Journal of Plant Production

Journal homepage & Available online at: www.jpp.journals.ekb.eg

Genetic Variability and Character Associations for Quantitative Traits of Squash (*Cucurbita pepo*) Genotypes

Hassanein, I. M. E.¹; M. A. Abdein^{2*}; A. A. M. Rashwan¹; A. A. H. El-Shaieny¹ and G. A. Zayed³

¹Hortic. Depart., Fac. of Agric., South Valley University, Qena 83523, Egypt ²Seeds Dev. Dep., El-Nada Misr Scientific Research and Development Projects,, Turrell, Mansoura, 35511, Egypt

³Hortic. Res. Institute, Agriculture Research Center, 12619 Giza, Egypt

Article Information Received 22 / 9 /2025 Accepted 11 / 10 /2025

ABSTRACT

For the majority of characteristics, there were only minor variations between GCV% and PCV%, suggesting that genetic influences play a significant role in regulating how these traits are inherited. The majority of the traits under study exhibited high GCV/PCV %, according to the results. In terms of yield, the genotypes showed significant and nearly equal genetic advancement. For practically every trait under study, the range of variability between several genotypes was very significant. The potential utility of these traits and genotypes to create breeding programs to increase fruit output and quality was demonstrated by strong estimates of heritability and a high predicted genetic progress. Analysis of correlations showed that variables related to yield had a high genetic connection. Path coefficient analysis identified the number of fruits per plant (direct effect: 1.3786) and average fruit weight (direct effect: 0.7794) as having the strongest positive direct effects on yield. The results suggest that selection based on the number of fruits per plant and average fruit weight would be most effective for improving squash yield. Regarding the relative importance of joint effects, it is obvious that their effective parts were obtained by number of fruits/plant on yield through its associations with each of average of fruit weight (25.5 & 24.2%) and 100-seed weight (3.8 & 9.03%).

Keywords: Correlation, Genetic variability, Path analysis, Squash breeding, Yield components.

INTRODUCTION

In Egypt, squash (Cucurbita pepo) is referred to locally as "Kousa." Its chromosome number is 2n = 40 and it is a member of the Cucurbitaceae family. Both Northern and Southern America are the native home of this crop. The genus Cucurbita contains 27 species, five of which are cultivated. It is cross-compatible with C. maxima, C. moschata, and C. mixta and is commonly referred to as C. pepo. It is likely the most commonly grown species of Cucurbita in Egypt (Tindall, 1983 & Galala, 2016). According to Bose & Som (1998) and Abdein et al. (2023) squash is a strong source of vitamins, particularly high carotenoid pigments and minerals, and is quite high in energy and carbs. In order to properly characterize populations and enable the efficient development of breeding populations that are intended to accomplish certain goals, a thorough understanding of the genetic diversity of economically significant traits is necessary for the effective management and use of the germplasm. In addition to yield, a crop breeding program that aims to increase plant productivity must take into account its constituents that either directly or indirectly affect yield. Important biometric technologies that successfully show the relationship and association between various crop yields and quality components and aid in the selection of superior genotypes are correlation and path coefficient analysis. Correlation is a measure of the degree of association between two or more features (Gomez and Gomez, 1984). It can be genetic or environmental (non-genetic) in origin (Hallauer and Miranda, 1988) and is expressed as a correlation coefficient. Selection for complex features is more successful because complex traits are associated with simple ones (Falconer, 1981). In

addition to allowing for a critical review of the supplied correlation and determining the relative relevance of each factor, the route coefficient analysis developed by Dewey and Lu (1959) offers an efficient way to determine the direct and indirect reasons for relationship. Character selection may be employed to improve the dependent variable if the independent character directly affects it, indicating an actual association between the two traits. Such data makes it possible to enhance various attributes at the same time and aids in choosing complex inherited traits more effectively. Breeders spend less time on the selection process when they use path coefficient analysis, which offers a selection criterion (Qaizar et al., 1991). The relationship between yield and quality features, as well as both the direct and indirect impacts of these interactions on fruit production in various squash genotypes under Upper Egypt circumstances, have not yet been the subject of any noteworthy research in Egypt. In light of these facts, the current study was conducted to determine the correlation and path coefficient among features in squash F1 breeding hybrids as well as assess variability in various squash genotypes under Upper Egypt conditions.

