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ABSTRACT
The valorization of fish by-products represents a sustainable strategy for
obtaining high-value functional ingredients. The viscera of Galeorhinus galeus
were evaluated as a source of protein hydrolysates with nutritional and
bioactive potential. The objective was to determine the impact of ultrasonic
pretreatment on proximate composition, antioxidant activity, and techno-
functional properties of enzymatic hydrolysates. Viscera were subjected to
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Byproducts solu_blll_zatlon, increasing DH to 28.4% _compared with untreated controls.
Antioxidant activity was enhanced, with ultrasound-treated hydrolysates
reaching up to 97.8% radical inhibition at acidic pH and moderate hydrolysis
times. Electrophoretic analysis confirmed progressive fragmentation into low-
molecular-weight peptides, consistent with the observed increase in DH.
Techno-functional evaluation showed a marked improvement in foaming
capacity (from 24% to 97%), whereas emulsifying capacity decreased (<25%)
due to disruption of amphipathic structures. These findings demonstrate that
ultrasound-assisted hydrolysis enhances the nutritional, antioxidant, and techno-
functional properties of shark viscera proteins. This approach provides a
sustainable alternative for generating protein ingredients with potential
applications in food formulations and nutraceutical development.

INTRODUCTION

Fishing activity involves more than just capturing marine products; it also
includes a series of small-scale post-harvest processes carried out by fishermen to
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optimize commercialization. However, these practices generate byproducts and organic
waste that are often inadequately managed, resulting in indiscriminate disposal and
significant environmental degradation (Castro et al., 2020). The rapid degradation of fish
muscle tissue exacerbates this situation. In the absence of a cold chain, microbial and
enzymatic processes such as proteolysis and lipid oxidation accelerate, generating a
significant increase in waste production over a short period of time (Luo et al., 2025).
The dogfish (Galeorhinus galeus) processing industry produces large amounts of organic
waste, primarily viscera, accounting for up to 60% of the organism's total biomass
(Mowbray et al., 1988). These materials have traditionally been considered waste, but
they contain protein fractions of high nutritional and functional value, particularly for
their ability to release bioactive peptides with antihypertensive and antioxidant activity
(Je et al., 2015; Ahmed et al.,, 2022), This circumstance underscores the need to
implement technological strategies that can transform these by-products into high-value
ingredients.

Historically, alkaline extraction has predominated among conventional methods
due to its simple operation (Sun et al., 2020). However, this method is limited by its low
yield and extraction efficiency compared to more recent technologies (Preece et al.,
2017; Karlsen et al., 2022). One of the most promising emerging tools in this field is
ultrasound technology. Based on the principle of acoustic cavitation, this technology
facilitates cell disruption and improves mass transport. These effects contribute to
increased efficiency in extracting bioactive compounds (Higuera-Barraza et al., 2016;
Chemat et al., 2017). Ultrasound is considered safe, cost-effective, and ecologically
advantageous due to its reduced solvent usage, making it an attractive alternative to
traditional methods. Additionally, ultrasound has been shown to significantly increase
enzyme activity and bioactive hydrolysate production (Higuera-Barraza et al., 2016;
Cadena-Cadena et al., 2024).

Ultrasound-assisted extraction (UAE) has successfully isolated proteins from
various raw materials, including pork liver (Zou et al., 2018), extract proteins from
abalone viscera (Wu et al., 2021), isolated chickpea proteins (Kang et al., 2022),
modified the functional and biological properties of legume proteins (Loushigam et al.,
2023), and separate proteins from egg whites (Alizadeh et al., 2025). During PU, the
physical and chemical changes induced by microbubble collapse can alter the three-
dimensional structure of proteins, influencing their subsequent functionality (Tiruneh et
al., 2025).

Previous research has shown that ultrasonic treatment enhances the antioxidant
properties of watermelon protein hydrolysates (Wen et al., 2019). Similarly, analysis of
changes in the surface hydrophobicity of chickpeas revealed that ultrasonic treatment
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significantly improved digestibility (Kang et al., 2022). Regarding the quality of salted
Culter alburnus fish, increased ultrasound power was found to intensify structural
degradation of muscle fibers and significantly modify myofibrillar protein conformation
(Dongyin et al., 2023).

