ECONOMIC POTENTIALITIES OF SOME PLANTS GROWING NATURALLY IN THE NILE DELTA REGION, EGYPT

El-Halawany, E.F.; I.A. Mashaly and G. Omar Botany Department, Faculty of Science, Mansoura University, Mansoura, Egypt. E-mail: Sinfac@mum.mans.eun.eg

> Flora of Egypt appeared promising as raw materials for various uses e.g. industrial, grazing, pharmaceutical, etc. The species growing naturally in the Nile Delta region namely: Bidens pilosa, Digitaria sanguinalis, Echinochloa crus-galli, Lactuca serriola, Lepidium sativum, Lolium perenne, Malva parviflora, Paspalidium geminatum, Portulaca oleracea and Saccharum spontaneum had been investigated. The preliminary revealed the presence phytochemical screening carbohydrates, sterols, alkaloids, flavonoids, saponins, chlorides and sulphates in shoot system of all the studied plants. Moisture, ash, water soluble ash, acid insoluble ash, total nitrogen, total proteins, total lipids, crude fibre, glucose, sucrose, total soluble sugars and polysaccharides together with some elements were estimated. The highest values of total proteins and lipids were estimated in Saccharum spontaneum, while the highest total carbohydrates were measured in Lactuca serriola. The elementary analysis of the studied plants indicate that potassium, sodium, and calcium were the main cations. Quantitative and qualitative analysis of the protein amino acids revealed the presence of seventeen amino acids with high values of aspartic acid, glutamic acid and proline. These results indicate that these selected plants may be used as highly potential natural plants.

Keywords: weed flora, carbohydrates, amino acids, fatty acids, elements.

There are an excessive global demands for food, forage and agro-industrial raw materials. The Nile Delta region flourished by many weeds. Among the common wild flora of Damietta region, the authors chose ten species to evaluate their chemical constituents. The genera of these plants have attracted the attention of workers in many countries. In genus *Bidens*, polyacetylene, flavonoids, methoxylated flavone glucosides and chalcone ester glucosides were reported (Alez, *et al.* 1996; Wang, *et al.* 1997;

Brandao et al., 1998 and De Tommasis et al., 1998). Forage yield, crude protein, minerals, starch, ash, protein and lipids were studied in genus Digitaria (Shy et al., 1995; Santana and Mc Dowell, 1996 and Shatters and West, 1996). Takatsuto and Kawashima (1998); Turrner, et al. (1998) and Watanabe (1999) studied polysterols, cystathionine B-layse, antioxidative phenolic compounds in genus Echinochloa respectively. In genus Lactuca, nitrate, vitamin C, B-carotene, lutein, reducing sugars, chlorophyll, minerals, flavonoids and germacolide glucoside were investigated by Drews and Krumbien (1997); Kisiel (1998) and Kisiel and Braszcz (1998). Lipids, carbohydrates, minerals, proteins, fatty acids, alkaloids, fibers, inorganic salts, amino acids and sterols were studied in genus lepidium, by certain authors (El-Shintinawy and Selim, 1995; Comas, et al., 1997; Bettach, et al., 1997; Maier, et al., 1998; Andersson, et al., 1999). In genus Lolium, Tase, et al. (1996); Marstop (1996) and Saito, et al. (1999) studied the proteins, amino acids, carbohydrates and B-carotene content, respectively. Sulfite oxidase enzyme, polysaccharides and sterol were studied by Ganai, et al. (1997); Atkhomova, et al. (1998) and Sharma and Ali (1999) in genus Malva. Sakai, et al. (1996); Boehm and Boehm (1996); Ohsak et al. (1997) and Garti, et al. (1999) studied the monoterpene glucosides, betalains, fatty acids, clerodane diterpenoid and gums in genus Portulaca. Lingle (1997) studied the sugars in genus Saccharum. From the above screening of literature, one can expect the prime importance of individuals belonging to The present study is a contribution to the previous these genera. investigation. It aims at the quantitative evaluation of the nutritive and economic potentialities of the following wild taxa in the Nile Delta: Bidens pilosa, Digitaria sanguinalis, Echinochloa crus-galli, Lactuca serriola, Lepidium sativum, Lolium perenne, Malva parviflora, Paspalidium geminatum, Portulaca oleracea and Saccharum sportaneum.

MATERIALS AND METHODS

During the year 1999, several field trips were organized to Damietta Province for collecting the samples of the concerned plants. Digitaria sanguinalis, Lolium perenne and Paspalidium geminatum were collected from Damietta district. Biden spilosa, Lactuca serriola and Lepidium Portulara oleracea were obtained from Farskor district, Malva paroiflora and crus-galli and Saccharum spontaneum were obtained from El-Zarka district. The shoot system of each species was cleaned, air dried in shade and ground analyses.

