## Immunohistochemical Study of Tissue Expression of Nucleophosmin Protein and its association with histopathological parameters in Prostatic Carcinoma in Suez Canal University Hospital

Mennat Allah Mohammed Abdel-Hafeez\*, Makram Mohamed Hammam, Mohamed Osama Ibrahim El-Okda, Sahar Farouk, Mohammed Kamal El-Kherbetawy

Department of pathology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt

### Abstract

Background: Prostate cancer is the second most common cancer in males. Nucleophosmin (NPM1) is a multifunctional nucleolar protein that plays a role in many cellular processes and in the development of several types of cancer, including prostate cancer Aim: To investigate the immunohistochemical expression of NPM1 Protein in prostatic carcinoma (PCa) tissues and determine its association with the histopathological parameters of PCa. Subjects and Methods: The current work is a cross-sectional descriptive study, conducted in the pathology laboratory of Suez Canal University Hospital on 30 PCa specimens. The specimens included 25 TRUS needle biopsies, 3 prostatectomies and 2 TURP. They were gathered by convenience sampling from records and formalin fixed paraffin embedded tissue blocks during the interval between 2013 and 2019. NPM1 expression was assessed in PCa tissues using immunohistochemistry. Results: NPM1 expression showed nuclear positivity in luminal prostatic epithelial cells in all studied PCa specimens, and the median percentage of expression was 90%. Moreover, strong NPM1 expressions were found in 22 specimens that included 19TRUS needle biopsies, 2 prostatectomies and 1TURP. Moderate expressions were found in only 8 specimens. NPM1 expression showed a weak positive correlation with patients' age (r=0.103) and Gleason Grade (r=0.142). NPM1 expression showed a non-statistically significant association with patients' age, specimen characteristics, prostatic adenocarcinoma growth patterns, Gleason Grade, comedo necrosis, lymphovascular and perineural invasion (p-value >0.05). Conclusions: NPM1 is a potential immunohistochemical marker that may be added to the immunohistochemical diagnostic panel of prostatic carcinoma.

Keywords: Prostate, Cancer, immunohistochemistry

## Introduction

Prostate cancer is the second most common cancer in males. In 2020, according to GLOBOCAN estimates, 1,276,106 new cases were detected worldwide (1) and 358,989 men of these new cases died from this cancer (2).GLOBOCAN also estimated December 2020 that prostate cancer is the fifth most prevalent cancer in Egypt and the fifth highly incident cancer among Egyptian males (4767

prostate cancer cases among a total of 66542 new cancer cases in Egyptian males) (3).

Screening of prostate cancer is carried ultrasonography, measuring of prostate-specific antigen (PSA) serum level accompanied by digital rectal examination. However, Diagnostic confirmation is performed only histopathological examination of H&E immunohistochemically stained prostatic biopsies So, we are always in urgent need to study new

<sup>\*</sup>Correspondence: mennaghanem23@gmail.com

immunohistochemical markers to reach accurate diagnosis (4,5).

Nucleophosmin (NPM1) is a multifunctional nucleolar protein that plays a role in a variety of cellular processes, including ribosome assembly, DNA repair, regulation of gene expression by mRNA processing, binding to histones and transferring them to DNA to help nucleosome assembly and chromatin remodeling (6–8).

Nucleophosmin is overexpressed in many hematologic malignancies as non-Hodgkin's lymphomas, acute myeloid leukemia and many solid cancers as glioblastoma, non-small cell lung cancers hepatocellular carcinoma, colon cancer, ovarian cancer, bladder cancer, thyroid and endometrial carcinoma. cancer Generally, NPM1 overexpression correlates with high grade tumors and poor outcome (9-13).

Several studies on prostatic carcinomas have shown the role of nucleolar proteins in prostate carcinogenesis. This is explained by the fact that nucleoli are the site of protein synthesis and DNA regulation. These processes are tightly regulated by nucleolar protooncoproteins. So, mutations affecting nucleolar proteins can lead to prostatic malignant transformation and increased tumor proliferation (14,15).

The role of nucleolar proteins in prostate carcinogenesis is evidenced by nucleolar prominence, one of the histopathological criteria of prostatic carcinomas. However, the expression, localization, and functional importance of specific nucleolar proteins in the progression of PCa have not been yet studied as potential markers (14,16).

This raised the need to study the immunohistochemical expression of the nuleolar protein NPM1 in prostatic carcinoma tissue specimens as it might help as a potential diagnostic immunohistochemical marker or it could

be a promising target for new prostate cancer therapy regimens.

## **Subjects and Methods**

## Study setting and Study population:

The current work is a cross-sectional descriptive study, conducted in the pathology laboratory of Suez Canal University Hospital on 30 PCa specimens. The specimens included 25 TRUS needle biopsies, 3 prostatectomies and 2 TURP. They were gathered by convenience sampling from records and formalin fixed paraffin embedded tissue blocks during the interval between 2013 and 2019.

#### **Inclusion Criteria:**

- 1- Specimens of PCa with histopathological data including patient's age, tumor histologic type, Gleason grade, estimated approximate percentage of prostate involved by tumor in examined slides, lymphovascular and perineural invasion.
- 2- Available paraffin blocks of TRUS needle biopsy specimens, TURP and prostatectomy specimens.

