RESPONSE OF TOMATO ROOTS GROWTH TO SOME SALINE IRRIGATION WATER MANAGEMENT PRACTICES

Said, H.M.

Department of Chemical and Physical Soils, Desert Research Center, El-Matareya, Cairo, Egypt.

The present work intends to evaluate the influence of salinity, manner and application system of irrigation water on soil salinity and root growth of Super Marmande tomato cultivar. The experiment was carried out in the Agricultural Experimental Station of the Desert Research Center in Ras Sudr city located in South Sinai Governorate. The soil of such area is loamy sand, saline – non alkali. Water management practices include continuous application of water having either high (14.64dS/m) or low (7.16 dS/m) concentration, as well alternating or blending both types. Also, three systems of irrigation water viz; drip, subsurface drip and furrow were studied with influence on root length and tips. The results showed the following:

1) Drip irrigation was superior than other irrigation systems in alleviating salinity build up in the two soil layers under study. Higher salinity built up under furrow irrigation compared to the other systems. However, the practices of half amount of high salinity water followed by similar amount of low salinity water in each irrigation as well as the cyclic application resulted in the lowest salinity build up in the two studied layers of the soil profile. On the contrary, continuous application of irrigation water, resulted in relatively high salt accumulation in soil profile compared with the cyclic application.

2) Subsurface drip caused greater root length and proliferation as compared to other application systems. The cycling application of different water qualities attenuated the build up of high soil salinity and thus enhanced the root growth and proliferation.

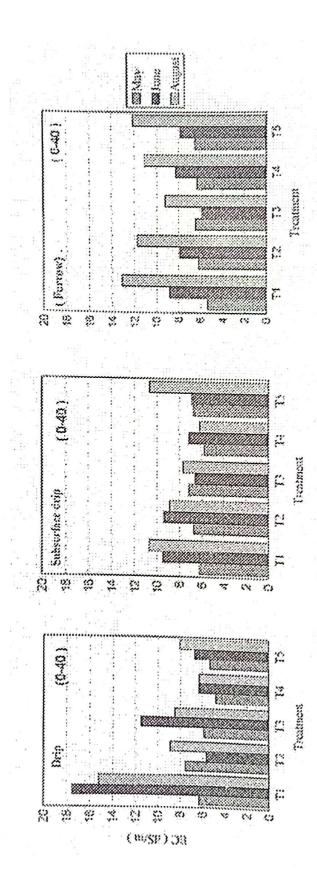
Keywords: irrigation system, application of water salinity, root length, root tips.

In Egypt and many other parts of the world, water is the ultimate limiting factor for the agricultural expansion. Under such condition, i.e. limited supply of good-quality water and increasing demand by the overwhelming population, agriculture is forced to use more and more marginal quality water, either brackish or treated sewage effluent. Egypt has already in use about 5 billion m³ of drainage and under ground water (Abu-Zeid, 1988). In the costal zones of Egypt aquifer is often subject to sea water intrusion, which affects the quality of water in the wells. Another risky condition, can be found in these cases that wells are located close enough to saline water underlying fresh water thereby over pumping can make such water intrude on the fresh one (Saad, 1982). In this context, many recommendations, and management practices were activated to facilitate the successful use of different water qualities. Among these are the sequential application of good and poor water quality (Rhoades, 1989), selection of the appropriate irrigation frequency and irrigation system (Meiri, 1989) and the selection of crops according with their tolerance to water quality, soil condition and the prevailing climate (Hamdy, 1990). The previous studies on the crop-salinity relationships have been based exclusively on the above ground or marketable crop yield (Maas 1990). Nevertheless, it may be important to evaluate the relationship between salinity and root growth. Therefore, the current work intends to evaluate the influence of water salinity management and application system on soil salinity and root growth of tomato "Super Marmande cultivar".