MATERIALS AND METHODS

The present investigation was carried out at a private farm, Sohag Governorate, Egypt, (latitude 26° 33' N, longitude 31°41'E) during both summer seasons of 2023 and 2024. The experimental material for the present study consisted of fifteen F1 hybrids of squash obtained from a 6x6 half diallel cross during 2023 summer season. The seeds of fifteen F1 hybrids were sown in the field during summer 2024 season for comparative evaluation on various quantitative traits. The experiment was laid out in a Randomized

Complete Block Design with three replications of each hybrid. The soil texture of the experimental site was a sandy loam soil with a pH of 7.5, an organic matter content was 0.96%, electrical conductivity (EC) of 1.23 dS m⁻¹. The healthy crop stand was raised by adhering to the traditional cultural practices for squash. When the peduncle dried and reached maturity, the fruits were picked. The quantitative traits, *i.e.*, Sex ratio (SR), fruit length (FL, cm), Fruit diameter (FD, cm), 100-seed weight (100-SW, g), number of fruits per plant (NF/P), and average fruit weight (AFW, g) as well as total yield per plant (TYP, kg) were recorded from ten randomly selected competitive plants in each plot.

Statistical Analysis:

Analysis of variance was applied to the mean values of the data collected for various attributes (Gomez and Gomez, 1984). Allard (1960) and Falconer (1989) were used to assess broad sense heritability (h2). Stanfield (1983) defined heritability as follows: $0 \le x < 0.2 = low$, $0.2 \le x \le 0.5$ = medium, and x > 0.50 = high. In accordance with Singh and Chaudhury (1985), the phenotypic (PCV%) and genotypic (GCV%) coefficients of variability were computed. Using the formula proposed by Johnson et al. (1955), genetic advance (GA) was computed as follows: GA = K x δ^2 g / $\sqrt{\delta^2}$ p, where K = 1.76, constant (based on selection intensity 10%). According to Hadiati et al. (2003), genetic advance as a percentage of mean (GAM%) = (GA/X) x 100. GAM% ranges from 0 to 7% for low, 7 to 14% for medium, and >14,1 for high. Phenotypic and genotypic correlation coefficients among all pairs of traits were estimated using the OPSTAT statistical software. Subsequently, path coefficient analysis was performed to partition the correlation coefficients into direct and indirect effects, following the methodology of Dewey and Lu (1959). This analysis treated fruit yield as the effect variable and the other six traits (SR, FL, FD, 100-SW, NF/P, AFW) as causal factors.

RESULTS AND DISCUSSION

Genetic variability

The phenotypic (PCV) and genotypic (GCV) coefficient of variations differed in magnitude across all traits, according to the data in Table 1. The PCV and GCV levels of the characters examined in this study were low, moderate, and high. The yield characters 100-SW, NF/P, and AFW had the highest PCV and GCV values (Mahmoud and El-Mansy, 2018). For the majority of traits, there were only minor variations between GCV% and PCV%, suggesting that genetic effects play a significant role in regulating how these traits are inherited. According to our findings, the majority of the qualities under study had high GCV/PCV percentages. The presence of high genetic variability for various traits and less environmental influence was shown by the fact that high phenotypic variations were made up of high genotypic variations and fewer environmental variations. As a result, phenotypic selection alone may be useful for enhancing these characteristics. We can infer from the explanation above that the best qualities for selection are 100-SW, NF/P, and AFW. As a result, these characteristics may be more genotypically prevalent, and they could potentially be further improved.

Table 1. Different genetic parameters for quantitative traits of squash

	SR	FL	FD	100-SW	NF/P	AFW	TYP
Mean±SE	1.36 ± 0.21	14.73±1.01	3.85 ± 0.29	12.76 ± 0.70	25.84±1.18	60.48±6.46	2.33±0.23
PCV	2.84	7.14	1.50	23.16	16.21	47.37	2.05
GCV	1.26	3.71	0.41	21.24	13.54	12.89	0.91
GCV/PCV	44.37%	51.96%	27.33%	91.71%	83.53%	27.21%	44.39%
h²b	0.71	0.76	0.53	0.97	0.94	0.53	0.70
GA% of means	12.41	33.76	4.92	139.15	94.15	154.98	8.93

SE: standard error, SR: Sex ratio%, FL: Fruit length (cm), FD: Fruit diameter, 100-SW: 100 Seed weight (g), NF/P: number of fruit per plant, AFW: average fruit weight, and TYP: total yield/plant (kg)