### **Exclusion Criteria:**

Specimens with unfit remaining tumor tissue

## Histopathological evaluation, staining and scoring:

**PCa** collected from were stored specimens. Histopathological data of samples were retrieved from specimen records and included: patient's age, site of specimen in prostate, tumor histologic type, Gleason scoring, WHO/ISUP grade approximate grouping, estimated percentage of prostate involved by tumor in examined slides and the state of lymphovascular and perineural invasion. Sections were prepared from the paraffin embedded tissue blocks of specimens at 5 µm thickness and were stained with H&E stains. Other sections were picked on positively charged slides for staining with NPM<sub>1</sub> immunohistochemical marker.

Positive control slides were obtained from normal colonic tissue (Figure 1) and negative control slides were obtained from the same specimens by omitting the primary antibodies during the IHC staining protocol. Hematoxylin & eosin slides were initially assessed for tumor type, Gleason estimated approximate percentage of prostate involved by tumor examined slides. presence lymphovascular and perineural invasion and other histopathological features according to the WHO 2022 classification of prostatic tumors.

Indirect immunohistochemical staining technique was manually performed using the peroxidase anti-peroxidase method. PCa sections stained by NPM1 marker

were microscopically examined at high power magnification, for nuclear staining intensity and the proportion of stained tumor cells. The expression of NPM1 was scored as negative if percentage of stained tumor cell-nuclei <10% and was scored as positive if percentage of stained tumor cells is 11-100%. NPM1 positive cells were categorized according to extent of staining in tissue into three subgroups of intensity of reaction: +3 (strong), +2 (moderate), +1 (weak) (Table 1). This semi quantitative scoring system was utilized according to the protocol Leal, M.F., Mazzotti, T.K.F., used by Calcagno, D.Q. et al. to quantify NPM1 immunoreactivity in gastric cancer<sup>(17)</sup>.

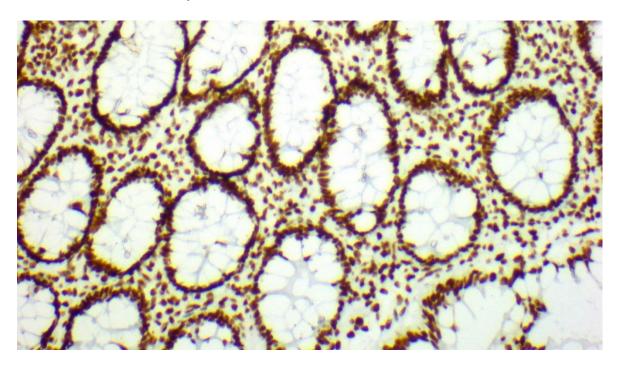



Figure 1 Positive strong NPM1 nuclear staining (score 3) in normal colonic mucosa positive control, original magnification x200.

| Table 1 NPM1 Protein Expression Evaluation Criteria. |                     |           |               |             |  |
|------------------------------------------------------|---------------------|-----------|---------------|-------------|--|
| NPM1 expression                                      | Negative (o)        | Positive  |               |             |  |
| Percentage of nuclear stained tumor cells            | 0-10%               | 11-100%   |               |             |  |
| Intensity of nuclear stained tumor cells             | negative to minimal | +1 (weak) | +2 (moderate) | +3 (strong) |  |

#### Results

## Age of patients and specimen characteristics

A total of 30 prostatic carcinoma specimens were included in the present study. The mean age of patients to which specimens belong was 69 years (n = 30). Twenty two patients were younger than

75 years and 8 patients were older than 75 years. The specimens included 25 TRUS needle biopsies, 3 prostatectomies and 2 TURP. As regards TRUS needle biopsies; 12 specimens were obtained from base, 7 from apex and 6 specimens were obtained from mid gland (Table 2).

| Table 2 Patients' age and Specimens' | Characteristics in PCa study Group. |
|--------------------------------------|-------------------------------------|
| Characteristics                      | <b>PCa</b> (n = 30)                 |

| Characteristics                        | <b>PCa</b> (n = 30) |
|----------------------------------------|---------------------|
| Age (years)                            |                     |
| Mean ±SD                               | 69.0 ±8.8           |
| Range                                  | 51 - 83             |
| Age Groups                             |                     |
| Younger (<75 years)                    | 22 (73.3%)          |
| Older (≥75 years)                      | 8 (26.7%)           |
| Type of Specimen                       |                     |
| TRUS needle biopsy                     | 25 (83.3%)          |
| TURP                                   | 2 (6.7%)            |
| Prostatectomy                          | 3 (10.0%)           |
| Site of Biopsy in TRUS needle biopsies |                     |
| Base                                   | 12 (48%)            |
| Mid-gland                              | 6 (24.0%)           |
| Apex                                   | 7 (28%)             |

TRUS: Trans Rectal Ultrasound Scan, TURP: Transurethral Resection of the Prostate, \* statistically significant p-value at p <0.05, F. Fischer's exact test, t. student t test.