MATERIALS AND METHODS

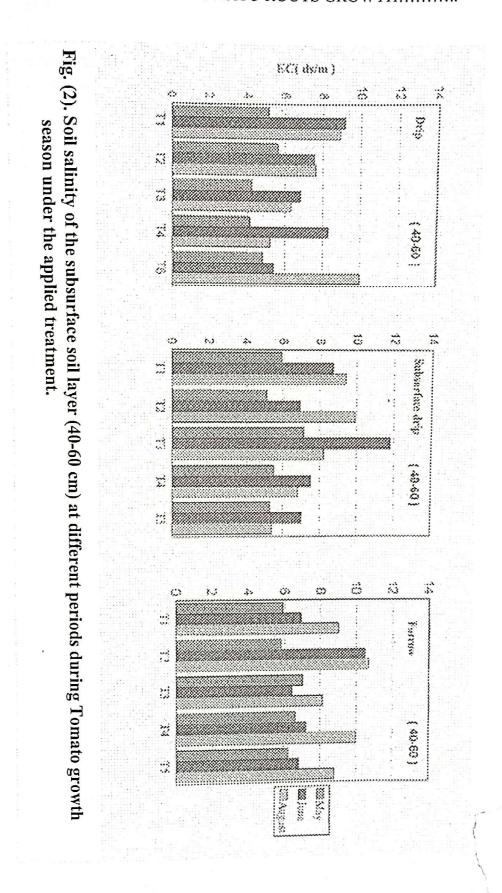
This study was performed in the Agricultural Experiment Station of the Desert Research Center (DRC) in Ras Sudr City located on the Eastern Coast of Suez Gulf, South Sinai Governorate. The soil has a loamy sand texture throughout the 0 – 60 cm depth, with 87.8% sand, 7.7% silt and 4.5% conductivity in the first is 7.16 dS/m and the second is 14.64 dS/m. To maximize the amount of water extracted from the low salinity well and to to include the following treatments;

Five strategies of water applications namely: 1) Irrigation with water having 14.64 dS/m (T_1) , 2) Irrigation with water having 7.16 dS/m (T_2) , 3) salinity water in the coarse of each irrigation high salinity water and low and 5) Applying mixed water from the $(T_1 \& T_2)$ at a ratio of 1: 2.


Three types of irrigation methods, viz., drip (D), subsurface drip (SD) and furrow (F). In all cases, the amount of irrigation water was controlled by

the consumptive use of tomato plant which was calculated from the meteorological variables and crop coefficient (Kc) using the modified Blaney-Criddle formula as recommended by Dorenboss and Pruitt (1997).In case of SD irrigation, the main, submain lateral and emitters were placed at a depth of 20cm from the soil surface. Meanwhile, in SD irrigation the laterals and emitters are placed on soil surface. In both methods, the distances between laterals and drippers are 1 and 0.5 m, respectively. The drippers are of in-line internal type with a discharge of 2.5 L/S at 0.5 atm. The interval between two consecutive irrigations was three and six days in the drip and F systems, respectively. Need to mention that in F irrigation an additional 30% of the total amount of irrigation water was applied to satisfy irrigation efficiency and leaching requirements. Seedlings of tomato "Supper Marmande" cultivar were transplanted in March 2001. At the fruiting stage, the root system of three selected plants from each treatment was collected, following the wet excavation method described by Bohm (1979). Thereafter, length and size- distribution as well as number of tips were determined using Rizo instrument Inc (Delta T image Analysis system Type DIAS). During the growing season, soil salinity of active root zone layer (0 - 40 cm) and the layer underneath (40 - 60 cm) were determined at May, June and August according to Richard's (1954).