The purpose of this study was to extract bioactive peptides from dogfish viscera
using ultrasound. The effect of ultrasound on antioxidant activity was analyzed. Given
the limited number of studies in this area, the results obtained could be relevant for both
the comprehensive utilization of dogfish by-products and the development of functional
ingredients aimed at enhancing nutrient bioavailability.

MATERIALS AND METHODS

Raw material

The specimens were collected in Bahia de Lobos, Sonora (27°21'06"N;
110°27'14"W) and transported to the Ultrasonic Pulse Laboratory of the National
Technological Institute of Mexico/Yaqui Valley Technological Institute under an ice-
product-ice system within a maximum of three hours. In the laboratory, the organisms
were eviscerated, and the viscera were packed in polyethylene bags and subsequently
stored by cryopreservation at -80°C to preserve their physicochemical integrity until
analysis.

Processing of viscera

The viscera were washed with a 3:1 (v/v) ratio of a 50 mM citric acid buffer
solution (pH 4.0) containing 20 mM NacCl and stored at 4°C for 10 minutes (Maza et al.,
2007). The samples were rinsed at the same temperature for 30 minutes. After this
process, the samples were stored at —85°C until further use. To prepare the working
solution, the viscera were homogenized in a 20 mM citric acid buffer solution containing
60 mM NaCl (pH 5.5) at a 1:1 (w/v) ratio. Homogenization was carried out at 4 °C for
two hours. Then, the samples were centrifuged at 9,000xg at 4 °C, and filtered
sequentially using Whatman No. 1 and No. 42 paper (Celis-Guerrero et al., 2004).
Ultrasonic treatment with an amplitude of 40% was applied for 10 minutes using a
VCX750 ultrasonic processor (Vibra Cell, Sonics; Newtown, CT, USA) with 20-second
on-and-off pulses (Cadena-Cadena et al., 2022). During treatment, 100mL of the
working solution was processed in beakers placed in an ice bath to prevent temperature
increases. Finally, the protein concentration and antioxidant activity (Benzie et al., 1996;
Re et al., 1999).

Proximal chemical analysis

Proximal chemical analysis was performed to characterize the raw material and
evaluate possible variations in the composition of fish viscera. The moisture content
(method 950.46), protein (method 981.10), lipids (method 960.39), and ash (method
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938.08) were determined in accordance with the procedures established by the AOAC
(2000). The carbohydrate content was calculated by difference.

Autohydrolysis conditions

To determine the optimal conditions for producing low-molecular-weight peptides
with potential antioxidant activity through autohydrolysis, the effects of different
hydrolysis times (0.5, 1, 2, 4, 6, and 12 hours) were evaluated. At the end of each reaction
time, the proteases were inactivated by adding distilled water at 95°C and maintaining the
mixture at this temperature with constant stirring for 15 minutes. The samples were then
cooled to room temperature and homogenized for two minutes while maintaining the
temperature below 10°C (Wilde et al., 1996).

Foaming property

The foaming capacity was determined according to the method described by
Wilde et al. (1996), with slight modifications. Twenty milliliters of each hydrolysate
were used which was homogenized at 1800 x g for 1 minute. The volume of foam
generated was measured in a 100mL graduated cylinder, and the foaming capacity was
calculated as the ratio between the final volume after shaking and the initial volume of
the sample (Wilde et al., 1996).

Emulsifying property

Each emulsion was prepared by homogenizing 50mL of each hydrolysate at 1800
x g for 2 minutes, gradually adding 50mL of soybean oil while continuing to stir for an
additional minute (Villamil et al., 2017). Subsequently, 25mL aliquots were taken and
transferred to 25mL graduated cylinders, allowing them to stand at 25°C for 15 minutes.
Finally, the volume of the separated aqueous phase was recorded to calculate the stability
of the emulsion (Sathivel et al., 2006).