## **Microscopic Features of PCa Specimens**

specimens showed Thirty prostatic carcinoma. Most PCas were adenocarcinomas (n=28), that present in 23 TRUS needle biopsy specimens, 2 TURP specimens and 3 prostatectomies. **Acinar** adenocarcinomas showed small crowded back to back glands with oval lumens lined by malignant epithelial cells showing hyperchromatic enlarged nuclei, prominent nucleoli and absent basal cell layer (figure 2-4). Some specimens showed surrounding foci of benign prostatic hyperplasia and prostatitis.

Ductal adenocarcinoma was found in only 2 TRUS needle biopsy specimens and showed complex papillae with fibrovascular cores and glands lined by tall pseudostratified columnar cells with abundant pale eosinophilic cytoplasm.

Regarding Gleason grading, 18 specimens were Gleason grade group 5 that appeared in form of solid nests, sheets and cords of malignant cells with no gland formation (figure 4), followed by Gleason grade group 4 (8 specimens) that showed fused, cribriform and ill-defined poorly formed glands with slit-like and punched out lumens (figure 3) and 4 specimens were Gleason grade group 3 that revealed discrete variable sized small crowded glands with regular contours (figure 2). The approximate percentage of prostate involved by tumor in examined slides was more than 80% in most PCa specimens (n=20).Associated prostatitis lymphoid aggregates were present in 12 PCa specimens. Lymphovascular invasion was found in 5 specimens & perineural invasion was found in 9 specimens (Table 3).



Figure 2 Prostatic acinar adenocarcinoma, Gleason grade (4+3), grade group 3, original magnification x100.

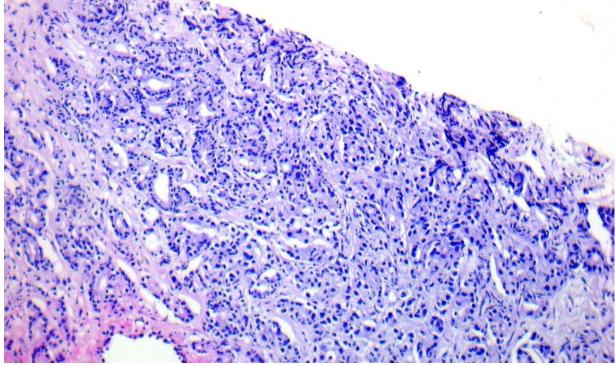



Figure 3 Prostatic acinar adenocarcinoma, Gleason grade (4+4), grade group 4, original magnification  $x_{100}$ .

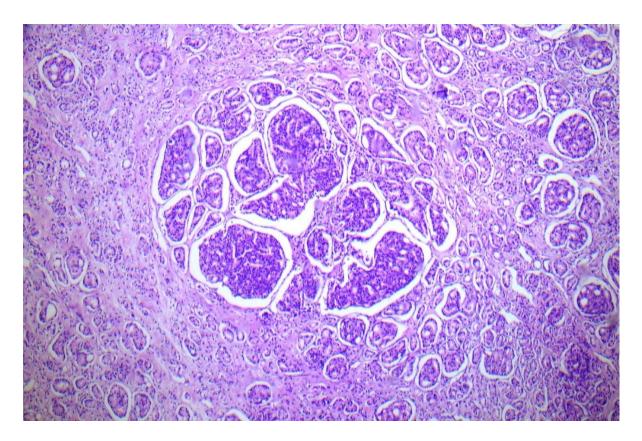



Figure 4 Prostatic acinar adenocarcinoma, Gleason grade (4+5), grade group 5, original magnification x40.

| Table 3 Morphological Features of PCa Specimens. |                     |  |  |  |
|--------------------------------------------------|---------------------|--|--|--|
| Characteristics                                  | PCa (n = 30)        |  |  |  |
| Dominant Growth Pattern                          |                     |  |  |  |
| Acinar                                           | 28 (93.3%)          |  |  |  |
| Ductal                                           | 2 (6.7%)            |  |  |  |
| Cribriform Pattern                               |                     |  |  |  |
| No                                               | 5 (16.7%)           |  |  |  |
| Yes                                              | 25 (83.3%)          |  |  |  |
| Gleason Grade                                    |                     |  |  |  |
| Grade group 3                                    | 4 (13.3%)           |  |  |  |
| Grade group 4                                    | 8 (26.7%)           |  |  |  |
| Grade group 5                                    | 18 (60.0%)          |  |  |  |
| Gleason Score                                    |                     |  |  |  |
| Median                                           | 9.0 (8.0 – 9.0)     |  |  |  |
| Approximate percentage of prostate involved by   |                     |  |  |  |
| tumor in examined slides                         |                     |  |  |  |
| Median                                           | 90.0 (70.0 – 100.0) |  |  |  |
| Less than 80%                                    | 10 (33.3%)          |  |  |  |
| 80 – 99%                                         | 8 (26.7%)           |  |  |  |
| 100%                                             | 12 (40.0%)          |  |  |  |
| Comedo necrosis                                  |                     |  |  |  |
| None                                             | 13 (43.3%)          |  |  |  |
| Focal                                            | 10 (33.3%)          |  |  |  |
| Diffuse                                          | 7 (23.3%)           |  |  |  |
| Lymphocytic infiltration                         |                     |  |  |  |

| Negative                      | 18 (60.0%)               |  |
|-------------------------------|--------------------------|--|
| Positive                      | 18 (60.0%)<br>12 (40.0%) |  |
| Lymphovascular Invasion (LVI) |                          |  |
| No                            | 25 (83.3%)<br>5 (16.7%)  |  |
| Yes                           | 5 (16.7%)                |  |
| Perineural Invasion (PNI)     |                          |  |
| No                            | 21 (70.0%)               |  |
| Yes                           | 21 (70.0%)<br>9 (30.0%)  |  |