RESULTS AND DISCUSSION


Soil Salinity

Data illustrated in figs (1 and 2) show that, irrespective of the applied treatments, salt accumulation, except few cases exhibit the two studied layers of the soil profile. On the contrary, it is clear that continuous application of irrigation water, even upon using relatively low salinity water has resulted in relatively high salt accumulation in soil profile as compared to the cyclic application strategy. These findings are in agreement with Rhoades (1990). As for the irrigation system, the data point out-except few cases-that normal drip irrigation (D) is generally superior than other irrigation systems in alleviating salinity build up in the two soil layers under study, most probably due to downward water and salt transport. Meanwhile, in case of SD irrigation system there are upward movements of water and salts which may contribute to the relative increase in salt accumulation in the soil. However, higher salinity build up under F irrigation compared to the other systems could be explained on the basis that the applied amount saline water using such method was higher than those applied by other systems.

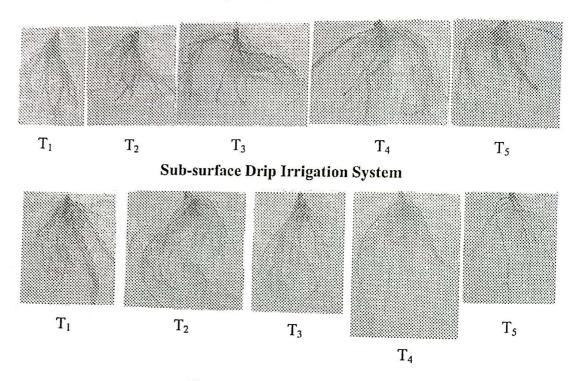
Egyptian J. Desert Res., 52, No.1 (2002)

Fig. (1). Soil salinity of the surface soil layer (0-40 cm) at different periods during Tomato growth season under the applied treatment.

Egyptian J. Desert Res., 52, No.1 (2002)

Root Growth

Table (1) plate (1) and figs. (3 and 4) display the influence of the applied treatments on the most important root growth parameters, i.e., length, size-distribution and proliferation. The data indicate that under any irrigation system the increase in salt concentration of irrigation water has resulted in pronounced decrease in the total root length, and the number of root- tips (branching). As for the management, it is evident that under any irrigation system alternating the use of high salinity water and low salinity water i.e., T₃ and T₄, the dilution occurring in the root has resulted in the best root length and branching. This behavior can be attributed to the fact that changing high salinity water to low salinity water causes significant salt leaching and attenuates salt build up in the root zone thereby increasing the root growth and branching. Such effect is less pronounced upon blending the two water sources in the water supply before application. For the irrigation system, it is evident that except very few cases subsurface drip caused greater root length and proliferation as compared to the other systems. In such case, the drippers were placed at a depth of 20 cm from the soil surface, i.e., within the root zone.


In conclusion the cycling application of different water qualities attenuates the build up of high soil salinity and thus enhances the root growth and proliferation. This encourages the use of saline water, particularly in those areas suffering from water shortage, such as Ras Sudr, South Sinai Governorate, Egypt.

귏	¥	ដ	ž	23	Treatments		
tength tim. of Tips	Length Su of Tips	44l <u>il. jo</u> ru <u>8</u> 1385/237	teryh ko. I iko	Length No.0! Bus	Studied. Pananetar		
38. 38.	708.84 3342	(88)	735. 735.	SFSC 28739	18-3) stan		
36.38 7	87.63 35	58. 58.88	ž	SE.93	(2-3-3) mari	g _n	
7 %	38,	73.88	23.35 7	8 8	15.5 E	B	
\$28.31 18.33	\$33.5 \$33.5	ZOXP EJTSB	22234 16234	8.8 8.983	iw.		
479 388	37.00 47.00.03	484.3 28.58	3235 W.183	3227 17.23	iles 🗫 ji		
0 % 3	\$7.50 \$7.50	2×.5	3 kg	~> 8	g 4.55	Subsurface Driv	
28	12.18	#£32	* ž	*8	13.2.55 ngn	ce Onjo	
598,43 38,58	\$ 22	873.93 8344	\$48.78 3828	117.13 1860	#901.		
13.33	754,27 42%	35438 3646	38.338 38.338	257.25	\$ 450 E		
~ %	32.38	* 22	8 55 8 55	200 S C C C C C C C C C C C C C C C C C C	usu (5.7.8)	Fusson	
0.00		38.88	1	88	(2. X-S)	<i>Кыявы</i>	
220.48 1289	237.81 1312	387.02	228.38 1/24	1323 13433	ide		

TABLE (1). Length and number of tips of tomato cultivar and their several size distribution under the studied treatments of saline water.