After air drying, moisture contents of each sample were studied according to Ward and Johnson (1962). Total ash, water soluble ash and acid

insoluble ash were determined according to Egyptian Pharmacopoea (1953). Total soluble sugars, glucose, sucrose and polysaccharides were determined according to Yemm and Willis (1954); Feteris (1965) and Thayumanavan and Sadasivan (1984). Crude fiber and total lipids contents were determined according to A.O.A.C. (1970). Total nitrogen content was determined according to Delory (1949) and Naguib (1964). Protein content was determined according to the method of Bradford (1976).

The preliminary phytochemical screening of different speices were studied according to Egyptian Pharmacopea E.P. (1953). Sodium, potassium, calcium, magnesium, iron, manganese, zinc, copper, lead and cadmium were determined by atomic absorption spectrophotometer using the method described by Allen et al. (1974).

The identification and quantitative determination of amino acid composition in the plant powders were carried out according to Moore and Stein (1958).

The cluster analysis using Bray-Curtis dissimilarity index under the Multivariate Statistical Package MVSP program is an explicit way of identifying similar groups in raw data (Jongman et al., 1987).

RESULTS

Preliminary-Phytochemical Screening

It is evident that, the preliminary phytochemical screening revealed the presence of carbohydrates, sterols, alkaloids, flavonoids, saponins, chlorides and sulphates in all the studied plants. Tannins were recorded only in *Bidens pilosa*, *Echinchloa crus-galli*, *Lactuca serriola*, *Lepidium sativum*, *Lolium perenne* and *Saccharum spontaneum*. Resin was recorded in all the studied plants except *portulaca oleracea*.

Determination of Certain Constants

Data in table (1) present certain pharmacopoeial constants of the studied species. It is obvious that the percent of moisture content were ranged between 8.93 and 12.64% in Digitaria sanguinalis and Malva parviflora, respectively. The maximum value of ash content was recorded in Portulaca oleracea (16.36%), while the minimum value was recorded in Lepidium sativum (7.92%). The highest value of water-soluble ash was 8.98% in Malva parviflora followed by 6.28 in Portulaca oleracea, 6.08% in Lactuca serriola, 5.56% in Bidens pilosa, 5.02% in Paspalidium geminatum, 4.06% in Digitaria sanguinalis, 3.60% in Lepidium sativum, 3.22% in Echinochloa crus-galli, 2.94% in Saccharum spontaneum and 2.56% in Lolium perenne. Digitaria sanguinalis contained a relatively high percentage of acid-insoluble ash being 5.96%, while Lepidium sativum contained a relatively low percentage being 0.54%. The percent of total nitrogen contents ranged between 136.00 mg/100 gm dry weight in Lepidum

sativum and 18.50 mg/100 g dry weight in Digitaria sangiuinalis. The maximum value of total lipid content (3.87%) was recorded in Portulaca oleracea, while the minimum value (0.47%) was recorded in Echinochloa crus-galli. Malva parviflora recorded high percentage of crude fiber content (48%) followed by Digitaria sanguinalis (45%), Lepidium sativum (40%), Lolium perenne (38%), Paspalidium geminatum (33%), Saccharum spontaneum (32%), Lactuca serriola (30%), Portulaca oleracea (30%), Bidens pilosa (24%) and Echinochloa cruss-galli (23%). The value of protein content was varied between 142.73 to 429.55 mg/100 g dry weight in Malva parviflora and Paspalidium geminatum, respectively. Concerning carbohydrates, Lactuca serriola was recorded the highest value of total soluble sugar, glucose, sucrose and polysaccharides being 151.50, 4.08, 19.37, 388.92 and 563.80 mg/g dry weight, respectively. Portulaca oleracea recorded the lowest value of total soluble sugars and sucrose (48.20 and 1.77 mg/g dry weight, respectively) while Saccharum spontaneum recorded the lowest value of glucose (0.261 mg/g dry weight) and Echinochloa crus-galli in polysaccharides (158.30 mg/g dry weight).