## NPM1 expression in prostatic carcinoma specimens

NPM1 expression showed nuclear positivity in luminal prostatic epithelial cells in all studied PCa specimens and the median percentage of NPM1 positivity NPM1 expression was found in 22 PCa

specimens (figure 6-8) and moderate expression was found in only 8 specimens (figure 5) (Table 4). was 90% (figure 5-8). Moreover, strong

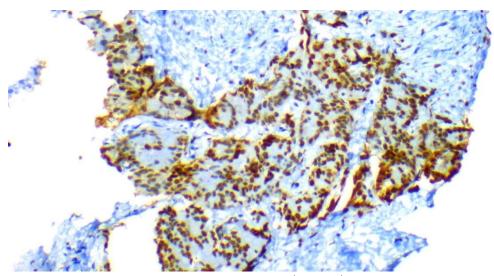



Figure 5 Positive moderate NPM1 nuclear staining (score 2) in prostatic acinar adenocarcinoma, Gleason grade (4+3), Gleason grade group 3, original magnification x100.

| Table 4 NPM1 Immunohistochemical Staining in PCa specimens.                                                    |                    |  |  |  |
|----------------------------------------------------------------------------------------------------------------|--------------------|--|--|--|
| Parameters                                                                                                     | PC (n = 30)        |  |  |  |
| NPM1 Expression                                                                                                |                    |  |  |  |
| Negative                                                                                                       | 0                  |  |  |  |
| Positive                                                                                                       | 30 (100.0%)        |  |  |  |
| Median percentage of NPM1 postivity                                                                            | 90.0 (80.0 – 90.0) |  |  |  |
| NPM1 Staining Intensity                                                                                        |                    |  |  |  |
| Moderate                                                                                                       | 8 (26.7%)          |  |  |  |
| Strong                                                                                                         | 22 (73.3%)         |  |  |  |
| BPH: Benign Prostatic Hyperplasia, PC: Prostatic Carcinoma, NPM1: Nucleophosmin 1, * Statistically significant |                    |  |  |  |
| p-value at p<0.05, M. Mann Whitney test, C. Chi-square                                                         | test.              |  |  |  |

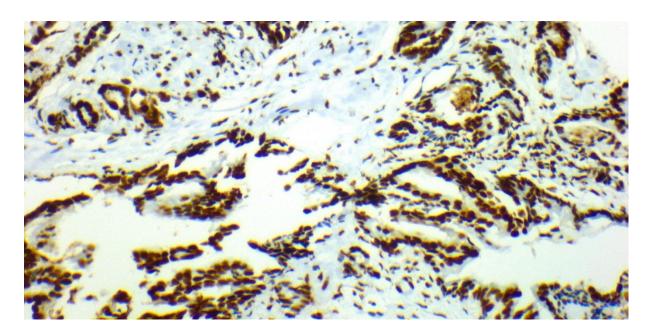



Figure 6 Positive strong NPM1 nuclear staining (score 3) in prostatic acinar adenocarcinoma, Gleason grade (4+4), Gleason grade group 5, original magnification x200.

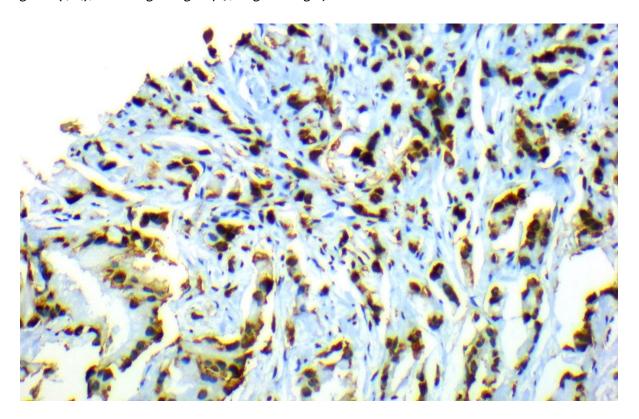



Figure 7 Positive strong NPM1 nuclear staining (score 3) in prostatic acinar adenocarcinoma, Gleason grade (4+5), Gleason grade group 5, original magnification x200.