Egyptian J. Desert Res., 52, No.1 (2002)

Drip Irrigation System

Furrow Irrigation System

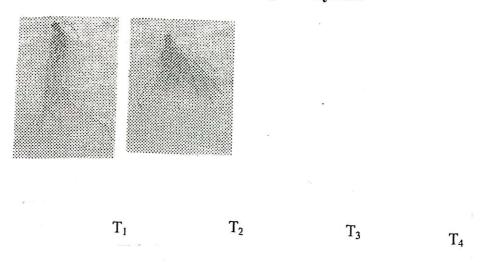


Plate (1). Influence of different irrigation systems on root growth.

Egyptian J. Desert Res., 52, No.1 (2002)

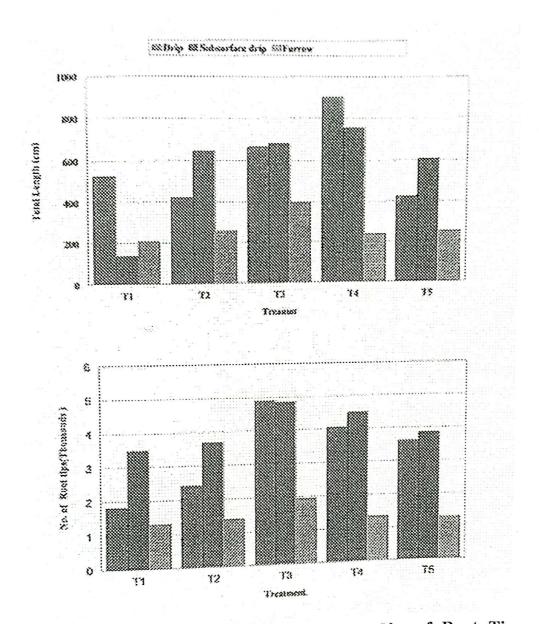


Fig. (3). Total Root Length (cm) and total No. of Root Tips (thousands) of Tomato plants under different irrigation systems.

Egyptian J. Desert Res., 52, No.1 (2002)

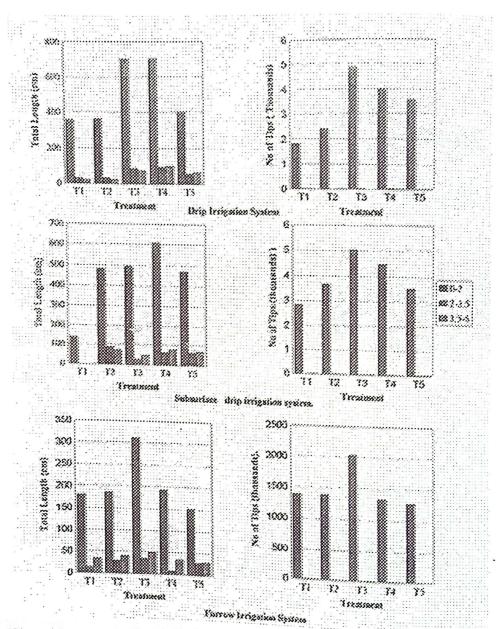


Fig. (4). Total Root Length (cm) and total No. of Root Tips (thousands) of Tomato plants under different irrigation systems.

