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ABSTRACT

Water supply shortages pose a significant global challenge, necessitating either an
increase in water production capacity or the optimization of water utility systems to
minimize losses. Efficient management of water resources is critical to meeting the
escalating demand for high-quality water. Meeting the growing demands for quality
water resources requires strategic interventions by governments and private sector
entities to transform water management into essential practices for preserving and
controlling water storage and distribution facilities. This research provides a "Water
Leaks Detection and Prediction model" created to enhance the efficiency of water
distribution systems by identifying and mitigating leaks. The proposed model integrates
advanced analytical techniques to achieve high accuracy while maintaining cost-
effectiveness, offering a practical solution for sustainable water resource management.
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 ضرلأا تحت ةكبشلا يف هایملا تابرستب ؤبنتلل يعانطصلاا ءاكذلا بیردت جذومن

٢ىوامرفلا ھط نمیأ ,١باھولا دبع مازع لیزأ ,*,١ھبھو نمحرلا دبع دمحم ھماسأ

 ایزیلام ،سنیس  ةعماج ،ةیئابرھكلاةسدنھلا  مسق١
 ادنك ،ویراتنوا   ،كروی ةعماج،ةسدنھلاوءاضفلاوضرلاا مولع مسق٢

o.wahba@gmail.com:  يسیئرلا ثحابلل ينورتكللاا دیربلا

صخلملا
  ةیئاملا دراوملل ةلاعفلا ةرادلإا دعت .رئاسخلا لیلقتل هایملا قفارم ةمظنأ نیسحت وأ هایملل ةیجاتنلإا ةردقلا ةدایز امإ مزلتسی ،اریبك ایملاع ایدحت هایملا تادادمإ صقن لكشی
نم تاءارجإو ةیجیتارتسا تلاخدت سانلل ةدیجلا ةیئاملا دراوملا ىلع  دیازتملا بلطلا ةیبلت بلطتت .ةدوجلا ةیلاع هایملا ىلع دیازتملا بلطلا ةیبلتل ةیمھلأا غلاب ارمأ
اجذومن" ثحبلا اذھ رفوی  .اھیف مكحتلاو اھعیزوتو هایملا نیزخت قفارم ىلع ظافحلل ةیساسأ تاسرامم ىلإ هایملا ةرادإ لیوحتل صاخلا عاطقلا تانایكو تاموكحلا لبق
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  تاینقت حرتقملا جذومنلا  جمدی .اھتدح نم فیفختلاو تابیرستلا دیدحت للاخ نم هایملا عیزوت ةمظنأ ةءافك زیزعتل هؤاشنإ مت "اھب ؤبنتلاو هایملا تابرست نع فشكلل
.ةیئاملادراوملل ةمادتسملا ةرادلإل ایلمع لاح رفوی امم ، ةفلكتلا ةیلاعف ىلع ظافحلا عم ةیلاع ةقد قیقحتل ةمدقتم ةیلیلحت

 .تانایبلا ىلع ةمئاقلا هایملا ةرادإ⸲ةیكذلا هایملا تاكبش  ⸲هایملل ةمادتسملا ةرادلإا⸲ؤبنتلا جذومن⸲ءاملابرست نع فشكلا:ةیحاتفملا تاملكلا

1. INTRODUCTION

This research successfully developed an improved and more efficient model for predicting and detecting
water leakage in underground networks. By applying specific leakage factors to an Artificial Neural
Network (ANN), the model enhances predictive capabilities and leakage probability assessments. The
paper details the process, including data acquisition, training, and validation, demonstrating the model's
effectiveness for monitoring and managing water systems.

2. ANN TRAINING MODEL FOR WATER LEAK PREDICTION

The prediction model's Artificial Neural Network (ANN) is mathematically represented using a neuron
model with four input classes (x₁ to x₄), where n = 4 corresponds to the number of input parameters. Each
class comprises numerous inputs utilized during training. Associated weights (w₁ to w₄) are assigned to
each input, and the weighted sum of these inputs is computed to determine the activation function, as
formally expressed in Equation 1.