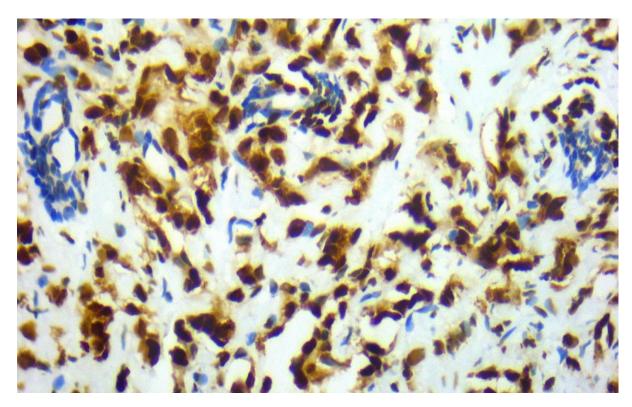



Figure 8 Positive strong NPM1 nuclear staining (score 3) in prostatic acinar adenocarcinoma, Gleason grade (5+5), Gleason grade group 5, original magnification x400.

## Association and correlation between NPM1 immunohistochemical staining and age of prostatic carcinoma patients

Strong NPM1 staining was found in 16 out of 22 PCa specimens in the younger age group and in 6 out of 8 specimens in the older age group. However, no statistically significant association was found

between NPM1 expression and patients' age (p-value >0.05) (**Table 5**). In addition, positive weak correlation was found between NPM1 expression and patients age in the stained specimens (r=0.103), but this relationship wasn't statistically significant (**Figure 9**).

| significant association was ro                                                               | aria |                         |               |                    |  |
|----------------------------------------------------------------------------------------------|------|-------------------------|---------------|--------------------|--|
| Table 5 Association between NPM1 Staining Intensity and Age in PCa Group ( $n = 30$ ).       |      |                         |               |                    |  |
| Parameters                                                                                   |      | NPM1 Staining Intensity |               |                    |  |
|                                                                                              |      | Moderate (n=8)          | Strong (n=22) | <i>p</i> -value    |  |
| Age (years), Median (IQR)                                                                    | 30   |                         | 70.0 (62.0 -  | 0.730 <sup>M</sup> |  |
|                                                                                              |      | 74.0)                   | 75.0)         |                    |  |
| Age Groups                                                                                   |      |                         |               |                    |  |
| Younger (<75 years)                                                                          | 22   | 6 (75.0%)               | 16 (72.7%)    | 1.00 <sup>F</sup>  |  |
| Older (≥75 years)                                                                            | 8    | 6 (75.0%)<br>2 (25.0%)  | 6 (27.3%)     |                    |  |
| NPM1: Nucleophosmin 1, <sup>M</sup> . Mann Whitney test, <sup>F</sup> . Fischer's exact test |      |                         |               |                    |  |

PC group (n=30) 100 90 NPM1 % of stained tumor cells 70 60 50 40 r= 0.103, p=0.588 30 80 50 60 70 90 Age (years)

Figure 9 Scatter plot of the correlation between NPM1 expression and age of patients with PCa.

## Association between NPM1 immunohistochemical staining and specimen characteristics

Regarding type of specimen and site of biopsy, strong NPM1 staining was found in 19 out of 25 TRUS needle biopsy specimens. Strong NPM1 staining was also found in 1 of 2 TURP specimens and 2 out of 3 prostatectomies. As regards

TRUS needle biopsies, strong NPM1 staining was found in 9 out of 12 biopsies obtained from base, 4 out of 6 biopsies obtained from mid-gland and 6 out of 7 biopsies obtained from apex. However, no statistically significant association was found between NPM1 expression and specimen characteristics (p-value >0.05) (Table 6).

| Table 6 Association between NPM1 Staining Intensity and Specimen Characteristics in PCa Group $(n = 30)$ . |    |                         |               |                    |
|------------------------------------------------------------------------------------------------------------|----|-------------------------|---------------|--------------------|
|                                                                                                            |    | NPM1 Staining Intensity |               |                    |
| Parameters                                                                                                 |    | Moderate<br>(n=8)       | Strong (n=22) | <i>p</i> -value    |
| Type of Specimen                                                                                           |    |                         |               |                    |
| TRUS needle biopsy                                                                                         | 25 | 6 (75.0%)               | 19 (86.4%)    | 0.569 <sup>F</sup> |
| TURP                                                                                                       | 2  | 1 (12.5%)               | 1 (4.5%)      |                    |
| Prostatectomy                                                                                              | 3  | 1 (12.5%)               | 2 (9.1%)      |                    |
| TRUS needle biopsy site                                                                                    |    |                         |               |                    |
| Base                                                                                                       | 12 | 3 (37.5%)               | 9 (40.9%)     |                    |
| Mid-gland                                                                                                  | 6  | 2 (25.0%)               | 4 (18.2%)     | 0.908 <sup>F</sup> |
| Apex                                                                                                       | 7  | 1 (12.5%)               | 6 (27.3%)     |                    |

# Association between NPM1 immunohistochemical staining and histopathological parameters of prostatic carcinoma specimens

Strong NPM1 expression was found in 2 ductal adenocarcinomas, 20 acinar adenocarcinomas and moderate NPM1 expression was found in only 8 acinar adenocarcinomas. NPM1 expression was strong in 18 out of 25 specimens showing cribriform pattern. Median Gleason score was higher in specimens with strong NPM1 staining (9.0) than in specimens showing moderate NPM1 staining (8.5) (Table 7).