REFERENCES

- Abu-Zeid, M. (1988). Egypt policies to use low quality water for irrigation. Proc.Symp. re-use of low quality water for irrigation. Water Research Center, Egypt, Cairo.page 23
- Bohm, W. (1979). In "Methods of Studying Root System". Spring-Verlag,.
 Berlin and New York.
- Dorenboss, J. and W.O. Pruitt (1997). In "Crop water requirements, Irrigation and Drainage". Paper No.24.FAO, Rome.
- Hamdy, A. (1990). In "Water, Soil, and Crop Management Relating to the use of Saline Water: Crop management under saline irrigation water". (Kandiah, K., ed.), FAO, Rome. p 108-116.
- Maas, E.V. (1990). In "Agricultural Salinity Assessment and Management: Crop salt tolerance". (Tanji, K.K., ed.). ASCE, New York.
- Meiri, A. (1989). In "Water, Soil and Crop Management Relating to the use of Saline Water: Management under Saline Water Irrigation, (Kandiah, K., ed.), FAO, Rome. p 89-100.
- Rhoades, J. D. (1990). In "Water, Soil, and Crop Management Relating to the use of Saline Water: Strategies to facilitate the use of saline water for irrigation". (Kandiah, K., ed.). FAO, Rome.
- Rhoades, J. D. (1989). Interception, isolating and re- use drainage water for irrigation to conserve water and protect water quality agriculture. Water Management, 16: 37-52.
- Richard's, S.A. (1954). In "Diagnosis and Improvement of Saline and Alkaline Soils". U.S.A. Salinity Laboratory Staff. Agriculture Handbook. No.60.
- Saad, E. E. M. (1982). Sea water intrusion in the coastal aquifer between Rafah and El Sheikh Zowied (North Sinai Egypt) and its impact on the surrounding environment. MSc. Thesis, Faculty of Science, Ain Shams University, Cairo, Egypt.

Received:11/03/2002 Accepted:11/04/2002

استجابة نمو جذور الطماطم لبعض تطبيقات نظم الرى والمعاملات المختلفة بالماء المالح

هدی محمد سعید

قسم كيمياء و طبيعة الأراضى - مركز بحوث الصحراء - المطرية - القاهرة - مصر٠

أستهدفت الدراسة التعرف على اثر تطبيق نظم مختلفة من الرى بالماء المالح على نمو جذور الطماطم صنف "سوبرمرماند" وأجريت التجربة بمحطة التجارب الزراعية التابعة لمركز بحوث الصحراء برأس سدر بجنوب سيناء ·

للت نتائج تحليل التربة التي أجريت بها التجربة على أنها تربة جيرية - ملحية غير قلوية - ذات قوام رملي طفلي ·

أستخدمت ثلاثة نظم رى مختلفة وهى الرى بالتنقيط والرى تحت سطحى والرى بالغمر · طبقت معاملات مختلفة من طرق الأضافة كما يلى:

- ١٠ الرى بمياة مرتفعة الملوحة ١٤٠٦٤ ديسمز/م
- ٠٢ الرى بمياة منخفضة الملوحة ٧٠١٦ ديسيمز لم
- الرى التتابعي (الرى بمياة عالية الملوحة نصف الكمية ثم الرى بالمياة منخفضة الملوحة بنصف الكمية الباقية)
- ١٤ الرى التبادلي (وفيه يتم بالتبادل مرة بالرى عالى الملوحة والرية التالية بالرى منخفض الملوحة)
- الرى المخلوط (حيث يتم خلط المياة عالية الملوحة مع المياة منخفضة الملوحة بنسبة
 ١:٢

وقد أمكن التوصل الى النتائج التالية :-

- كان الرى بالتنقيط هو أفضل النظم المستخدمة بالمقارنة بالطرق الأخرى حيث أدى الى تقليل تأثير الملوحة المتكونة فى الطبقتين تحت الدراسة فى التربة.
 - وجد أن أعلى نسبة ملوحة تكونت تحت نظام الرى بالغمر.
- دلت نتائج طرق الأضافة على أن معاملة الرى التتابعي أو التبادلي تؤدى الى أنخفاض كمية الملوحة المتكونة بقطاع التربة تحت الدراسة .
- أعطى نظام الرى التحت سطحى (المدفون) أعلى قيم الأطوال الجذورونلك بالمقارنة بالطرق الأخرى.