The neural network architecture comprises highly interconnected processing elements (neurons),
with interconnections characterized by their synaptic weights [1]. A fundamental neuron model
incorporates multiple weighted inputs. The magnitude of neuronal output is regulated by an activation
function, for which a logistic sigmoid function is employed:

φ (v) = [1 + exp (-av)]-1 (1)
The variable “a” stands for the slope of the sigmoid function, and v is the actual input.

As per the basic neuron model, “bk,” is an external bias that is added to raise or reduce the input
of the activation function. During neural network training, optimal values for both biases and weights
are identified to enhance the model's performance.

This structure for neuron k can be interpreted as follows:

𝑣௞ = ෍ 𝑤௞௝𝑥௝
௠

௝=0
(2)

Yk = φ(vk) (3)
where Yk is the output signal and x0, x1, x2, …, xm are the input signals, wk0, wk1, wk2, …, wkm are

the weights of neuron k, and vk is the activation potential of neuron k.

Table 1 presents the initialization of the neural network prediction model, with weights
assigned arbitrarily on a scale of 1 to 10 for each input neuron. These weights correspond to the key
input parameters: Pressure, Flow Rate, Temperature, and Noise. Weight initialization constitutes a
critical step in the backpropagation error process employed in this study, informed by experiential
data obtained from field simulations.Corr
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Table 1: The weights of input Neurons in the prediction model represent each data type: Pressure, Flow rate,
Temperature, and Noise.

# Input Neuron Voting criteria Initial Weight
1. Pressure The continuous drop in pressure below the minimum setpoint 8
2. Flow rate Continuous increase in inflow to exceed the maximum

setpoint
4

3. Temperature Continuous increase in temperature exceeding the maximum
setpoint

3

4. Noise Consistent noise (no cut-offs) in at least two loggers reaching
a level of more than ten decibels

6

Table 2 shows the weights of each data input value, and the other parameters related to the
thresholds and required output based on the field’s experiments during the leak simulation testing. For
the prediction model, the input neurons' data were then scaled from “1” to “10” (Table 1), where:

x = the scaled neuron input

s = the actual neuron input

h = 10 (the scale)

z = the actual maximum input

y = the output

These weights were used to design the neuron layout used in calculating the activation function
in the prediction model.

Table 2: The activation function calculation for the data types: Pressure, Flow rate, Temperature, and Noise.

Pressure input
neuron

Temperature
input neuron

Flow-Rate input
neuron

Noise input
neuron

Min. 0.5 4.5 1 0
Max. (z) 45.5 142.4 156 63

Input
𝑥 = ൬𝑠 ×

ℎ
𝑧
൰ 𝑥 = ൬𝑠 ×

ℎ
𝑧
൰ 𝑥 = ൬𝑠 ×

ℎ
𝑧
൰ 𝑥 = ൬𝑠 ×

ℎ
𝑧
൰

Labeling Rule
(for Leak)

< 35 >12 >150 >10

Scaled
Threshold

< 7.69 > 0.84 > 9.62 > 1.59

Initial Weight 8 4 3 6
Desired Output 1 (Leak) if ALL rules are met

0 (No Leak) if ANY rule is not met

The values in the "Labeling Rule" row of Table 2 represent the pre-defined expert rules based on
field experience used to label the training data. These rules (Pressure < 35, Flowrate > 150, etc.) were
applied to the raw sensor data to automatically generate the true binary label ('Leak' or 'No Leak') for
each of the historical cases in the dataset. This labeled data is what allows the ANN to perform supervised
learning. The actual desired output of the ANN model itself is a binary classification:

y = 1 (Leak Predicted) or y = 0 (No Leak Predicted)
The model's performance is judged by how well its predictions match these labels.

The sensor's real-time data collection source for pressure, flow rate, temperature, and noise was
obtained under a research collaboration agreement with the Metropolitan Water Board. The specific
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pipeline segments are part of a classified municipal network, and their exact location is protected by
information due to critical infrastructure security protocols.

2.1 ANN Training using NLM

Artificial neural networks (ANNs) are structured variably based on neuronal organization and learning
algorithms using the Neural Language Model (NLM). Architectures are broadly categorized as
feedforward, single-layer, multilayer feedforward, or recurrent networks [2]. A single-layer network
comprises an input layer connected directly to an output layer, where computations occur. In contrast,
multilayer feedforward networks incorporate hidden layers that enable the extraction of higher-order
statistics [3].