Analysis of Amino Acids of the Studied Plants

Quantitative and qualitative analysis of amino acids of the studied plants are shown in table (2). Bidens pilosa recorded the lowest amounts of aspartic acid (0.204 g/100 g dry weight) and the highest amounts of leucine and tyrosine (1.378 and 0.362 g/100 g dry weight, respectively). The lowest amounts of threonine, serine, glutamic acid, glycine, valine, leucine, phenylalanine, lysine and arginin were recorded in Digitaria sanguinalis being, 0.285, 0.275, 0.779, 0.293, 0.416, 0.477, 0.341, 0.328 and 0.375 g/100 g dry weight, respectively. The highest amounts of alanine (0.792 g/100 g dry weight) and valine (0.833 g/100 g dry weight) were recorded in Echinchloa crus-galli. amounts of methionine (0.059 g/100 g dry weight) recorded in Lactuca serriola; alanine (0.404 g/100 g dry weight), isoleucine (406 g/100 g dry weight) and tyrosine (0.161 g/100 g dry weight) recorded in Paspalidium geminatum. While proline (0.591 g/100 g dry weight) and histidine (0.176 g/100 g dry weight) recorded in Saccharum spontaneum. The highest amounts of proline (1.951 g/100 g dry weight) and isoleucine (1.039 g/100 g dry weight) recorded in Lepidium sativum, glutamic acid (1.580 g/100 g dry weight) and cystine (0.090 g/100 g dry weight) recorded in Lolium perenne while glycine (0.758 g/100 g dry weight), methionine (0.106 g/100 g dry weight) and phenylalanine (0.657 g/100 g dry weight) recorded in Portulaca oleracea. Malva parviflora recorded the highest amounts of aspartic acid, threonine, serine, histidine and lysine being 3.808, 0.951, 0.864, 0.645 and 0.955 g/100 g dry weight,

TABLE (1). Mean values of different constants and constituents of the studied plants.

I- Bidens pilosa 5- Lepidium sativum 9- Portuluca oleracea	Total carbohydrates	Polysaccharides	Sucrose	Glucose	Total soluble sugar	Carbohydrates (mg/g d. wt.):	Crude fibre content (%)	Total lipid content (%)	dry wt.)	Total protein (mg/100gm	gm dry wt.)	Total nitrogen (mg/100	Acid-insoluble ash (%)	Water-soluble ash (%)	Ash content (%)	Moisture content (%)	Constants & Constituents	Species
2- Dig 6- Loli 10- Sa	311.05	243.31	6.23	0.807	60.70		24.00	0.80		363.64		44.67	4.30	5.56	15.80	10.37		Ξ
2- Digitaria sanguinalis 6- Lolium perenne 10- Saccharum spontaneum	279.59	217.75	4.23	0.706	56.90		45.00	1.80		212.73		18.50	5.96	4.06	13.18	8.93		(2)
nalis ntaneum	217.40	158.30	2.80	0.731	55.60		23.00	0.47		250.45		31.37	3.78	3.22	10.76	11.04		(3)
3- Echin 7- Malvo	563.80	388.92	19.37	4.008	151.50		30.00	0.96		207.27		30.67	2.34	6.08	12.76	11.91		(4)
3- Echinochloa crus-galli 7- Malva parvijlora	450.70	320.32	19.03	3.050	108.30		40.00	2.07		216.36		136.00	0.54	3.60	7.92	12.06		(5)
galli	462.10	358.36	8.12	2.118	93.50		38.00	0.90		295.45		51.37	5.72	2.56	10.42	10.52		(6)
4- Lactuca serriola 8- Paspalidium gen	308.64	233.99	12.92	0.933	60.80		48.00	1.77		142.73		18.67	1.00	8.98	14.28	12.64		(T)
4- Lactuca serriola 8- Paspalidium geminatum	319.48	253.43	6.69	0.958	58.40		33.00	0.83		429.55	i i	19.30	4.88	5.02	11.96	10.52		(8)
ıatum	330.92	280.65	1.77	0.303	48.20		30.00	3.87		220.91		34.67	3.64	6.28	16.36	9.65		(9)
	334.66	277.40	3.20	0.261	53.80		32.00	3.45		409.55		23.57	5.00	2.94	11.38	9.43		(10)

Egyptian J. Desert Res., 52, No.1 (2002)

TABLE (2). Amino acid analysis (g.A.A./100 g dry weight) of the studied plants.