Plant breeders use the heritable fraction of the variation as a basis for selection based on phenotypic performances. The findings showed that, of all the variables examined, wide sense heritability (based on Stanfield, 1983) had the highest proportion (Table 1). Rapid advancement through selection for these qualities was suggested by high heritability. These findings suggested that environmental influences had little effect on the inheritance of these qualities and that mean-based selection would be effective in enhancing them. According to Hadiati et al. (2003), genetic advance was low for FD (4.92%), moderate for both sex ratio (12.41%) and yield (9.5%), and high for all other traits examined. These parameters' high heritability suggested that selecting them would be more effective than selecting the other parameters. The genotypes showed significant and nearly comparable genetic advance in FL, NF/P, 100-SW, and AFW, respectively (33.76, 94.15, 139.15, and 154.98). According to Johnson et al. (1955), estimations of genetic advancement combined with heritability values were more effective than heritability alone at forecasting the impact of selection. In general, all characteristics had strong heritability, while FD, 100-SW, NF/P, and AFW all had high genetic advance as a percentage of the mean (GAM%). Selection for these traits would thus be more successful due to their high genetic advance percentage and heritability. Based on the current study's findings, it can be said that nearly all of the

features under investigation showed a significant range of variability among various genotypes. These results are in agreement partially with those obtained by Deshmukh *et al.*, (1986), Abdein, (2016), Samlindsujin *et al.* (2017), Pujer *et al.* (2017), Mahmoud and El-Mansy (2018), Tirkey *et al.* (2018) and Hassan *et al.* (2021).

Correlation:

The correlation coefficients between characteristics, both genotypic and phenotypic, were calculated (Tables 2). The findings showed that the signals and values' magnitudes were either equal or quite near to one another for every pair of traits. For nearly all of the traits under study, the genotypic coefficient values were greater than the phenotypic ones, indicating that the environment has little effect on how genes are expressed. This suggests that there is a strong intrinsic relationship between the traits under study, which is consistent with the findings of Tiwari & Upadhyay (2011), and Abdelkader and Abdein (2023). Total yield per plant with SR, FL, FD, 100-SW, and NF/P was found to have a positive and highly significant genotypic correlation. This suggests that these traits have stable relationships and are indicators of yield, so they could be chosen simultaneously for breeding program improvement (Tasisa et al., 2012), which is supported by findings from Ghosh et al. (2010). Thus, either 100-SW or NF/P selection, either separately or in combination, should improve the genotypes' potential for yielding (Mpayo, 2010). These findings were consistent with

those of Jeberson et al. (2016), Tadesse et al. (2014), and Yadav et al. (2010). Conversely, the yield had a weak or

ignored connection with AFW (-0.003) and a desired negative correlation with the sex ratio (-0.553*).

Table 2. Phenotypic (above diagonal) and genotypic (below diagonal) correlations among yield and its attributes of squash

	SR	FL	FD	100-SW	NF/P	AFW	TYP
SR	1	-0.145	-0.087	-0.187	-0.333	0.079	-0.209
FL	-0.501	1	0.786**	0.16	-0.071	0.334	0.245
FD	-0.554*	0.938**	1	0.402	0.091	0.377	0.424
100-SW	-0.383	0.177	0.744**	1	0.592*	0.047	0.523*
NF/P	-0.492	-0.097	0.17	0.703**	1	-0.378	0.544*
AFW	0.068	1.000**	1.080**	0.223	-0.502	1	0.562*
TYP	-0.553*	0.573*	0.897**	0.965**	0.872**	-0.003	1

^{**} Significant at 1 % level of significance; * Significant at 5% level of significance; SR: Sex ratio%, FL: Fruit length (cm), FD: Fruit diameter, 100-SW: 100 Seed weight (g), NF/P: number of fruit per plant, AFW: average fruit weight and TYP: total yield/plant (kg)

There was a highly substantial positive genotypic relationship between the fruit diameter, fruit length, average fruit weight, and total yield/plant (Table 2). Fruit diameter and length were positively correlated with average fruit weight, either significantly or extremely significantly. Danquah and Ofori (2012) and Muniappan et al. (2010) both supported these findings for fruit diameter. Plant height, fruit production per plant, and fruit yield per feddan significantly correlated with the average fruit weight. At the genotypic and phenotypic levels, there was a positive and substantial association between the 100-seed weight and the number of fruits and yield. A very strong and substantial association between yield and fruit weight was discovered by Islam et al. (2010). Additionally, fruit diameter and fruit production were found to be positively connected by Akpan et al. (2016),

suggesting that selecting for these traits may indirectly increase fruit output per plant. This outcome supports the findings of Danquah and Ofori (2012), who found a positive correlation between fruit weight and fruit diameter. While Parihar et al. (2014) found that yield had a positive and significant correlation with the majority of the qualities, these results are consistent with those of Prabhu and Nataranjan (2007) and Manna and Paul (2012).