The model of a three-layer feedforward network that is fully linked, referred to as 4-6-1 (four
input neurons, six hidden neurons, and one output neuron). The four input neurons are labeled from "1"
to "4", where n = 4 represents the actual information in the Water Leaks Detection and Prediction model.
The corresponding weights for these inputs are represented by w1, w2, w3, and w4.

The input neurons in the input layer (i.e., the initial layer) deliver the input vector to the second
“hidden” layer. The output vector of the hidden layer is then used as input to the third layer (i.e., the
output layer), which delivers the final solution of the network.

According to the feedforward neural network, the output signal at a neuron j (either an output
node or a hidden neuron) is interpreted as follows:

Yj (n) = φ(vj(n)) (4)
where:

vj (n) is the activation potential of neuron j, which is calculated as follows:

𝑣௝(𝑛) = ෍ ൫𝑤௝௜(𝑛)𝑦௜(𝑛)൯
௠

௝=0
(5)

where:
m is the total number of inputs (without the bias) applied to neuron j.

wji (n) represents the weight connecting the output of neuron i to the input of neuron j at iteration
n (nth training example).

yi (n) is the output signal of neuron i (i.e., represents the input signal of neuron j).

It should be clear that yi (n) = xi (n), the ith element in the input vector if neuron ‘j’ is in the first hidden
layer.

In other words,

 The SUM will use the input layer vector x values from the input layer vector to the “hidden layer”
vector.

 The SUM will use the hidden layer vector y values from the “hidden layer” vector to the output
layer vector.

2.2 The learning Process using a nonlinear backpropagation algorithm.

Neural networks solve complex problems through training and subsequent generalization to new inputs.
This process involves the iterative adjustment of free parameter weights and biases until optimal values
are achieved. Among various learning algorithms, backpropagation is the most prevalent for feedforward
networks [4]. This study employs the Levenberg–Marquardt algorithm, which, despite higher memory
demands, provides superior training speed and accuracy [5-7].
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According to the backpropagation procedure, the output signal of a neuron j, yj (n), is to be
compared with a desired (i.e., target) output, dj (n). The error signal at the output of neuron j, ej (n),
can be defined:

ej (n) = dj (n) - yj (n) (6)
Here, n stands for the nth training sample (i.e., the nth pattern). The goal of iterative adjustments

is to have yj(n) as near as feasible to dj (n), which can be accomplished by reducing the cost function
(total instantaneous error energy over all neurons in the output layer) that is specified as follows:

𝐸(𝑛) = 1
2
෍ 𝑒௝2(𝑛)

௝∈஼
(7)

where c represents all neurons of the output layer.

2.3 Stopping Criterion (error function)

The weights of the neural network are continuously adjusted through iterative training, with each new
epoch of training data. However, there is no exact measure to determine the appropriate point at which
to stop training, or when the backpropagation algorithm has sufficiently converged. If training is not
appropriately terminated, there is a potential for overfitting the training data.

Optimal neural network performance requires architectural flexibility and precise control over
generalization. Conventionally, early stopping prevents overfitting by halting training at the minimum
validation Mean Squared Error (MSE). This study introduces a systematic solution using a dedicated
water leaks test dataset to evaluate generalization performance at the vertex of the performance curve,
the minimum of the parabolic error trajectory before overfitting begins [8]. This method robustly
identifies the critical inflection point where error increases, thereby optimizing the trade-off between
model complexity and predictive accuracy.

Employing a stopped minimization procedure (Fig. 1), training is halted at an optimal point to
prevent the network from learning high-frequency noise, a known contributor to overfitting during
iterative gradient-based optimization. The stopping point is determined by continuously monitoring
generalization errors, which decrease initially, reach a minimum, and then increase due to overtraining,
while training error decreases monotonically [9]. Termination at the generalization error minimum
ensures an optimal balance between learning the underlying data distribution and avoiding noise
overfitting [10].