	-	-			_		-											1		
Mean	1.854	0.576	0.514	1.226	1.184	0.487	0.562	0.051	0.630	0.119	0.708	0.798	0.277	0.509	0.368	0.590	0.643			
(10)	2.547	0.611	0.566	1.067	0.591	0.372	0.544	0.034	0.484	0.124	0.493	0.588	0.301	0.453	0.176	0360	0.448			
(6)	1.509	0.570	0.504	1.265	1.285	0.758	0.620	0.014	0.670	0.166	0.883	0.905	0.316	0.657	0.629	0.798	1.113			
(8)	2.257	0.541	0.544	878.0	0.964	0.359	0.404	0.041	0.464	0.094	0.406	0.559	0.161	0.356	0.230	0.436	0.523	riola	n geminatum	0
ω	3.808	0.951	0.864	1.480	1.268	869.0	0.579	0.009	0.740	0.151	0.881	0.898	0.313	0.618	0.645	0.955	0.873	4- Lactuca serriola	8- Paspalidium geminatum	•
(9)	1.653	0.650	0.574	1.580	1.224	0.534	0.568	0.000	0.592	0.106	0.625	0.736	0.247	0.506	0.426	0.567	0.572	ralli	100000	į.
(5)	1.764	0.794	0.652	1.523	1.951	0.574	0.586	0.062	0.809	0.130	1.039	0.938	0.310	0.548	0.451	0.840	0.775	- Echinochloa crus-galli	- Malva parviflora	.
(4)	1.493	0.345	0.287	0.943	0.704	0.342	0.436	0.044	0.517	0.059	0.573	0.609	0.210	0.380	0.228	0.418	0.387	3- Echin	7- Malv	
(3)	2.157	0.475	0.455	1.373	1.763	0.456	0.792	0.079	0.833	0.155	0.791	0.892	0.356	0.614	0.356	0.613	0.605	lis		апеит
(2)	1.145	0.285	0.275	0.779	0.693	0.293	0.442	0.051	0.416	0.080	0.464	0.477	0.194	0.341	0.220	0.328	0.375	ria sanguinalis	n perenne	harum spontaneum
(1)	0.204	0.533	0.422	1.374	1.393	0.489	0.651	0.081	0.775	0.126	0.927	1.378	0.362	0.612	0.322	0.588	0.757	2-Digitar	6- Loliun	10-Sacch
Species Amino acid	Aspartic acid	Threonine	Serine	Glutamic acid	Proline	Glycine	Alanine	Cystine	Valine	Methionine	Isoleucine	Leucine	Tyrosine	Phenylalanine	Histidine	Lysine	Arginine	1- Bidens pilosa	5- Lepidium sativum	3- Portulaca oleracea

Egyptian J. Desert Res., 52, No.1 (2002)

Elementary Analysis of the Studied Plants

The elementary analysis of the studied plants were presented in table Sodium concentration showed a wide range of variations, its value ranged from 460 mg/100 g dry weight in Bidens pilosa to 2070 mg/100 g dry weight in Paspalidium geminatum. Potassium concentration was relatively higher in all the studied plants than that of sodium concentration, it ranged from 1326 mg/100 g dry weight in Lolium perenne to 3666 mg/100 g dry weight in Portulaca oleracea. Malva parviflora recorded the highest percentage of calcium concentration (333 mg/100 g dry weight) followed by Portulaca oleracea (312 mg/100 g dry weight), Lactuca serriola (165 mg/100 g dry weight), Bidens pilosa (158 mg/100 g dry weight), Lepidium sativum (144 mg/100 g dry weight), Saccharum spontaneum (105 mg/100 g dry weight), Digitaria sanguinalis (98 mg/100 g dry weight), Paspalidium geminatum (88 mg/100 g dry weight), Echinchloa crus-galli (74 mg/100 g dry weight) and Lolium perenne (60 mg/100 g dry weight). Portulaca oleracea recorded the highest value of both magnesium and iron being 26.32 and 171.42 mg/100 g dry weight, respectively. Paspalidium geminatum and Echinochloa crus-galli recorded the lowest value of magnesium and iron being 2.76 and 45.72 mg/100 g dry weight, respectively. The maximum value of manganese was recorded in Echinchloa crus-galli being 20.00 mg/100 g dry weight while the minimum value was recorded in Lactuca serriola being 7.50 mg/100 g dry weight. Zinc concentration in the studied plants was varied between 10.0 and 21.32 mg/g dry weight in Lepidium sativum and Digitaria sanginalis, respectively. Both Echinochloa crus-galli and Lolium perenne recorded the highest percentage of copper ion concentrations (5.32 mg/100 g dry weight) while both Lactuca serriola and Paspalidium geminatum recorded the lowest percentage (2.0 mg/100 g dry weight). The lead ion concentration varied between Digitaria sanguinalis (22.22 mg/100 g dry weight) and Portulaca oleracea (62.22 mg/100 g dry weight). Cadmium was absent in Paspalidium geminatum and Lepidium sativum but record a high value in both Malva parviflora and Digitaria sanguinalis (0.99 mg/100 g dry weight).

Cluster Analysis of the Studied Plants

A total of 41 parameter were used in the multivariant cluster analysis to find out the similarity between different studied plants as represented in dindrograme (Fig.1).