Path coefficient analysis:

To identify the specific factor causing that correlation, the phenotypic and genotypic correlation between yield and yield components was divided into direct and indirect effects (Tables 3&4 and Fig. 1).

Table 3. Path coefficient analysis of fruit yield vs sex ratio (SR), fruit length (FL), fruit diameter (FD), 100-seed weight, fruits number/plant (NF/P) and average fruit weight (AFW)

Trait	number/plant (NF/P) and avo	phenotypic	genotypic		
	Direct effec	t	P17	0.0209	-0.0271
	Indirect effect via	FL	P27*r12	-0.0001	0.0469
	Indirect effect via	FD	p37*r13	-0.0028	-0.0264
SR	Indirect effect via	100-SW	p47*r14	0.0163	0.0797
	Indirect effect via	NF/P	p57*r15	-0.3143	-0.6784
	Indirect effect via	AFW	p67*r16	0.0714	0.0527
	Total		r	-0.2086	-0.5526
	Direct effec	t	P27	0.0006	-0.0935
	Indirect effect via	SR	p17*r12	-0.0030	0.0136
	Indirect effect via	FD	p37*r23	0.0255	0.0446
L	Indirect effect via	100-SW	p47*r24	-0.0139	-0.0367
	Indirect effect via	NF/P	p57*r25	-0.0672	-0.1344
	Indirect effect via	AFW	p67*r26	0.3034	0.7794
	Total		r	0.2454	0.5730
	Direct effec		P37	0.0324	0.0476
	Indirect effect via	SR	P17*r13	-0.0018	0.0150
	Indirect effect via	FL	p27*r23	0.0005	-0.0877
D	Indirect effect via	100-SW	p47*r34	-0.0349	-0.1546
	Indirect effect via	NF/P	p57*r35	0.0854	0.2345
	Indirect effect via	AFW	p67*r36	0.3424	0.8418
	Total		r	0.4240	0.8966
	Direct effec	t	p47	-0.0869	-0.2079
	Indirect effect via	SR	p17*r14	-0.0039	0.0104
	Indirect effect via	FL	p27*r24	0.0001	-0.0165
00-SW	Indirect effect via	FD	p37*r34	0.0131	0.0354
	Indirect effect via	NF/P	p57*r45	0.5584	0.9696
	Indirect effect via	AFW	p67*r46	0.0425	0.1739
	Total		r	0.5233	0.9649
	Direct effec	t	p57	0.9429	1.3786
	Indirect effect via	SR	p17*r15	-0.0070	0.0133
	Indirect effect via	FL	p27*r25	0.0000	0.0091
NF/P	Indirect effect via	FD	p37*r35	0.0029	0.0081
	Indirect effect via	100-SW	p47*r45	-0.0514	-0.1462
	Indirect effect via	AFW	p67*r56	-0.3434	-0.3911
	Total		r	0.5440	0.8718
	Direct effec	t	P67	0.9083	0.7794
	Indirect effect via	SR	p17*r16	0.0016	-0.0018
	Indirect effect via	FL	p27*r26	0.0002	-0.0935
AFW	Indirect effect via	FD	p37*r36	0.0122	0.0514
	Indirect effect via	100-SW	p47*r46	-0.0041	-0.0464
	Indirect effect via	NF/P	p57*r56	-0.3565	-0.6918
	Total		r	0.5617	-0.0027

P: path way, r: correlation coefficient of the trait with yield, ** Significant at 1 % level of significance; * Significant at 5% level of significance; SR: Sex ratio%, FL: Fruit length (cm), FD: Fruit diameter, 100-SW: 100 Seed weight (g), NF/P: number of fruit per plant, AFW: average fruit weight, and TYP: total yield/plant (kg)