_ (Separate volume
ES (%) = ( JH(Tr'"c:rt-:}:r‘ vofume) * 100 Eq. 1

Degree of Hydrolysis

The O-phthalaldehyde (OPA) methodology was used to calculate the degree of
hydrolysis. This method is based on the formation of a colored compound that is
detectable at 340nm due to the reaction of amino groups with the OPA compound in the
presence of a thiol group. In this reaction, it is necessary to know the milliequivalents
(meq) of Ser-NH2 released, which can be calculated as follows:
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Abs Sample — Abs blank
Abs standard — Abs blank

Ser — NH, = [ (0.96516)(0.1) (%)

Eq. 2

Where, Ser — NH, = mEq Ser — NH,/g protein; X is the mass of the reaction mixture
in g; P is the percentage of protein in the sample; and 0.1 is the volume of the sample in
liters (L), 0.9516 is concentration constant (in meqv/L) of the Serine standard solution
(Nielsen et al., 2001). Next, hydrolysis (h) was calculated as follows:

B — (Ser—NH, )(B)

o Eq. 3
Where, B and a applied to fish viscera are 0.40 and 1.0, respectively (Sdnchez-Sanchez
et al., 2014). Finally, the DH was calculated as follows:

01 = (W) 10

Where, htot used for fish viscera is 8.6 (Nielsen et al., 2001). The degree of hydrolysis is
expressed as the total percentage of hydrolyzed protein.

SDS-polyacrylamide gel electrophoresis

The presence of proteins and their degradation by hydrolysis were analyzed using
sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) under reducing
conditions based on the method of Laemmli (1970). Twelve percent polyacrylamide gels
were used and 20uL of sample was loaded using 100 V for protein separation. The gels
were stained with Coomassie Blue R-250 and destained in a methanol:water:acetic acid
solution (5:4:1, v/vlv). These conditions were used to analyze the effect of ultrasonic
pulse pretreatment on globulin hydrolysates.

Determination of antioxidant activity

These tests are based on the reduction of DPPH (2,2-diphenyl-1-picrylhydrazyl)
and FRAP (ferric reducing antioxidant power) free radicals by antioxidant compounds
over a 30-minute reaction time (Muller et al., 2011; Gulcin et al., 2023).

Statistical analysis

One-way analysis of variance (ANOVA) and Tukey's comparison of means at a
95% confidence level were used to determine significant differences in properties such as
foaming, emulsifying, and antioxidant activity across different hydrolysis times.
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RESULTS
1. Proximal chemical analysis

The results of the proximate chemical analysis are shown in Table (1). These
results indicate that the viscera of dogfish that were not treated with ultrasonic pulses
showed significant differences when these pulses were applied. Treatment with pulses
increased protein by approximately 6% and ash by 0.74%, while lipids, carbohydrates
and moisture decreased by 0.61%, 0.27% and 5.85%, respectively. The protein content
increased from 68.8% in the control to 75%, while the lipid content decreased from 18.5
to 13.1%.

Table 1. Proximal chemical analysis

Sample Protein (%) Lipids (%) Moisture (%) Ash (%) Carbohydrates (%)

Dogfish
(without 17.72+2.71 4.76+0.71 74.25+3.4 1.38+0.71 1.89+0.17
pulses)

Dogfish (with

23.71+1.74 4.15£0.54 68.4+4.2 2.12+0.42 1.62+0.12
pulses)

2. Antioxidant activity and degree of hydrolysis

Applying ultrasonic pulses modified the antioxidant capacity of the hydrolysates
obtained by autolysis in the viscera of Galeorhinus galeus. The lowest DPPH radical
inhibition values were recorded after 90 and 120 minutes of hydrolysis at pH 7.5,
indicating a decrease in antioxidant activity. In the FRAP assay, samples without
ultrasonic pretreatment exhibited minimal reducing capacity, achieving a maximum value
of 52.84 + 2.5 after 60 minutes of incubation. Decreases in activity were detected at 30
and 120 minutes. In contrast, ultrasonically treated hydrolysates showed greater than 10%
increases in inhibition compared to the control (81.55 = 2.23%), at both pH 4 and 7.5
(Table 2). Depending on the reaction time, the degree of hydrolysis (DH) showed that
antioxidant activity increased four- to sixfold in the samples with and without ultrasound.
DH increased from 15.32% in the control samples to 28.45% in the ultrasound-treated
samples. The electrophoretic profile (SDS-PAGE, Fig. 1A) showed that the control
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sample had intense high-molecular-weight bands. In treatments with 10, 15, and 20%
DH, progressive attenuation of these bands and the appearance of smaller fragments were
observed. As %DH increased, the bands became more diffuse and migrated toward the
low-molecular-weight region. However, combining an optimal ultrasonic frequency of
~350-400 kHz with a prolonged time of 100-120 minutes favored an increase in %DH
and modified the molecular profile of the hydrolysates (Fig. 1B).