10 11	Cations	concentration of cations captessed as (ingress of all the first in the second of the s	Am) cm	9001	men. f					
Na		X	S	Mg	Fe	Mn	Zn	5	Pb	S
460.0 2340.0	234	0.0	158.0	8.94	128.56	9.00	15.32	4.00	44,44	0.50
552.0 2652.0	265	0.3	0.86	16.04	65.72	11.00	21.32	7.66	22.22	0.99
690.0 1950.0	1950	0.0	74.0	10.32	45.72	20.00	12.44	5.32	26.66	0.75
506.0 2652.0	2652	0.	165.0	6.02	51.42	7.50	16.88	2.00	26.66	0.75
506.0 1794.0	1794	0.	144.0	6.50	51.42	10.00	10.00	4.66	44.44	0.00
1058.0 1326.0	1326.	0	0.09	3.02	100.00	8.50	19.54	5.32	40.00	0.75
1840.0 2496.0	2496	0.	333.0	8.14	134.28	10.00	17.10	3.32	31.10	0.99
2070.0 2028.0	2028.	0.	88.0	2.76	108.56	12.00	15.76	2.00	31.10	0.00
920.0 3666.0	3666.	0	312.0	26.32	171.42	14.00	12.44	4.66	62.22	0.75
552.0 2496.0	2496.	0	105.0	5.74	68.56	8.00	13.32	4.00	56.66	0.75

Egyptian J. Desert Res., 52, No.1 (2002)

TABLE (4). Comparison between some variables in the studied plants with other Egyptian wild plants.

Present and other	Present study	El-Ghonemy	El-Heneidy.	El-Kady.	El-Shamy,	Sharaf El-Din,
studies		Pt al. 1977	1987	1987	1995	1998
Variables		30 species	36 species	26 species	10 species	28 species
Na mo/o	4 6-20 7	0.7-50.3	•	-		2.6-20.0
S S T N	13.3-36.7	6.8-99.0		5.5-39.8	-	2.4-11.0
	0.6-3.3	4.2-29.3		2.9-67.3		2.0-6.0
97-2	0.03-0.26	1 2-20 7		1.5-11.9		0.7-5.4
	0.46-1.7	0.9-8.1			•	0.3-4.3
	0.07-0.20	0.05-0.76				0.02-0.33
	0.02-0.05		•	•	•	0.001-0.140
_	7.9-16.4			5.5-36.0	4.56-21.83	•
Total lipids %	0.47-3.87		7.4-20.8	0.8-8.3	0.52-5.47	
Total carbohydrates	308-564	-	178-324	271-519		•
mg/gm				4		
Crude fiber %	23-48	•	24.4-28.7	14.6-35.6	17.83-63.29	•
Amino acids g/100 gm						
Aspartic acid	0.20-3.80	•			0.53-5.32	ı
Threonine	0.29-0.95		•		0.38-1.61	*
Serine	0.28-0.86	•			0.07-2.57	•
Glutamic acid	0.78-1.60	l			0.13-8.91	ī
Proline	1.95-0.59	1			0.08-1.88	•
Glycine	0.29-0.76	1		•	0.42-2.76	•
Alanine	0.40-0.80			•	0.07-2.37	
Cystine	0.01-0.09	1			0.01-5.78	•
Valine	0.42-0.83	•			0.13-2.39	
Methionine	0.06-0.17			î	0.10-1.13	
Isolencine	0.41-1.04				0.67-2.01	
Lencine	0.48-1.40				0.40-3.83	
Tyrosine	0.16-0.36	•	•	•	0.17-2.20	
Phenylalanine	0 34-0 66	1		ì	0.66-3.10	•
Histidine	0.17-0.64			•	0.13-1.78	
Lysine	0.33-0.95		•		1.25-2.88	
Arginine	0 37-1 11			•	0.3-4.36	

Egyptian J. Desert Res., 52, No.1 (2002)

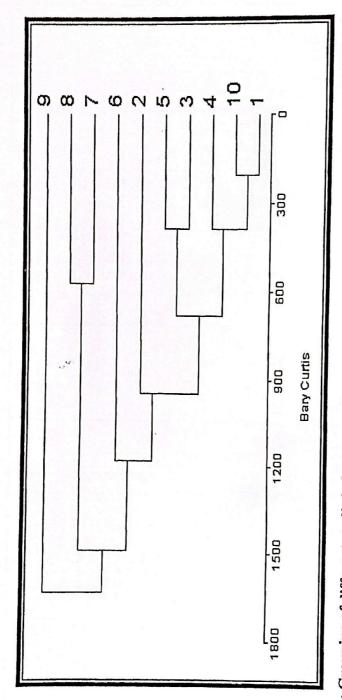


Fig. (1): Grouping of different studied plants according to the similarities in their different studied parameters (constant &constituents, amino acids analysis and cations) using Bray-Curtis measure of dissimilarity.