Table 4. Partitioning of the phenotypic (P) and genotypic (G) correlation coefficients into direct effects (main diagonal, bold) and indirect effects (above and below the main diagonal) in fifteen F1 squash hybrids

bold) and fighted effects (above and below the main diagonal) in inteen 11 squash hybrids								
Item		SR	FL	FD	100-SW	NF/P	AFW	correlation
SR	P	0.0209	-0.0001	-0.0028	0.0163	-0.3143	0.0714	-0.2087
	G	-0.0271	0.0469	-0.0264	0.0797	-0.6784	0.0527	-0.5525
FL	P	-0.003	0.0006	0.0255	-0.0139	-0.0672	0.3034	0.2454
	G	0.0136	-0.0935	0.0446	-0.0367	-0.1344	0.7794	0.573
FD	P	-0.0018	0.0005	0.0324	-0.0349	0.0854	0.3424	0.424
	G	0.015	-0.0877	0.0476	-0.1546	0.2345	0.8418	0.8966
100-SW	P	-0.0039	0.0001	0.0131	-0.0869	0.5584	0.0425	0.5232
	G	0.0104	-0.0165	0.0354	-0.2079	0.9696	0.1739	0.9648
NF/P	P	-0.007	0	0.0029	-0.0514	0.9429	-0.3434	0.5439
	G	0.0133	0.0091	0.0081	-0.1462	1.3786	-0.3911	0.8719
AFW	P	0.0016	0.0002	0.0122	-0.0041	-0.3565	0.9083	0.5618
	G	-0.0018	-0.0935	0.0514	-0.0464	-0.6918	0.7794	-0.0027

SR: Sex ratio%, FL: Fruit length (cm), FD: Fruit diameter, 100-SW: 100 Seed weight (g), NF/P: number of fruit per plant, AFW: average fruit weight, and TYP: total yield/plant (kg)

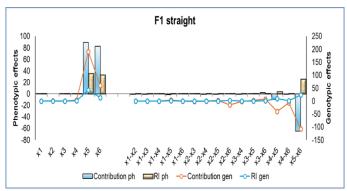


Fig. 1. Relative importance (R %) and percentage contribution of yield-attributing traits to total fruit yield in squash (Cucurbita pepo L.), based on genotypic and phenotypic path coefficient analysis.

In addition to the indirect negative effects through fruit diameter and number, the sex ratio had a direct negative (desirable) effect on yield (-0.027). Fruit length also had a negative direct impact on yield (-0.0935). Additionally, it demonstrated both favorable indirect effects through AFW and FD and negative indirect effects through 100-SW and NF/P. Fruit diameter had a favorable direct impact on yield (0.0476) and a positive indirect impact through average fruit weight and fruit count. 100-SW had a negative direct influence on yield (-0.2079) and shown good indirect effects through average fruit weight and fruit number (Table 3). However, the greatest genotypic positive direct influence on yield (1.579) was found for fruit number. Additionally, it demonstrated detrimental indirect impacts through 100-seed weight and AFW. Fruit number (-0.6918), fruit length, and 100-seed weight all shown negative indirect impacts on yield, whereas average fruit weight demonstrated the secondhighest positive direct effect (0.7794) and indirect effect via fruit diameter. There had previously been reports of supporting evidence of a direct beneficial relationship of fruit number per plant on yield per plant (Ezzo et al., 2012; Galala et al., 2012 Islam et al., 2010). The outcome supported the conclusions of Saleem et al. (2013) and Abdein et al., (2021). To increase yield, these qualities could be directly selected.

Different breeding material and ambient circumstances may have contributed to some of the parallels and differences between the results of previous researchers and ours. It was proposed that a constrained simultaneous selection model might be utilized to remove the undesired indirect effects so as to appropriately employ the direct influence. Given the strong correlation and desired direct effect of sex ratio, fruit number, and

average fruit weight on yield, these parameters could be taken into account for the development of elite hybrids through heterosis breeding or for the development of inbred lines after pure line selection in subsequent generations. Consequently, these traits may be taken into account while choosing genotypes to increase fruit production. Conversely, yield (phenotypic and/or genotypic level) was directly impacted negatively by fruit length and 100-SW. However, each character's indirect influence through other characters offset its negative direct effect, leading to a highly substantial positive association with yield in the end.

The direct effect points out that, with other variables held constant, increasing any of these traits will decrease yield. However, the more suitable indirect effects play a more important part and mask the direct influence (Dewey and Lu, 1959). A desirable negative genotypic effects (Table 3) was recorded indirectly by sex ratio on yield through number of fruits (-0.6784) and fruit diameter (-0.0264) due to fact the number of fruits and diameter were negatively correlated (r = -0.492 and +0.554*), respectively with sex ratio (Table 1) which in turn had a large genotypic direct effects (1.3786) and (0.0476) upon yield, respectively as well as 0.9429 and 0.0324 in phenotypic level.