Fig. 1: Typical learning and validation curves [1]Corr
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2.4 Performance Evaluation

The generalization (validation) error is usually estimated as the Mean-Squared error (MSE) on a separate
validation (test) set of data. This validation error is used to stop the training process at the optimal
iteration value. Ideally, this validation set should be independent and uncorrelated with the data used for
training to get an unbiased estimate of generalization performance [11]. The MSE error and the Model
Correlation Value “R” can be estimated as:

𝑀𝑆𝐸 =
∑ (𝑑ೕି 𝑦ೕ)2೘
ೕ=1

௟
(8)

𝑅 =
∑ (𝑑ೕି 𝑑ണതതത)೗
ೕ=1 ×(𝑦ೕି 𝑦ണതതത)

ට∑ (𝑑ೕି 𝑑ണതതത)2೗
ೕ=1 ට∑ (𝑦ೕି 𝑦ണതതത)2೗

ೕ=1

(9)

where l is the number of samples for the validation data set, 𝑑௝ is the desired value, 𝑑ఫഥ is the
meaning of the desired values in the data set, 𝑦௝ is the model output value, and 𝑦ఫഥ ; is the meaning of the
model output values in the data set. The Mean Squared Error (MSE) can also be computed for both
training and testing datasets, where l represents the number of water network samples in the respective
dataset [12].

2.5 Model Evaluation, Assessment, and Analysis

This study employs specific water leakage factors as inputs to an Artificial Neural Network (ANN)
methodology to develop an enhanced model for leakage prediction and detection. The resulting ANN
technique improves leakage probability prediction in underground water networks and augments the
system’s predictive capabilities.

The prediction model employs a neural network initialized with arbitrary weights and trained on
inputs from a detection database. For each data class, the system evaluates the output and adjusts the
corresponding weights. Inputs within predefined class thresholds yield an output of "one"; otherwise,
"zero" is produced. This supervised learning approach uses a training set of seventeen leak occurrences
from a multi-vote detection model. The backpropagation algorithm evaluates network status and adjusts
weights by processing these inputs and outputs.

As explained in Section 2, the activation function for the specifically selected data types-Pressure,
Flow rate, Temperature, and Noise — was used to calculate the scaled neuron inputs for the prediction
model's initial data. The initial values for weights and the desired output x1, x2, x3, and x4 were calculated
for these four data types, as was explained in Table 2, as follows:

For pressure:

𝑥1 = 𝑠 ×
ℎ
𝑧

= 𝑠 ×
10

45.5
For temperature:

𝑥2 = 𝑠 ×
ℎ
𝑧

= 𝑠 ×
10

142.4
For flow rate:

𝑥3 = 𝑠 ×
ℎ
𝑧

= 𝑠 ×
10
156

For noise:

𝑥4 = 𝑠 ×
ℎ
𝑧

= 𝑠 ×
10
63

w1 = 8 w2 = 4 w3 = 3 w4 = 6

y ≥ 100 (assumed desired output)
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Accordingly, the scaled measured input dataset was created for each of the seventeen instances
for all four input neurons, as shown in Fig. 2.

Fig. 2: The generation of the measured input layer required for the nonlinear model (P: Pressure, T: Temperature,
Q: Flow rate, and N: Noise level)

The model computes the seventeen input dataset readings by incorporating each input neuron’s
weight via the activation function (Equation 2). Fig. 3 presents the initial Artificial Neural Network
training dataset, with the error representing the discrepancy between desired and computed outputs
highlighted in red. The circled data point corresponds to an experimentally identified “less leak severity”
condition. These three error points (values < 100) resulting from the activation function's execution
across seventeen instances of the four input neurons highlight discrepancies between computed and
expected outputs. These errors are utilized in the backpropagation algorithm to refine weights and
improve model accuracy.

Fig. 3: The Artificial Neural Network’s data initial Training dataset for the prediction model

The same seventeen instances will be used in subsequent nonlinear neural network development.
As outlined in Section 2.3, the stopped minimization procedure is employed since iterative gradient-
based training causes networks to learn mapping components by frequency while training error
decreases. Generalization error, however, reaches a minimum before increasing during overtraining, as
previously demonstrated in Section 2.3, Fig. 1.

For the nonlinear regression training, the training model needs to be initialized with three sets of
data; those are:
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a) The Training Data set
b) The Validation Data set, and
c) The Testing Data Set

Table 3 shows the Input and Output data sets. The four sets of data for Pressure, Temperature,
Flow rates, and Noise levels will constitute the INPUT to the nonlinear training. The OUTPUT of the
non-linear training model was extracted from the experimental scaled data, targeting the less-severe leak
data points. These two sets of data (INPUT and OUTPUT) are then rearranged in a Transpose matrix for
each of them.