Table 2. DPPH and FRAP antioxidant capacity of hydrolysates with and without

ultrasonic pulse treatment as a function of DH

Time % of % of
(min) DH (%) inhibition  inhibition

DPPH FRAP

30 3.88 51.52+5.5 25.20
OH 7.5 60 6.71 48.15£3.4 52.84+2.5
Dogfish 90 10.88 52.30£7.2 45.24+3.3
(without 120 15.32 53.34+2.5 14.87+0.98
oulses) 30 5.87 60.84+3.4 31.45+1.27
oH 4 60 12.09 67.91+3.1 65.87+4.25
90 16.24 65.23+2.5 60.22+1.88
120 19.12 65.23+4.7 32.74+4.87
30 5.52 69.30+3.3 62.44+0.70
oH 75 60 10.27 78.51+2.8 66.61+0.66
Dogfish 90 15.66 78.51+2.4 42.25+2.29
(with 120 21.25 84.1742.2 33.16+1.88
oulses) 30 8.92 87.09+1.9 87.24+1.33
oH 4 60 16.60 97.81+4.6 89.88+1.99
90 21.32 97.27+3.3 84.14+0.88
120 28.45 92.36+2.2 74.19+0.54
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Fig. 1. Effect of ultrasonic pulses on viscera proteins of Galeorhinus galeus: (A) SDS-PAGE

pattern at different degrees of hydrolysis; (B) Response surface of the degree of hydrolysis as a
function of time and ultrasound frequency

3. Foaming and emulsifying properties

The evaluation of the foaming capacity of protein hydrolysates obtained from the
viscera of Galeorhinus galeus revealed an increase that persisted throughout the
enzymatic autohydrolysis process. An initial foaming value of 24% was recorded in the
early stages of the process. After one hour of hydrolysis, the foaming capacity increased
to 44%, continuing to rise significantly until reaching a maximum value of 97% after six
hours (Figs. 2A, 1A). The emulsifying capacity of the hydrolysates exhibited opposite
behavior to that observed in foam formation. As hydrolysis time increased, emulsification
capacity decreased. Moderate emulsification values were observed during the first hours
of the reaction. However, after five to seven hours of hydrolysis, the emulsifying capacity
decreased to levels below 25% (Fig. 2B). The results are summarized in Table (3).
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Fig. 2. A. Foaming capacity; B. Emulsifying capacity

Table 2. Effect of hydrolysis time on the structural characteristics of dogfish protein

Hydrolysis time Structural Foaming Emulsifying Antioxidant
changes capacity capacity activity
0 h (native High molecular Low (24%), High, stable Moderate,
protein) mass, compact  slow migration micelles with partially hidden
structure, Well- 14 the air-water lipids functional
amd;r]:ilggtdhic interface groups
domains
1-3h Partial Medium-high ~ Medium, slight  High, increased
(hydrolysis  reduction in  (44-70%), loss of exposure to
moderate) molecular  size, greater stabilizing thiols and
mcrt_ea_sgd deployment in capacity amines
flexibility, .
exposure of the interface
hydrophobic
regions
4-6 h (high Small peptides  Very high (80—  Low (<25%), High,
hydrolysis) (<10 kDa), high  97%), rapid  weak interfacial maximum
surface adsorption and films availability  of
hydrophilicity, rearrangement reactive groups
loss of
amphipathic
domains
>6 h (excessive Extreme Slight reduction Very low, High, but with
hydrolysis) fragmentation, due to inability to lower affinity
loss of excessive stabilize oil for interfaces
secondary fragmentation droplets
structure,
hydrophilic

predominance
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DISCUSSION

Applying ultrasonic pulses (UP) to the viscera of Galeorhinus galeus altered the
proximal composition, biofunctional properties, and technological properties of the
obtained hydrolysates. Proximal analysis revealed an increase in protein content (from
17.72% to 23.71%), accompanied by an increase in the ash fraction (from 1.38% to
2.12%). Meanwhile, lipids, carbohydrates, and moisture content decreased. These results
can be explained by high-frequency ultrasound's ability to induce cavitation. This
phenomenon promotes the rupture of cell membranes and the release of soluble protein
fractions while causing the loss of retained water and the destabilization of lipids
(Higuera-Barraza et al., 2016; Kalla-Bertholdt et al., 2021). The observed decrease in
moisture content (5.85%) is consistent with the process of cavitation-induced
dehydration, which, in turn, has been shown to increase the relative concentration of
protein and minerals (Asaithambi et al., 2025). The reduction in lipids (—0.61%) and
carbohydrates (—0.27%) could be associated with oxidation phenomena and the
breakdown of non-protein components, which are less represented compared to the
increase in the nitrogen fraction (Weiss et al., 2025).