Fig. 1 displays the relative importance (R%) based on the path analysis of squash crop yield and its related features. The findings showed that the direct effects of fruit number per plant (35.1 & 42.6%), average fruit weight (32.5 & 13.6%), and 100-seed weight (0.298 & 0.968%) accounted for the largest portions of the yield variation. These features' significant yield contributions demonstrate how important they are as selection criteria in squash breeding programs. The direct effects on fruit yield, however, were minimal or

insignificant for the other characters. In terms of the relative significance of joint effects, it is clear that the number of fruits per plant had an impact on production, as evidenced by its correlations with the average fruit weight (25.5 & 24.2%) and the weight of 100 seeds (3.8 & 9.03%) as shown in Fig.1.

The study demonstrated that there is genetic variation among the genotypes, which the breeding program may take use of. The nation's squash breeding program should be planned using the genetic parameter estimated in this study. More testing in various settings is necessary to determine which genotypes perform the best, as the findings were only collected from a single location. Additionally, selecting the best characteristics for next squash breeding efforts may be made easier by revealing the genotypes' genetic potential through the use of several squash genotypes in various conditions.

The current study makes it evident that the correlation analysis provided an alternate picture of the relationship between fruit production and the number of fruits per plant, average fruit weight, sex ratio, and fruit diameter than did the path coefficient analysis. In order to increase yield, indirect selection using additional component properties that have these traits and have shown desired positive or negative indirect impacts might be suggested.

At the phenotypic level, it was evident that the majority of the direct impacts were smaller than one, suggesting that multicollinearity-induced inflation was negligible. In all, the features under study explained between 99.5% and 100.1% of the variation in fruit output. Random error and/or other characteristics not covered in the current study could be the cause of the residual content (0.5 and 0.1%).

REFERENCES

- Abdein, M. A. (2016). The performance of parental lines and their hybrids resulted from diallel crosses mating design in squash (Cucurbita pepo, L.). Ph.D. Thesis, Genetics Department, Faculty of Agriculture, Mansoura University, Mansoura, Egypt
- Abdein, M. A; El-Mansy A. B., Awad N.S. and Abd El-Moneim D. (2021). Assessment of genetic diversity in summer squash genotypes using some yield traits and DNA markers analysis under Sinai conditions. Journal of Plant Production Sciences; Suez Canal University, (2021) Vol. 10 (1): 13-29.
- Abdein, M.A.; Hassan, H.M.F.; Hikal, D.M.; Limam, S.A.; Arafa, S.A.; Sukar, N.A.; Badawi, T.A.M.A.; Kamel, N.S.M.; El-Hawagry, R.R.A.; Abouzeed, A.M.M.; El-Homosy, R.F. (2023). Genetic Study of Some Fruit Economic Traits and Chemical Components Health Properties in Squash Varieties and Their Hybrids. International Journal of Chemical and Biochemical Sciences, 24(11) (2023): 649-654.
- Abdelkader, M.F.M. and M.A. Abdein (2023). Interrelationship of squash characteristics under different environmental conditions, Hortscience Journal of Suez Canal University, 12(1), pp. 1-9.
- Akpan, N. M., Ogbonna, P. E., Onyia, V. N., Okechukwu, E. C., and Atugwu, I. A. (2016). Variability studies on ten genotypes of eggplant for growth and yield performance in South Eastern Nigeria. Journal of Animal & Plant Sciences, 26(4), 1034–1041.
- Allard, R. W. (1960). Principles of plant breeding. John Wiley and Sons.