Table 3: The transposed matrices of the two data sets for INPUT and DESIRED OUTPUT (the three highlighted
cells are the same three less-severity leak data as extracted from Fig. 3)

INPUT
2.2 2.2 2.2 1.76 1.76 1.76 1.76 0.66 5.87 7.25 5.6 5.6 4.4 6.68 6.86 4.4 7.47

0.89 0.89 0.89 0.89 0.89 0.89 0.89 0.89 0.89 0.89 0.89 0.89 0.89 0.89 0.89 0.89 0.89
9.87 9.68 10 9.74 9.68 9.68 9.81 9.94 9.68 9.68 9.68 9.68 9.68 9.68 9.68 9.68 9.68
10 10 10 10 10 10 10 10 4.84 4.84 4.84 4.84 4.84 4.84 4.84 4.84 4.84

OUTPUT
111.77 111.19 112.15 107.86 107.67 107.67 108.06 99.65 109.6 120.68 107.49 107.49 97.82 116.1 117.51 97.82 122.43

The software application serves as a training tool to simulate the model under multiple scenarios.
Seventeen data points for INPUT and OUTPUT were stored in text files to execute the training program.
Each scenario incorporates a variable number of hidden layers, with iterative testing conducted for each
architectural variation. Training continues until the calculated output minimizes discrepancies in low-
severity leak data points relative to the desired output. The desired output is derived through empirical
optimization of the four input neurons’ weights, ensuring alignment between predictions and target
outcomes through iterative refinement.

The data employed for model training is partitioned into three distinct datasets: (1) the training
dataset, used to fit the model; (2) the validation dataset, which provides an unbiased evaluation for
hyperparameter tuning during training; and (3) the test dataset, utilized for the final unbiased evaluation
of the trained model.

The seventeen data samples used for the training model are categorized accordingly as follows into
three data sets:

 Eleven samples for the Training data (practically selected as 70% of the dataset)

 Three samples for the Validation data set (practically selected as 15% of the dataset)

 Three samples for the Testing data set (practically selected as 15% of the dataset)

Various neural network architectures were evaluated under different scenarios by adjusting the
number of hidden-layer neurons. Tables 4, 5, 6 and 7 present the Sample Training Structure (STS), for
multiple re-training cycles aimed at minimizing the Mean Squared Error (MSE) and maximizing the
Model Correlation Value (R). The (4-10-1) set, achieving an MSE value of “3.804939267” and a
correlation value (R) of “0.991539’, was selected based on predefined criteria and is highlighted in light
green.

The training process extended to additional structures (4-8-1), (4-6-1), and (4-4-1), each
undergoing similar retraining cycles to identify the lowest MSE and highest R, with optimal results for
each structure indicated in green.Corr
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Table 4: Training Structures (4-10-1) show the multiple re-training cycles approach to picking up the Lowest (MSE)
and the Highest (R) as highlighted in light green color.

4-10-1 Mean Square Error (MSE) Model Correlation Value (R)
Multiple re-training cycles to pick up the

Lowest
Multiple re-training cycles to pick up the

Highest
Training 0.344125 0.99855
Validation 85.51545 -0.891184
Testing 0.3995 0.996049
Overall 28.753025 0.367805
Training 5.50768E-29 1.00E+00
Validation 0.0956378 0.999821
Testing 11.31918 0.974796
Overall 3.804939267 0.991539
Training 0.385135 0.997741
Validation 1.03004 0.976257
Testing 18.54105 0.835636
Overall 6.652075 0.936544

Table 5: Training Structures (4-8-1) show the multiple re-training cycles approach to picking up the Lowest (MSE)
and the Highest (R) as highlighted in light green color.