Regarding Gleason grade, among 22 specimens with strong NPM1expression, 14 specimens were Gleason grade group 5, 7 specimens were Gleason grade group 4 specimens and only 1 specimen was

Gleason grade group 3. Moreover, weak positive correlation was found between NPM1 expression and Gleason Score (r=0.142) (**Table 7**) (**Figure 10**).

The approximate percentage of prostate involved by tumor in examined slides was more than 80% in 15 out of 22 specimens with strong NPM1 expression. Strong NPM1 expression was found in 13 out of 17 specimens showing comedo necrosis. NPM1 expression was also strong in 8 out 12 specimens showing positive lymphocytic infiltration, in 4 out of 5 demonstrating specimens positive lymphovascular invasion and 7 out of 9 specimens with positive perineural invasion. But, No statistical significance was found between NPM1 expression and all these studied parameters (Table 7).

| Parameters                              |      | NPM1 Staining Inter | NPM1 Staining Intensity |                    |  |  |
|-----------------------------------------|------|---------------------|-------------------------|--------------------|--|--|
|                                         | n    | Moderate (n=8)      | Strong (n=22)           | p-value            |  |  |
| Dominant Growth Pattern                 |      | , ,                 |                         |                    |  |  |
| Acinar                                  | 28   | 8 (100.0%)          | 20 (90.9%)              | 1.00 <sup>F</sup>  |  |  |
| Ductal                                  | 2    | 0                   | 2 (9.1%)                |                    |  |  |
| Positive Cribriform Pattern             | 25   | 7 (87.5%)           | 18 (81.8%)              | 1.00 <sup>F</sup>  |  |  |
| Gleason Grade                           |      |                     |                         |                    |  |  |
| Grade group 3                           | 4    | 3 (37.5%)           | 1 (4.5%)                | 0.082 <sup>F</sup> |  |  |
| Grade group 4                           | 8    | 1 (12.5%)           | 7 (31.8%)               |                    |  |  |
| Grade group 5                           | 18   | 4 (50.0%)           | 14 (63.6%)              |                    |  |  |
| Gleason Score, Median                   | 30   | 8.5 (7.0 – 9.0)     | 9.0 (8.0 – 9.0)         | 0.202 <sup>M</sup> |  |  |
| 11 1 0                                  | of   |                     |                         |                    |  |  |
| ,                                       | in   |                     |                         |                    |  |  |
| examined slides                         |      |                     |                         |                    |  |  |
| Less than 80%                           |      |                     |                         |                    |  |  |
| 80 – 99%                                | 10   | 3 (37.5%)           | 7 (31.8%)               | 1.00 <sup>F</sup>  |  |  |
| 100%                                    | 8    | 2 (25.0%)           | 6 (27.3%)               |                    |  |  |
|                                         | 12   | 3 (37.5%)           | 9 (40.9%)               |                    |  |  |
| Comedo necrosis                         |      |                     |                         |                    |  |  |
| None                                    | 13   | 4 (50.0%)           | 9 (40.9%)               | 0.761 <sup>F</sup> |  |  |
| Focal                                   | 10   | 3 (37.5%)           | 7 (31.8%)               |                    |  |  |
| Diffuse                                 | 7    | 1 (12.5%)           | 6 (27.3%)               |                    |  |  |
| Positive Lymphocytic infiltration       | 12   | 4 (50.0%)           | 8 (36.4%)               | o.678 <sup>F</sup> |  |  |
| Positive Lymphovascular Invasi<br>(LVI) | on 5 | 1 (12.5%)           | 4 (18.2%)               | 1.00 <sup>F</sup>  |  |  |
| Positive Perineural Invasion            | 9    | 2 (25.0%)           | 7 (31.8%)               | 1.00 <sup>F</sup>  |  |  |

PCa: Prostatic Carcinoma, NPM1: Nucleophosmin 1, \* statistically significant p-value at p<0.05,  $^{M}$ . Mann Whitney test,  $^{F}$ . Fischer's exact test

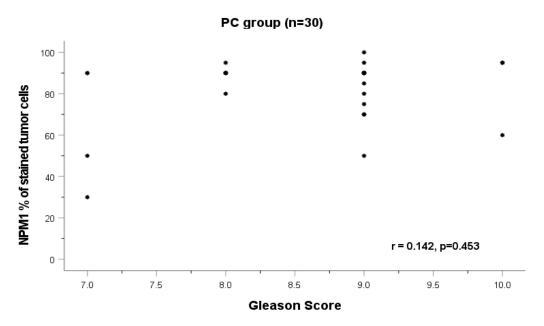



Figure 10 Scatter plot of the correlation between NPM1 expression and Gleason Score in patients with PCa

## Discussion

The study included 30 specimens of prostatic carcinoma, selected convenience sampling. This small sample size is considered a significant limitation future multicenter studies recommended. The age of prostatic carcinoma patients from specimens were obtained ranged from 51 to 83 years, including 22 men younger than 75 years and 8 men older than 75 years and with a mean age of 69 years.

