرى، أظهرت النتاج أن تدعيم بيئة البويون المغذي وبيئة بوشنل هاس عزز إنتاج الصبغة. أظهر ت بيئة البيويون المغذي إنتاجية عاليةً مع جميع العزلات عند تدعيمها بمخلفات الزيت أو الجليسرول. تم تحقيق أقصى إنتاج للصبغة من قبل العزلةW4 ، حيث بلغ 8,9, كم ميكرو غرام/مل عند زراعتها في بيئة البويون المغذي