4-8-1 Mean Square Error (MSE) Model Correlation Value (R)
Multiple re-training cycles to pick up the

Lowest
Multiple re-training cycles to pick up the

Highest

Training 8.04E-05 1.00E+00
Validation 8.28E-03 1.00E+00
Testing 7.11E+01 1.00E+00
Overall 23.71556461 0.999893
Training 5.82E-08 1.00E+00
Validation 1.69E-03 1.00E+00
Testing 2.30E-02 1.00E+00
Overall 0.008219639 0.999996667
Training 2.16E+00 9.94E-01
Validation 3.63E-01 -1.00E+00
Testing 9.62E+00 8.00E-01
Overall 4.047189667 0.264818667Corr
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Table 6: Training Structures (4-6-1) show the multiple re-training cycles approach to picking up the Lowest (MSE)
and the Highest (R) as highlighted in light green color.

4-6-1 Mean Square Error (MSE) Model Correlation Value (R)
Multiple re-training cycles to pick up the

Lowest
Multiple re-training cycles to pick up the

Highest
Training 1.09E-03 1.00E+00
Validation 3.62E+01 9.68E-01
Testing 1.97E-01 1.00E+00
Overall 12.13211594 0.989332
Training 2.47E-25 1.00E+00
Validation 1.31E-03 1.00E+00
Testing 1.41E+01 9.17E-01
Overall 4.70411492 0.9723373
Training 9.22E-04 1.00E+00
Validation 2.36E+00 9.55E-01
Testing 4.02E+00 9.66E-01
Overall 2.126760661 0.973669

Table 7: Training Structures (4-4-1) show the multiple re-training cycles approach to picking up the Lowest (MSE)
and the Highest (R) as highlighted in light green color.

4-4-1 Mean Square Error (MSE) Model Correlation Value (R)
Multiple re-training cycles to pick up the

Lowest
Multiple re-training cycles to pick up the

Highest

Training 3.05E-06 1.00E+00

Validation 2.61E-05 1.00E+00

Testing 7.83E-03 1.00E+00

Overall 0.002619842 0.999999

Training 8.04E+00 9.09E-01

Validation 2.39E+01 9.80E-01

Testing 3.92E-01 9.99E-01

Overall 10.7640293 0.96235

Training 1.84E-19 1.00E+00

Validation 4.28E+00 9.84E-01

Testing 4.41E+00 -7.45E-01

Overall 2.89634333 0.4129636Corr
ec

ted
 pr

oo
f



JAUES, 20, 77, 2025

1420

Based on the results above, the 4-4-1 training structure yielded optimal MSE (0.002619842) and
R (0.999999) values, as highlighted in light green. Each structure was trained three times until
performance converged.

Table 8 provides a comparative analysis of neural network architectures evaluated by mean
squared error (MSE), correlation coefficient (R), and predictive capability for low-severity water leak
instances. Among the tested architectures (4-10-1, 4-8-1, 4-6-1, 4-4-1), the 4-4-1 structure demonstrated
superior performance, achieving the lowest MSE and highest R value, as shown in Table 4 (a, b, c, and
d), confirming its optimal balance of accuracy and predictive efficacy.

Table 8: The comparison between the performance of different neural network structures is based on the estimated
mean square error (MSE) and correlation value (R) (Based on the model of eleven for Training, three for Validation,

and three for Testing).

Neural Network
Structure

4-10-1 4-8-1 4-6-1 4-4-1

Mean Square Error
(MSE)
Lowest

Training 5.50768E-29 5.82E-08 9.22E-04 3.05E-06

Validation 0.0956378 1.69E-03 2.36E+00 2.61E-05

Testing 11.31918 2.30E-02 4.02E+00 7.83E-03

Overall 3.804939267 0.008219639 2.126760661 0.002619842

Model Correlation
Value (R)
Highest

Training 1.00E+00 1.00E+00 1.00E+00 1.00E+00

Validation 0.999821 1.00E+00 9.68E-01 1.00E+00

Testing 0.974796 1.00E+00 1.00E+00 1.00E+00

Overall 0.991539 0.999996667 0.989332 0.999999

Water Leak Prediction Capability
(all Levenberg leak points
predicted?)

Yes Yes Yes Yes

The training algorithm is the Levenberg-Marquardt, which requires more memory but less
execution time, and higher accuracy was achieved, as mentioned in section 2.2.  The initial random
weight of “10” for a start was selected, the seventeen-training sample was initialized for the training,
validation, and testing data sets as eleven for “Training”, three for “Validation”, and three for “Testing”.
The repetition of multiple training cycles for each of the four Neural Network Structures used in the
model is highlighted with a total of four hidden neurons.