- Bose, T. K., and Som, M. G. (1998). Vegetable crops in India. Naya Prokash.
- Danquah, J. A., and Ofori, K. (2012). Variation and correlation among agronomic traits in 10 accessions of garden eggplant (*Solanum gilo* Raddi) in Ghana. International Journal of Science & Nature, 3(2), 373–379.
- Deshmukh, S. N., Basu, M. S., and Reddy, P. S. (1986). Genetic variability, character association and path coefficient analysis of quantitative traits in Virginia bunch varieties of groundnut. Indian Journal of Agricultural Sciences, 56, 816–821.
- Dewey, D. R., & Lu, K. H. (1959). A correlation and path coefficient analysis of components of crested wheatgrass seed production. Agronomy Journal, 51(9), 515–518.
- Ezzo, M. I., Glala, A. A., Saleh, S. A., & Omer, N. M. (2012). Improving squash plant growth and yielding ability under organic fertilization condition. Australian Journal of Basic and Applied Sciences, 6(8), 572–578.
- Falconer, D. S. (1981). Introduction to quantitative genetics (2nd ed.). Longman.
- Falconer, D. S. (1989). Introduction to quantitative genetics (3rd ed.). Longman.
- Galal, T. M. (2016). Health hazards and heavy metals accumulation by summer squash (*Cucurbita pepo* L.) cultivated in contaminated soils. Environmental Monitoring and Assessment, 188(8), 434
- Galala, A. A., Abd El-Samad, E. E. H., El-Abd, S. O., and Obiadalla-Ali, H. A. (2012). Increasing organic production of summer squash by modulating plant sex ratio. Acta Horticulturae, 933, 137–143.
- Ghosh, K. P., Islam, A. K. M. A., Mian, M. A. K., and Hossain, M. M. (2010). Variability and characters association in F2 segregation population of different commercial hybrids of tomato (Solanum lycopersicum L.). Journal of Applied Sciences and Environmental Management, 14(2), 91–95.
- Gomez, K. A., and Gomez, A. A. (1984). Statistical procedures for agricultural research (2nd ed.). John Wiley and Sons.
- Hadiati, S., Murdaningsih, H. K., and Rostini, N. (2003). Parameter of the component character of fruit on some accession of pineapple. *Zuriat*, 14(2), 53–58.
- Hallauer, A. R., and Miranda, J. B. (1988). Quantitative genetics in maize breeding (2nd ed.). Iowa State University Press.
- Hassan, Z., Ul-Allah, S., Khan, A. A., Shahzad, U., Khurshid, M., and Bakhsh, A. (2021). Phenotypic characterization of exotic tomato germplasm: An excellent breeding resource. PLOS ONE, 16(6).
- Islam, B. M. R., Ivy, N. A., Rasul, M. G., and Zakaria, M. (2010). Characters association and path analysis of exotic tomato (*Solanum lycopersicum* L.) genotypes. Bangladesh Journal of Plant Breeding and Genetics, 23(1), 13–18.
- Jeberson, M. S., Shashidhar, K. S., and Iyanar, K. (2016). Estimation of genetic variability, expected genetic advance, correlation and path analysis in field pea (*Pisum sativum* L.). Electronic Journal of Plant Breeding, 7(4), 1074–1078.
- Johnson, H. W., Robinson, H. F., and Comstock, R. E. (1955). Estimates of genetic and environmental variability in soybeans. Agronomy Journal, 47 (7), 314–318.

Hassanein, I. M. E. et al.,

- Mahmoud, I. M., and El-Mansy, A. B. (2018). Assessment of eggplant (*Solanum melongena* L.) genotypes under north Sinai conditions. Sinai Journal of Applied Sciences, 7 (3), 207–220.
- Manna, M., and Paul, A. (2012). Studies on genetic variability and character association of fruit quality parameters in tomato. Hort. Flora Research Spectrum, 1(2), 110–116.
- Mpayo, E. P. (2010). Effects of environment on growth and yield performance of ten common bean (*Phaseolus* vulgaris L.) genotypes* [Master's thesis, Sokoine University of Agriculture].
- Muniappan, S., Saravanan, K., and Ramya, B. (2010). Studies on genetic divergence and variability for certain economic characters in eggplant (*Solanum melongena* L.). Electronic Journal of Plant Breeding, 1(4), 462–465.
- Parihar, A. K., Dixit, G. P., Pathak, V., and Singh, D. (2014).

 Assessment of the genetic components and trait association in diverse set of field pea (*Pisum sativum* L.) genotypes. Bangladesh Journal of Botany, 43(3), 323–330.
- Prabhu, M., and Natarajan, S. (2007). Genetic variability studies in brinjal (*Solanum melongena* L.). Journal of Ecobiology, 19(2), 159–162.
- Pujer, P., Jagadeesha, R. C., and Cholin, S. (2017). Genetic variability, heritability and genetic advance for yield, yield related components of brinjal (*Solanum melongena* L.) genotypes. International Journal of Pure and Applied Bioscience, 5(5), 872–878.
- Qaizar, A., Rana, M. A., and Siddiqui, S. U. H. (1991). Sunflower seed yield as influenced by some agronomic and seed characters. Euphytica, 56, 137–142.
- Saleem, M. Y., Iqbal, Q., and Asghar, M. (2013). Genetic variability, heritability, character association and path analysis in F₁ hybrid of tomato. Pakistan Journal of Agricultural Sciences, 50(4), 649–653.

