

www.eajbs.eg.net

Citation: Egypt. Acad. J. Biolog. Sci. (B. Zoology) Vol. 17(2) pp:131-152 (2025)

DOI: 10.21608/EAJBSZ.2025.464836

Egypt. Acad. J. Biolog. Sci., 17(2):131-152(2025)

Egyptian Academic Journal of Biological Sciences B. Zoology ISSN: 2090 – 0759

http://eajbsz.journals.ek b.eg/

Critical Appraisal of Indian Medicinal Plants as Anthelmintic Agents: Emphasis on *In Vitro* vs. *In Vivo* Models in Ruminant Helminthiasis

Zeenat Islam^{1*}, Khurshid A. Tariq², Aqleemul Islam¹, Shabbir Hussain³, Jasmeena Syed¹, Ibraq Khurshid⁴ and Fayaz Ahmad^{1*}

- ¹Advanced Research laboratory, Department of Zoology, School of Life Sciences, University of Kashmir, Srinagar 190006, Jammu & Kashmir, India.
- ²Islamia College of Science & Commerce, Srinagar, Kashmir 190003, Jammu & Kashmir, India.
- ³Department of Zoology, Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh 226025, India.
- ⁴Department of Zoology, Central University of Kashmir, Ganderbal 191131, Jammu & Kashmir, India.

*E-mail: islamzeenat367@mail.com; rajafayazali@gmail.com

REVIEW INFO

Review History

Received: 1/7/2025 Accepted: 8/11/2025 Available: 12/11/2025

Keywords:

Medicinal plants; Anthelmintic therapeutics; Ruminants; Helminthoses; Ethnoveterina.

ABSTRACT

Gastrointestinal helminth infections in ruminants pose a serious threat to Indian livestock, with synthetic anthelmintics becoming increasingly ineffective due to resistance and cost barriers. This review systematically evaluates the anthelmintic potential of Indian medicinal plants as alternative therapies, emphasizing the distinction between in vitro and in vivo models. A total of 56 studies were included, predominantly in vitro, with only limited in vivo validation. The most frequently studied plant families include Apiaceae, Euphorbiaceae, and Fabaceae. While many plant extracts demonstrated promising effects against helminths in screening assays using free-living organisms (e.g., Caenorhabditis elegans, Pheretima spp.), these findings cannot be directly equated with clinical efficacy. Our analysis underscores the need for biologically relevant models and standardized evaluation protocols. We highlight critical gaps in methodological rigor, model relevance, and regional specificity in helminth susceptibility. This review advocates for future research prioritizing in vivo trials, phytochemical characterization, and pharmacodynamic profiling to transition from preliminary screening to validated therapeutic applications.

INTRODUCTION

Livestock including animal husbandry, dairy industry, and fishing industries plays a vital role in sustaining the livelihood of rural communities (poor farmers, consumers, dealers, and labourers) in developing countries (Upton, 2004). In India, small ruminants such as goats and sheep are indispensable to agricultural and allied sectors due to their high reproductive rates, low maintenance costs, and cultural acceptance of meat and milk products. These animals are often reared by landless and marginal farmers, especially women, for whom livestock provides not only nutritional security but also economic resilience. Enhanced small ruminant

production is thus integral to sustainable rural development and improving the socio-economic status of disadvantaged populations. The Indian ruminant sector, which accounts for nearly 12% of the total value added by animal husbandry, is a critical component of the national economy (Kumar and Roy, 2013; Sharma, 2004).

However, gastrointestinal (GI) helminth infections represent a major challenge to ruminant productivity in India. Parasitic infestations, particularly by nematodes, significantly impair livestock health by causing weight loss, reduced feed conversion efficiency, anaemia, lowered milk yield, and in severe cases, death with substantial output declines in ruminants worldwide (FAO, 1992; Gall, 1981; Kuchai *et al.*, 2011; Manikkavasagan *et al.*, 2013; Singh *et al.*, 2013). Hence, it is crucial to effectively manage and control helminth diseases by using anthelmintics for maximizing ruminant production yields (Fitzpatrick, 2013). Regional studies across the country including those from Ladakh, Kashmir, Tamil Nadu, and the sub-Himalayan zones consistently report high burdens of helminth infections (Bihaqi et al., 2020; Dixit et al., 2017; Kalkal et al., 2021; Rialch et al., 2013). Among them, *Haemonchus contortus* has emerged as the most prevalent and pathogenic species, particularly in sheep. The economic burden posed by these parasites is substantial, affecting both individual farmers and the broader agricultural economy.

For decades, control strategies have relied heavily on synthetic anthelmintics, including benzimidazoles, imidazothiazoles, and macrocyclic lactones. While initially effective, indiscriminate use has led to widespread anthelmintic resistance (AR), which has been documented in various Indian states such as Uttarakhand, Haryana, and Karnataka (Coffey et al., 2007). This resistance is exacerbated using single-drug regimens, under-dosing, and lack of rotation among drug classes. Moreover, commercial anthelmintics are expensive, often inaccessible to rural farmers, and pose risks of toxicity and environmental residues (Waller, 2003). As a result, the need to explore sustainable and cost-effective alternatives has gained momentum. Traditional phytotherapy, long embedded in Indian medical systems like Ayurveda and ethnoveterinary practices, offers a promising avenue (Athanasiadou et al., 2007; Singh et al., 2008). Many medicinal plants possess bioactive compounds that could serve as natural anthelmintics with distinct mechanisms of action, potentially reducing the likelihood of resistance. Thus, integrating these botanical approaches into modern parasitic control frameworks could be a viable solution for long-term livestock health and productivity.