The antioxidant capacity and degree of hydrolysis obtained in this study show a
synergistic effect between ultrasonic pulse (UP) treatment and the natural enzymatic
degradation process. The DPPH and FRAP results showed that the samples subjected to
ultrasound had significantly higher values, more than 10% higher than the control group,
which is consistent with previous research on marine and plant proteins subjected to
ultrasound (Chemat et al., 2017; Kang et al., 2022). This increase in antioxidant
capacity can be attributed to the mechanical and cavitational action of ultrasonic waves,
which promote the breakdown of non-covalent bonds and the exposure of functional
groups with redox potential, such as thiols, amines, and aromatic structures (Zhu et al.,
2022). It was observed that ultrasound-treated samples achieved a maximum inhibition of
97.81% under acidic conditions and at intermediate reaction times. This finding suggests
that pH conditions, combined with ultrasonic energy, enhance the release of bioactive
peptide sequences capable of donating electrons or hydrogen to neutralize free radicals.
Similar results have been reported in studies with soy and lupin proteins, where
ultrasound prior to enzymatic hydrolysis significantly increased the antioxidant capacity
of the hydrolysates (Fadimu et al., 2021). The degree of hydrolysis (DH) increased
significantly in the treated samples, with values ranging from 15.32 to 28.45%,
demonstrating that the PUs favored the accessibility of enzymes to peptide bonds. This
phenomenon is directly related to the ability of ultrasound to induce partial denaturation
of proteins and expose sites susceptible to enzymatic action (Rahman et al., 2021). The
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resulting protein fragmentation generates smaller peptides with a more pronounced
bioactive profile. This mechanism has been widely documented in milk, fish, and legume
proteins, where ultrasonic treatment prior to hydrolysis increases both the speed and
efficiency of the enzymatic process (Qian et al., 2023).

Analysis by SDS-PAGE electrophoresis corroborated these observations, showing
the progressive fading of high molecular weight bands and the appearance of low
molecular weight peptides, particularly in the range corresponding to a DH of 10 to 20%.
This pattern confirms the release of smaller bioactive sequences, consistent with the
findings of Cadena-Cadena et al. (2022). The greater mobility of these fragments
through biological interfaces, coupled with the abundance of exposed functional groups,
explains the increase in antioxidant activity observed (Zhu et al., 2022). In addition, the
reduction in molecular size facilitates their incorporation into food matrices and potential
controlled release systems, expanding their technological applications. Another relevant
aspect was the influence of treatment parameters. The combination of high ultrasonic
frequencies (350-400 kHz) with prolonged times (100-120 minutes) led to a more
dispersed hydrolysis pattern, with a shift toward low molecular weight regions. While
this intensive fragmentation promotes the formation of small peptides, it can also
compromise the functional and structural stability of bioactive sequences, which
translates into a possible decrease in their antioxidant capacity over longer periods of
time. This coincides with reports from ultrasound studies applied to egg and soy proteins,
where it was observed that excessive hydrolysis reduces the stability of peptide fractions
and their ability to interact with free radicals. (Gul et al., 2023; Tawalbeh et al., 2023).
In contrast, intermediate conditions (60-90 minutes) proved more effective in maximizing
antioxidant activity, suggesting the existence of an optimal balance between enzymatic
exposure and preservation of functional structures. This balance has also been identified
in plant proteins treated with ultrasound prior to enzymatic hydrolysis, where moderate
treatment intervals achieved a favorable balance between peptide size and antioxidant
bioactivity (Fadimu et al., 2021). This reinforces the hypothesis that ultrasound acts as a
modulator of the hydrolysis process, allowing the fragmentation profile to be adjusted
according to the frequency and time conditions applied.