- Samlindsujin, G., Karuppaiah, P., and Manivanna, K. (2017). Genetic variability and correlation studies in brinjal (*Solanum melongena* L.). International Journal of Plant Sciences, 12 (1), 21–27.
- Singh, R. K., and Chaudhury, B. D. (1985). Biometrical methods in quantitative genetic analysis. Kalyani Publishers.
- Stanfield, W. D. (1983). Schaum's outline of theory and problems of genetics (2nd ed.). McGraw-Hill.
- Tadesse, R. T., Leggesse, T., Mulugeta, B., and Sefera, G. (2014). Correlation and path coefficient analysis of yield and yield components in lentil (*Lens culinaris* Medik.) germplasm in the highlands of Bale, Ethiopia. International Journal of Biodiversity and Conservation, 6(1), 115–120.
- Tasisa, J., Belete, K., and Gebreselassie, W. (2012). Genetic variability, heritability and genetic advance for yield and yield related traits in haricot bean (*Phaseolus vulgaris* L.) accessions at Bench-Maji, Ethiopia. *Journal of Plant Sciences*, 7 (1), 13–18.
- Tindall, H.D. (1983) Vegetables in the Tropics. Macmillan Press Limited, London, 37-45.
- Tirkey, M., Saravana, S., and Pushpa, L. (2018). Studies on variability, heritability and genetic advance for yield and its attributes in brinjal (*Solanum melongena* L.). Journal of Pharmacognosy and Phytochemistry, 7(4), 1181–1183.
- Tiwari, J. K., and Upadhyay, D. (2011). Correlation and path-coefficient studies in tomato (*Lycopersicon esculentum* Mill.). Research Journal of Agricultural Sciences, 2(1), 63–68.
- Yadav, P., Singh, A. K., & Srivastava, C. P. (2010). Genetic variability and character association in diverse collection of Indian and exotic germplasm lines of pea (*Pisum sativum* L.). Vegetable Science, 37(1), 75–77.

التباين الوراثى والعلاقات الارتباطية للصفات الكمية في بعض هجن الكوسة

إسلام محمد السيد حسانين ، محمد عبدالحميد عابدين ، أيمن عبدالنبي رشوان ، عبدالحليم أحمد حمدي الشعيني و جمال أبوسته زايد ،

'قسم البساتين- كلية الزراعة- جامعة جنوب الوادى- قنا - مصر 'قسم تطوير البنور - الندى مصر لمشرو عات البحث العلمي والتطوير - توريل المنصورة – مصر "معهد بحوث البساتين- مركز البحوث الزراعية- مصر

الملخص

أجريت الدراسة الحالية لتحديد الارتباط ومعامل المرور بين الصفات في هجن الجيل الأول للكوسة وكذلك تقييم التباين في مختلف الأنماط الجينية في ظل ظروف صعيد مصر. بالنسبة لمعظم الصفات، لم تكن هنك سوى اختلافات طفيفة بين GCV و PCV%، مما يشير إلى أن التأثيرات الوراثية تلعب نورًا مهمًا في تنظيم كيفية وراثة هذه الصفات. أظهرت عاليبة الصفات قير بيًا بالنسبة لكل صفات الدراسة نسبة عالية من GCV/PCV%، من حيث المحصول، أظهرت الهجن تقدّماً وراثيًا كبيرًا ومتسلويًا تقريبًا بالنسبة لكل صفات الدراسة تقريبًا، كان نطاق التباين بين العجن مهمًا للغاية. وقد تم إثبات الفائدة المحتملة لهذه الصفات والهجن لإنشاء برامج تربية لزيادة إنتاج الثمار وجودتها من خلال التقيير ات الفقية للتوريث والتقدم الوراثي المرتفع المنوقع. أظهر تحليل الارتباط أن المتغيرات المتعلقة بالمحصول لها علاقة وراثية عالية حدد تحليل معامل المرور عدد الثمار/ نبات ومتوسط وزن الثمرة سيكون الأكثر فعالية في تحسين المباشر: على المحصول من خلال ارتباطه محصول عليها من خلال عدد الثمار/ النبات على المحصول من خلال ارتباطه محصول الكوسة. وفيما يتعلق بالأهمية النسبية للتأثيرات المشتركة ، من الواضح أن الأجزاء الفعالة منها تم الحصول عليها من خلال عدد الثمار/ النبات على المحصول من خلال ارتباطه بكل من متوسط وزن الثمرة (و ٢٠٥٠ و ٢٠٤٪) ووزن ٢٠٠١ بزرة (٩٠،٠٠٪).