8- Paspalidium geminatum 3- Echinochloa crus-galli 7- Malva parviflora 2- Digitaria sanguinalis 6- Lolium perenne 10- Saccharum spontaneum 5- Lepidium sativum 9- Portulaca oleracea N.B. 1- Bidens pilosa

4- Lactuca serriola

DISCUSSION

The nutritive value of any forage is dependent upon its content of energy producing nutrients as well as its content of nutrients essential to the animal body. Comparison between nutrient contents of the studied plants and those of the range vegetation in an Egyptian Mediterranean region (El-Ghonemy et al., 1977 and El-Kady, 1987) indicated that the studied plants have relatively low contents of Na, K and Ca but high contents of Mg, Fe and Mn. Similar comparison between the studied plants and those growing naturally in the south eastern corner of Egypt was carried out by Sharaf El-Din (1998) who shows that the studied plants have relatively high contents of Na, K, Ca, Mg, Fe, Mn and Cu.

The source of energy for animals are carbohydrates, fats and proteins. The importance of these compounds to plants in terms of structure and use in metabolism is well known. These compounds are elaborated, stored and utilized by the plant itself as food for maintenance and for the development of new shoot and root growth. Comparison between the organic compounds in the studied plants and that of the Egyptian desert plants (El-Heneidy, 1987; El-Kady, 1987 and El-Shami, 1995) indicated that the contents of total lipids and total proteins are lower than those of the other species, while the reverse is true regarding total carbohydrates (Table 4).

Protein content in feeds is extremely important although its value has been over emphasized. Forage high in protein is used for energy and is required for repair and new growth of animal tissue, including such animal products as milk, animal tissues and hair. The present study points out the presence of seventeen amino acids in these species with different concentrations. The concentrations of amino acids are relatively low, compared with those concerned in the study of El-Shami (1995).

From this study, it may concluded that the studied species may be used on a wide range as a fodder plants due to their high contents of carbohydrates, lipids, proteins and minerals. The presence of sterols, flavonoids, tannins, saponins and resin in most of the studied plants may be considered as bases for future pharmaceutical or industrial research programs.

REFERENCES

- Alez, L.; S. Marquina; M. Villarreal; D.E. Alonso and G. Delgado (1996). Bioactive polyacetylenes from *Bidens pilosa*. *Planta Med.*, 62(4): 355-357.
- Allen, S.E.; H.M. Grimshaw; J.A. Parkinson; C. Quarmby and J.D. Roberts (1974). In "Methods in Plant Ecology". (Chapman, S.B., ed.). Black Well Scientific Publications, Oxford, London, 565 pp.

Andersson, A.A.M.; A. Merker; P. Nilsson; H. Sorensen and Aman, Per. (1999). Chemical composition of the potential new oil seed crops *Barbarea vulgaris*, *Barbarea verna* and *Lepidium campestre*. J. Sci. Food. Agric., 79(2): 179-186.

A.O.A.C., Association of Official Agricultural Chemists (1970). In "Official Methods of Analysis". 11th Ed. The A.O.A.C., Washington,

D.C., U.S.A.

Atkhomova, S.K.; D.A. Rakhimov; E.L. Kristallovich; A.K. Karimdzhanov and A.I. Ismailov (1998). Plant polysaccharides VI. Polysaccharides of representative of the *Malvaceae* family. *Chem. Nat. Compd.*, 53(5): 590-592.

Bettach, N.; J. Banoub and M. Delmas (1997). Comparative study on cruciferous seeds of the *Lepidium*, *Eruca*, *Diploxaxis* and *Sinapis* II. Sterol characterization OL., *Crops Grass*, *Lipides*,

4(2): 152-156.

Boehm, H. and L. Boehm (1996). *Portulaca grandiflora* Hook and *P. oleracea* L., Formation of betalains and unsaturated fatty acids. *Biotechnol. Agric. Medicinal and Aromatic Plants*, 9: 335-354.

Bradford, M.M. (1976). A rapid and sensitive method for quantitation of microgram quantities of protein utilize the principle of protein dye-binding. *Anal. Biochem.*, 72: 248-251.

Brandao, M.G.L.; C.G.C. Nery; M.A.S. Mamao and A.U. Krettli (1998). Two methoxylated flavone glycosides from *Bidens pilosa*. *Phytochemistry*, 48(2): 397-399.

- Comas, M.; X. Miquel; G. Arias and M.C. De La Torre (1997).