The evidence obtained highlights that peptides released under optimal conditions
have improved antioxidant properties, which could have applications in the formulation
of functional foods, nutraceutical supplements, and food preservation systems sensitive to
lipid and protein oxidation. Furthermore, the results suggest that combining emerging
technologies such as ultrasound with conventional enzymatic hydrolysis processes may
be an effective strategy for enhancing the added value of fishery by-products,
contributing to the comprehensive use of marine resources (De Aguiar-Saldanha-
Pinheiro et al., 2021; Rahaman et al., 2025). The findings confirm that ultrasonic
treatments not only improve the degree of hydrolysis of marine proteins but also enhance
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the generation of bioactive peptides with marked antioxidant activity. However, it is
necessary to establish optimal operating windows, as excessive hydrolysis can
compromise the functionality of the peptides generated. The evidence obtained opens the
possibility of optimizing these processes on a pilot and industrial scale to produce protein
hydrolysates with applications in health and the food industry.

A functional analysis of the foaming and emulsifying properties of hydrolysates
reveals how structural modifications caused by enzymatic hydrolysis and ultrasound
affect the ability of proteins to interact with air-water and oil-water interfaces (Mirzaee et
al., 2024). Foam formation increased steadily as hydrolysis progressed, rising from an
initial value of 24% for native proteins to a maximum of 97% after six hours of reaction.
This increase is directly linked to the progressive reduction in molecular size, the
increased flexibility of peptide chains, and the exposure of hydrophobic regions that can
quickly orient themselves at the air-water interface (Song et al., 2021; Mirzaee et al.,
2024). Small peptides (<10 kDa) generated at advanced stages exhibit high surface
mobility and reorganization capacity, explaining the notable increase in foaming capacity
(Chen et al., 2024). In contrast, emulsifying capacity showed an opposite pattern,
decreasing as hydrolysis time increased. In native proteins, the presence of well-defined
amphipathic domains favored the stabilization of lipid micelles; however, excessive
fragmentation reduced the integrity of these structures, thereby preventing the formation
of stable interfacial films around oil droplets (Villeneuve et al., 2023). Consequently,
after five to seven hours of hydrolysis, the emulsifying capacity decreased to value below
25%. The inverse relationship between foaming and emulsification capacity reflects the
transition from complete proteins with an amphipathic structure to small, predominantly
hydrophilic peptides that are useful for foam generation but inefficient for emulsion
stabilization (Soliman et al., 2023; Weiss et al., 2025). This behavior has been
documented in species such as Dosidicus gigas and Katsuwonus pelamis (Klomklao et
al., 2018; Anaya et al., 2020) and it is caused by several structural factors (Broyard et
al., 2015; Liu et al., 2025). Consequently, emulsions formed with highly hydrolyzed
hydrolysates are less stable and more prone to coalescence.

The increased protein content and reduced lipid content offer nutritional
advantages, while the enhanced antioxidant capacity makes these hydrolysates suitable
for use in the development of foods with bioactive properties intended to prevent
oxidative damage. A comparative analysis indicates that it is possible to maximize
foaming capacity without compromising emulsifying capacity. From a technological
standpoint, this duality offers specific applications: hydrolysates with a high degree of
hydrolysis are more suitable for products where foam formation is a priority (malts,
aerated desserts, egg white substitutes), while those with a moderate degree of hydrolysis
are preferable for foods that require stable emulsions (dressings, sauces, protein drinks),
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as they retain sufficient amphipathic structures to maintain the stability of the system
(Zhang et al., 2024).

CONCLUSION

The application of ultrasonic pulses to the viscera of Galeorhinus galeus
significantly improved the proximate composition, antioxidant activity, and technological
properties of the hydrolysates. The increased protein and lower lipids make it healthier.
The increased antioxidant capacity shows that low-molecular-weight bioactive peptides
are released, which can prevent oxidative damage. At the technological level, the degree
of hydrolysis determined how the liquids behaved: liquids with a lot of hydrolysis formed
foam, while liquids with a moderate amount of hydrolysis remained emulsifying. The
findings show that using a combination of ultrasound and autolysis is an effective way to
make protein ingredients. These ingredients can be used in functional foods. They can be
used as foaming agents or emulsion stabilizers.
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