Our findings regarding age of PCa patients differs from previous studies in which the mean age was only 64.2 (18) and 64.11 (19). However, our findings are matching with the Egyptian national data which showed that the highest incidence of prostatic carcinoma in Egypt was in males ranging from 70 to above 75 years old (20). These differences in age groups and mean age of PCa patients between studies may be related to more frequent screening and earlier diagnosis developed countries.

This study included different types of prostatic biopsy specimens that were 25 TRUS needle biopsy specimens, 2 TURP and 3 radical prostatectomy specimens.

Previous immunohistochemical studies on NPM1 expression in prostate cancer only included radical prostatectomy specimens (18,21,22). TRUS needle biopsy specimens in our study revealed that PCa is highly incident in base of gland (12 specimens). NPM1 showed positive nuclear staining in luminal prostatic epithelial cells in 100% of PCa specimens, in which strong NPM1 staining intensity was found in 22 specimens, moderate staining intensity in only 8 specimens and the median percentage of NPM1positivity was 90%. These findings are analogous to those found in all other research that studied NPM1 expression in malignant prostatic tumors (18,21-23).

These previous findings are justifiable given the role of NPM1 in coactivating and androgen regulating functions bν enhancing androgen binding affinity to its responsive elements resulting increased expression of androgen target genes as PSA gene and increased proliferation of PCa cells. Additionally, NPM1 is the main protein that forms AgNOR that is proved to be involved in PCa initiation, proliferation and progression (6,18).

NPM1 expression showed weak positive correlation with age (r=0.103), in which, strong NPM1 staining was found in sixteen out of 22 PCa specimens in the younger age group and in 6 out of 8 specimens in the older age group. However, p-value was greater than 0.05 and no statistically significant association was found between NPM1 expression and patients' age.

On studying the association between NPM<sub>1</sub> expression and specimen characteristics, strong NPM1 staining was 19 TRUS needle found in biopsy specimens; including nine biopsies obtained from base, 6 from apex and 4 from mid-gland. Strong NPM1 staining was also found in 1 TURP specimen and 2 prostatectomies. However, no statistically significant association was between NPM1 expression and specimen characteristics (p-value >0.05). This may be explained by the small available sample size.

NPM1 expression in our thesis showed weak positive correlation with Gleason grades (r=0.142), in which specimens with higher Gleason grades showed stronger NPM1staining intensity than those with lower grades. Thus, among 22 specimens showing strong NPM1expression, 14 specimens were Gleason grade group 5, 7 specimens were Gleason grade group 4 and only 1 specimen was Gleason grade group 3. These results are matching with NPM<sub>1</sub> role in upregulation protooncogenes transcription as c-Myc, EGF and EGFR complex. NPM1 also downstream growth factor activates signaling pathways as MAPK and AKT allowing cell pathways, tumor proliferation and promoting additional tumorigenic aggressive behavior of PCa cells (6,22,24).

However, However, no statistically significant association was found between NPM1 staining intensity and Gleason grade (p-value >0.05).

Comparable result was found in two previous research (21,23) and different result was revealed in another study (18) that showed statistically significant association between NPM1 staining intensity and Gleason grade (p-value <0.05). That discrepancy between studies is due to differences in primary antibody provider and methods of statistical analysis.

To our knowledge, this is the first time in research to highlight the association of prostatic NPM1with adenocarcinoma growth patterns, perineural, lymphovascular invasion and comedo necrosis. In the present thesis, strong NPM1 expression was found in 20 acinar 2 ductal adenocarcinomas, specimens showing cribriform pattern, 13 specimens showing comedo necrosis, 4 demonstrating specimens positive lymphovascular invasion and 7 specimens with positive perineural invasion. However, this positive association between NPM1 staining intensity and these studied parameters statistically significant.

These previous findings can be explained by the fact that NPM1 is a histone chaperone that increases assembly of AR containing regulatory protein complexes. So, NPM1 overexpression promote prostate carcinogenesis and tumor progression through activating AR signaling pathway (6,21).

## Conclusion

This study concluded that NPM1 is a potential immunohistochemical nucleolar protein, overexpressed in prostatic carcinomas and may be used as a promising therapeutic target. recommended to include NPM1 in the immunohistochemical diagnostic panel of prostatic carcinoma and further studies to fully needed evaluate the significance NPM<sub>1</sub> prognostic of expression in prostatic carcinomas.

### References

1. Bijoux W, Cordina-Duverger E, Balbolia S, Lamy PJ, Rebillard X, Tretarre B, et al. Occupation and prostate Cancer risk: results from the epidemiological study of prostate cancer (EPICAP). J Occup Med Toxicol . 2022 Dec 1;17(1):1–12.