As was highlighted in Fig. 1, the training automatically stops when the mean square error (MSE)
of the validation dataset is achieved, where the MSE error function (generalization curve) shows a
parabola curve. Fig. 4 shows the training regression (Plotregression) validation stop of the performance
MSE error for the structure (4-10-1). The extraction of predicted leak points in YData matched the same
position in XData.Corr
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Fig. 4: The training regression (Plotregression) validation stop of the performance MSE error for the structure (4-10-
1)

As shown in Fig. 5, the epoch (or iteration number) must be monitored, as it is integral to updating
the network's weights. In this study, the training process was halted at epoch 236 (iteration 236), where
the validation curve exhibited a parabolic trend. The primary objective of the training was achieved by
determining the optimal weight values through the backpropagation algorithm. The training was halted
at the minimum mean squared error (MSE) of the validation dataset, as indicated by the green line,
ensuring optimal generalization performance and preventing overfitting.

Fig. 5: The backpropagation calculated the correct weights, and the training stopped at the lowest MSE of the
validation dataset (green line) at Epochs 236.

3. DISCUSSION

The primary conclusion of this study is that the 4-4-1 ANN model achieved 100% prediction accuracy
on the validation dataset. Here are some key points:
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o The proposed ANN model demonstrated superior performance (MSE = 0.0026, R = 0.999)
compared to traditional methods

o Pressure and noise were identified as the most significant predictors of a leak event.

o The model successfully identified all 17 known leak events in the dataset.

o Our findings indicated that noise is a critical indicator in leak detection.

o The achieved high accuracy is potentially due to our use of the Levenberg-Marquardt algorithm
and a focused set of input parameters.

Implications and Limitations:
o Implications: These results suggest that water utilities can implement such ANN-based models

for early leak detection, potentially reducing water loss and infrastructure damage.

o Limitations: It is important to note that this study was conducted on a limited dataset (n=17).
While the results are promising, further validation on a larger and more diverse dataset is
necessary to confirm generalizability.

CONCLUSION

This study developed an artificial neural network (ANN) training methodology using backpropagation
to construct a water leakage prediction model. The 4-4-1 ANN architecture achieved optimal predictive
accuracy, evidenced by a mean squared error (MSE) of 0.002619842 and a correlation coefficient (R) of
0.999999, indicating 100% prediction success and demonstrating high effectiveness for leakage
detection.

The network was initialized with random weights scaled from 1 to 10. Input data were forwarded
and compared to desired outputs, with deviations computed as an error metric. This error was
backpropagated to adjust neuronal weights proportionally to the error magnitude and type, refining model
parameters iteratively until predicted outputs converged with ideal values. The supervised learning
approach utilized predefined desired outputs, calculated from threshold bounds associated with the four
input neurons. Training concluded upon achieving the minimum validation MSE (indicated by the green
line), corresponding to optimal weights determined by backpropagation and a 100% success rate.

FURTHER RESEARCH AND DEVELOPMENT IN THE FUTURE

This paper analyzes current challenges and proposes a novel solution grounded in real-world conditions.
While the research offers valuable contributions to the field, it also identifies critical questions and
initiatives necessitating further investigation.

Based on the findings, designing an optimized water network is recommended to identify
vulnerable locations representing potential leak weak points. These critical points should be determined
at an early stage. The ANN model with a 4-4-1 architecture is recommended for water leak prediction,
as demonstrated by the training results.

Additionally, the integration of Lean Engineering and Six Sigma methodologies is proposed to
complement ANN training. This approach incorporates DMAIC (Define, Measure, Analyze, Improve,
Control) capabilities, a data-driven improvement cycle that enables precise performance measurement,
waste elimination, problem resolution, process enhancement, and outcome tracking. Another statistical
data analysis tool is using ANOVA (Analysis of Variance), which is a statistical method used to compare
the means of multiple data groups to determine if there is a statistically significant difference between
them. Also, Pareto analysis can be used to focus on the biggest data variations. Data sampling strategies
can be utilized to select which data observations to include in any measurement. After the data collection
phase comes the analysis phase, in which the data analyst analyzes the collected data and makes a
diagnosis. The goal is to determine the nature of the system’s performance and the situation at hand.
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