 Bromatological studies on *Lepidium meyenii*. *Alimentaria* (Madrid), 286: 85-90.
- Delory, M. (1949). In "Inorganic chemistry: Colourimetric Estimation of Ammonia". (Vogel, H.J., ed.). Longman, London p. 126-132.
- De Tommasi, N.; S. Piacente and C. Pizza (1998). Flavonal and Chalcone Ester Glycosides from *Bidens andicola*. J. Nat. Prod., 61(8): 973-977.
- Drews, M. I. and A. Krumbein (1997). Content of minerals, vitamins and sugars in Keberg lettuce (*Lactuca sativa* var. *capitata*) grown in the green-house dependent on culture and development stage. *Garten bonsissenschoff*, 62(2): 65-72.
- Egyptian Pharmacopoea (1953). 1st English Ed., Cairo Univ. Press, Cairo, Egypt.
- El-Ghonemy, A.A.; A.M. El-Gazzar; A. Wallace and E.M. Romney (1977). Mineral element composition of the natural vegetation along a transect at Mareotis Egypt. *Soil Science*, 124: 16-26.
- El-Heneidy, S.Z. (1987). A study of the nutrient content and nutritive value of range plants at Omayed, Egypt, *M.Sc. Thesis*, Alexandria University, Alexandria, Egypt. 83 pp.

El-Kady, H.F. (1987). A study of Range Ecosystems of the Western Mediterranean Coastal Desert of Egypt. *Ph.D. Thesis*, Berlin, Technical. Univ. Dissertation, 145 pp.

El-Shami, M.M. (1995). Studies on some taxa of the genus Acacia in Egypt.

Ph.D. Thesis, Mansoura University, Mansoura, Egypt.

El-Shintinawy, F. and A. Selim (1995). Chemical characteristics and fatty acid composition of *Lepidium sativum L. Delta J. Science*, 19(1): 205-222.

Feteris, A.W. (1965). A serum glucose method without protein precipitation.

American Journal of Medical Technology, 31: 17-21.

Ganai, B.A.; A. Masood and M.A. Baig (1997). Isolation, purification and partial characterization of sulfite oxidase from *Malva sylvestris*. *Phytochemistry*, 45(5): 879-880.

Garti, N.; Y. Slavin and A. Aserin (1999). Surface and emulsification properties of a new gum extracted from *Portulaca oleracea* L.

Food Hydrocolloids, 13(2): 145-155.

Jongman, R. H.; C.J. Ter-Braak and O. F. Van-Tongeren (1987). In "Data Analysis in Community and Landscape Ecology". Pudoc., Wageningen, 299pp

Kisiel, W. (1998). Flavonoids from Lactuca quercina and L. tatarica. Acta.

Soc. Bot. Pol., 67(3-4): 247-248.

Kisiel W. and B. Barszcz (1998). A gemacrolide glucoside from Lactuca tatarica. Phytochemistry, 48(1): 205-206.

Lingle, S.E. (1997). Seasonal internode development and sugar metabolism in sugarcane. *Crop. Sci.*, 37(4): 1221-1227.

Maier, U.H.; H. Gundlach and M.H. Zenk (1998). Seven imidazole alkaloids from Lepidium sativum. Phytochemistry, 49(6): 1791-1795.

Marstop, H. (1996). Influence of soluble carbohydrates, free amino acids and protein content on the decomposition of *Lolium multiflorum* shoots. *Biol. Fertil. Soils*, 21(4): 257-263.

Moore, S. and H.W. Stein (1958). Chromatography of amino acids on sulfanated polystyrene resins. *Anal. Chem.*, 30:1185.

Naguib, M.I. (1964). Effect of serin on the carbohydrates and nitrogen metabolism during the germination of cotton seeds. *Ind. J. Exp. Biol.*, 2: 149-155.

Ohsak, A.; Y. Asaka; T. Kubota; K. Shjbeta and T. Tokoroyama (1997). Portulene acetal, a novel minor constituent of *Protulaca grandiflora* with significance for the biosynthesis of portulaca. *J. Nat. Prod.*, 60(9): 912-914.

Saito, S.; Y. Takahashi; K. Hagino; S. Sato and T. Manda (1999). Factors affecting the B-carotene content of Italian Ryegrass (Lolium multiflorum Lam.) throughout its growth stages. Grassl. Sci., 44(4):332-335.

Sakai, N.; K. Inda; M. Okamoto; Y. Shizuri and Y. Fukuyama (1996). Portuloside A., amonoterpene glucoside, from Portulaca oleracea.

Phytochemistry, 42(6): 1625-1628.