- 2. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018 Nov 1;68(6):394–424.
- 3. Ibrahim AH, Shash E. General Oncology Care in Egypt. Cancer Arab World. 2022;41–61.
- 4. Carneiro A, Barbosa ÁRG, Takemura LS, Kayano PP, Moran NKS, Chen CK, et al. The Role of Immunohistochemical Analysis as a Tool for the Diagnosis, Prognostic Evaluation and Treatment of Prostate Cancer: A Systematic Review of the Literature. Front Oncol. 2018 Sep 18;8(SEP):377.
- 5. Mandel P, Wenzel M, Hoeh B, Welte MN, Preisser F, Inam T, et al. Immunohistochemistry for prostate biopsy—impact on histological prostate cancer diagnoses and clinical decision making. Curr Oncol. 2021 Jun 1;28(3):2123–33.
- 6. Karimi Dermani F, Gholamzadeh Khoei S, Afshar S, Amini R. The potential role of nucleophosmin (NPM1) in the development of cancer. J Cell Physiol. 2021 Nov 1;236(11):7832–52.
- Chin L, Wong CYG, Gill H. Targeting and Monitoring Acute Myeloid Leukaemia with Nucleophosmin-1 (NPM1) Mutation. Int J Mol Sci. 2023 Feb 1;24(4).
- 8. Sekhar KR, Freeman ML. Nucleophosmin Plays a Role in Repairing DNA Damage and Is a Target for Cancer Treatment. Cancer Res. 2023 May 15;83(10):1573–80.
- Zhou Y, Shen J, Xia L, Wang Y. Estrogen mediated expression of nucleophosmin 1 in human endometrial carcinoma clinical stages through estrogen receptor-α signaling. Cancer Cell Int
- 10. Holmberg Olausson K, Elsir T, Moazemi Goudarzi K, Nistér M, Lindström MS. NPM1 histone chaperone is upregulated in

- glioblastoma to promote cell survival and maintain nucleolar shape. Sci Reports 2015 51. 2015 Nov 12;5(1):1–15.
- 11. Penthala NR, Ketkar A, Sekhar KR, Freeman ML, Eoff RL, Balusu R, et al. 1-Benzyl-2-methyl-3-indolylmethylene barbituric acid derivatives: Anti-cancer agents that target nucleophosmin 1 (NPM1). Bioorg Med Chem. 2015 Nov 15;23(22):7226–33.
- 12. Zarka J, Short NJ, Kanagal-Shamanna R, Issa GC. Nucleophosmin 1 Mutations in Acute Myeloid Leukemia. Genes (Basel). 2020 Jun 1;11(6):1–16.
- 13. Kelemen K. The Role of Nucleophosmin 1 (NPM1) Mutation in the Diagnosis and Management of Myeloid Neoplasms. Life (Basel, Switzerland) [Internet]. 2022 Jan 1;12(1).
- 14. Bahadori M. New Insights into Connection of Nucleolar Functions and Cancer. Tanaffos. 2019 Mar [cited 2024 Mar 7];18(3):173.
- 15. Popławski P, Bogusławska J, Hanusek K, Piekiełko-Witkowska A. Nucleolar Proteins and Non-Coding RNAs: Roles in Renal Cancer. Int J Mol Sci 2021, Vol 22, Page 13126. 2021 Dec 4;22(23):13126.
- 16. Vellky JE, Ricke EA, Huang W, Ricke WA. Expression, Localization, and Function of the Nucleolar Protein BOP1 in Prostate Cancer Progression. Am J Pathol. 2021 Jan 1;191(1):168–79.
- 17. Leal MF, Mazzotti TKF, Calcagno DQ, Cirilo PDR, Martinez MC, Demachki S, et al. Deregulated expression of Nucleophosmin 1 in gastric cancer and its clinicopathological implications. BMC Gastroenterol. 2014 Jan 10;14(1):9.
- 18. Masiuk M, Lewandowska M, Dobak E, Urasinska E. Nucleolin and Nucleophosmin Expression in Gleason 3 and Gleason 4 Prostate Cancer With Seminal Vesicles Invasion (pT3b). Anticancer Res. 2020 Apr 1;40(4):1973–9.
- 19. Akarken İ, Dere Y. Could trop-2 overexpression indicate tumor aggressiveness among prostatic adenocarcinomas? Ann Diagn Pathol. 2021 Feb 1;50:151680.
- 20. Ibrahim AS, Khaled HM, Mikhail NN, Baraka H, Kamel H. Cancer Incidence in Egypt: Results of the National Population-

- Based Cancer Registry Program. J Cancer Epidemiol. 2014;2014:1–18.
- 21. Destouches D, Sader M, Terry S, Marchand C, Maillé P, Soyeux P, et al. Implication of NPM1 phosphorylation and preclinical evaluation of the nucleoprotein antagonist N6L in prostate cancer. Oncotarget . 2016 Oct 10;7(43):69397.
- 22.z H, C X, X W, H J, J M, L W, et al. BET inhibitor blocks the oncogenic function of nucleophosmin 1 in castration-resistant prostate cancer by interfering with the c-

- Myc signaling pathway. 2022 May 31
- 23. Léotoing L, Meunier L, Manin M, Mauduit C, Decaussin M, Verrijdt G, et al. Influence of nucleophosmin/B23 on DNA binding and transcriptional activity of the androgen receptor in prostate cancer cell. Oncogene. 2008 May 1;27(20):2858–67.
- 24. Loubeau G, Boudra R, Maquaire S, Lours-Calet C, Beaudoin C, Verrelle P, et al. NPM1 silencing reduces tumour growth and MAPK signalling in prostate cancer cells. PLoS One