Santana, R.R. and L.R. Mc Dowel (1996). In vitro digestibility, crude protein content and mineral concentrations of Cynodon, Brachiaria and Digitaria accessions in humid tropical region of Puerto Rico. Commun Soil Sci. Plant Anal., 27 (13 and 14): 2687-2697.

Sharaf El-Din, A. (1998). Nutrient status of vegetation of the Elba nature

reserve. J. Union Arab Biol., Cairo, 6(B) Botany, 73-87.

Sharma, S.K. and M. Ali (1999). A new stigmastane derivative from roots of Malva parviflora. Indian J. Chem. Sect. B., Org. Chem. Incl. Med. Chem., 38B (6): 746-748.

Shatters, R.G. and S.H. West (1996). Purification and characterization of nonchloroplastic α-1,4-glucan phosphorylases from leaves of Digitaria

eriantha. J. Plant Physiol., 149(5): 501-509.

Shy, Y.M.; R.H. Buu and C.K. Liao (1995). Effect of phosphorus and potassium fertilizers on forage yield quality and mineral composition of Pangola grass. Zhonghua Nongxue Huibae, 171: 57-70.

Takatsuto, S. and T. Kawashima (1998). Compositions of phytosterols in the seeds of Echinochloa crus-galli and Setaria italica Beauv. Nihon Yukagakkaishi, 47(2): 187-190.

Tase, K.; M. Kobayashi and H. Fujii (1996). Analysis of hardening related proteins in Lolium temulentum L. Grassl. Sci., 42(2):117-122.

- Thayumanavan, V. and S. Sadasivans (1984). Qual. Foods Hum. Nutr., 34: 253-257. Quoted from Biochemical Methods. (Sodasivam, S. and A. Monickam, eds.), 2nd ed., 11-12 New ag. inter limit. publ. New Delhi, India.
- Turrner, W.L.; K.E. Pallett and P.J. Lea (1998). Cystathionine B-lyase from Echinochloa colonum tissue culture. Phytochemistry, 47(2): 189-
- Wang, J.; H. Yang; Z.W. Lin and H.D. Sun (1997). Five new flavonoids from Bidens pilosa L. Var. radiata Sch. Bip. Chin. Chem. Lett., 8(7): 599-602.
- Ward, G.H. and F.B. Johnson (1962). In "Chemical Methods of Plant Analysis". Canada. Dept. Agric., 10(64): 1-59.
- Watanabe, M. (1999). Antioxidative phenolic compounds from Japanese barnyard millet (Echinochloa utilis) grains. J. Agric. Food Chem., 47(11): 4500-4505.
- Yemm, E.W. and A.J. Willis (1954). The estimation of carbohydrates by anthrone. Biochem. J., 57: 508-514.

Received: 13/01/2001 Accepted: 08/04/2002

الأهمية الاقتصادية لبعض النباتات النامية طبيعياً بمنطقة دلتا النيل - بمصر

السيد الحلوانى ، إبراهيم مشالى وجيهان عمر قسم النبات – كلية العلوم – جامعة المنصورة – المنصورة – مصر ·

يهدف هذا البحث الى إجراء دراسات فيتوكيميائية على عشرة أنواع من النباتات التى تنمو طبيعيا بمنطقة دلتا النيل وهى : شوك الحدائق و الدفيرة والدنيبة وخسس البقر وحب الرشاد والجزون والخبيزة والنسيلة والرجلة والقصب البرى وذلك بغرض تقدير أهميتها الاقتصادية.

تم قياس كل من الرطوبة والرماد والرماد الذائب في الماء والرماد الذائب في الأحماض ونسبة الألياف وكمية ونوعية السكريات وكمية النتروجين وكمية البروتين وكمية الدهون بهذه النباتات.

تم عمل مسح كيميائى أولى شامل للمواد الفعالة فى هذه النباتات حيث تبين وجود القلوانيات والكربوهيدرات والاسترويدات والصابونين والفلافونيدات والكلوريدات والكبريتات فى جميع النباتات تحت الدراسة.

تم تقدير عناصر الصوديوم والكالسيوم والبوتاسيوم والحديد والماغنه سيوم والمنجنيز والكالسيوم والمنجنيز والكالسيوم والزنك والنحاس ، كما تم التعرف على سبعة عشر حمضا أمينيا وتركيز كل حمض منهم على حده وقد أوضحت نتائج الدراسة مايلى :

النباتات تحت الدراسة تحتوى على مواد عضوية وغير عضوية تؤهلها كنباتات أعلنف للحبو انات.

٢- المواد الفعالة بها تؤهلها مع مزيد من الدراسة لاستخدامها في المجالات الطبية والصناعية.