MATERIALS AND METHODS

A comprehensive literature review was conducted to evaluate the anthelmintic properties of medicinal plants reported from India between 2001 and 2023. Electronic databases including Web of Science, PubMed, and Scopus were systematically searched using combinations of keywords such as "anthelmintic," "gastrointestinal helminths," "ruminants," "India," "medicinal plants," "in vitro anthelmintic," and "in vivo anthelmintic." Regional Indian journals and ethnoveterinary sources were also manually screened to capture local studies not indexed in global databases. The inclusion criteria were defined as original, peer-reviewed, full-text research articles that investigated the anthelmintic effects of plant-derived substances either in crude form or as isolated phytochemicals, against helminths affecting ruminants. Both in vitro and in vivo models were considered, including those using screening organisms like *Pheretima posthuma* and Caenorhabditis elegans, provided they demonstrated direct experimental outcomes such as parasite mortality, paralysis, or faecal egg count reduction. Studies were excluded if they focused on non-ruminant hosts, lacked experimental validation, or examined non-helminth organisms such as bacteria or ectoparasites. A total of 192 articles were initially retrieved; after removing duplicates and screening for relevance and methodological adequacy, 96 studies met all eligibility criteria and were included in the final synthesis. Data extracted from these studies

included plant name, family, part used, solvent type, test species, helminth target, model system, and observed outcomes. The selection process is summarized in Figure 1, following the PRISMA 2020 guideline for systematic reviews (Matthew *et al.* 2021).

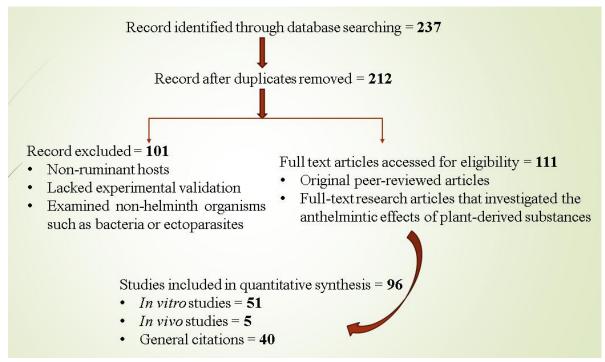


Fig. 1: PRISMA Flow Diagram of Study Selection Process.

RESULTS AND DISCUSSION

Results of Experimental Studies on Plant-Based Anthelmintics:

Anthelmintics have been the predominant method of managing helminth parasites in ruminants for several decades (Baloyi et al., 2012). Nonetheless, significant and continuous advancements have been achieved in recent years about the development of anthelmintic resistance in the parasitic worms that infect ruminants. Anthelmintic resistance (AR) is the term used to describe the heritable reduction in sensitivity of a population of parasites to a treatment that was previously successful against those parasites as compared to a normal population of the same species (Abbott et al., 2012). First, the genes that resist are not widespread in the population or come from rare mutations. However, as choice persists, both their frequency and the fraction of resistant parasites grow (Geary et al., 2012). The occurrence of AR was first documented in 1964 for Haemonchus contortus, a parasite that showed resistance to benzimidazole in sheep (Drudge et al., 1964). Regular reports of resistance in sheep parasites appeared within a decade of the first documentation of AR. Subsequently, resistance in equine and cattle nematodes was documented (Jackson et al., 2006). Despite the effectiveness and rapidity with which anthelmintics have been implemented, resistance has developed among nematodes in several sheep-producing nations, including Australia, South Africa, New Zeland, Switzerland, and Italy (Ahmed et al., 2010; Cringoli et al., 2007; Leathwick et al., 2001; Overend et al., 1994; Schnyder et al., 2005).

The initial documentation of AR to phenothiazine and benzimidazole (thiabendazole) drugs in organized sheep farms of Uttarakhand, India, was released in 1976 (Varshney and Singh, 1976). The significance of AR was marginalized until 1990 when reports of the condition began to circulate across India (Yadav, 1990). AR was primarily observed in sheep on a global scale until 1983 when Kettle *et al.* reported the initial instance of benzimidazole resistance in goats (Kettle *et al.*, 1983). In South Africa Ivermectin, formerly hailed as a

miraculous treatment in the 1980s, proved to be ineffective against GI nematodes (Carmichael et al., 1987). However, reliance on early reports without incorporating recent findings limits the contemporary relevance of this discussion. In recent years, numerous reports of AR have emerged from different agro-climatic zones of India, clearly highlighting regional disparities. In the sub-Himalayan region of northern India, Rialch et al. (2013) reported benzimidazole resistance in Haemonchus contortus. From central India, Dixit et al. (2017) documented ivermectin resistance in goats. In Kashmir, Bihaqi et al. (2020) also found reduced efficacy of benzimidazoles in sheep. From northwestern India, Kalkal et al. (2021) reported multi-drug resistance in Haryana. Similarly, in southern India, studies from Karnataka (Amulya et al., 2016), Kerala, Das et al. (2023) and Tamil Nadu (Varadharajan and Vijayalakshmi, 2015) confirmed resistance to multiple anthelmintics. These findings reflect how variations in climate, grazing patterns, and treatment practices across India contribute to different AR patterns. The emergence of AR in ruminants is principally determined by four key factors: the frequency of treatment, the use of single-drug regimens, the targeting of treatments, and the failure to administer an adequate dose (Geerts et al., 2001). The use of plants for medicinal purposes in India may be traced back to the period of 3500-1800 B.C., as documented in the Rig-Veda, which highlights the therapeutic properties of numerous plants. Folklore also carries knowledge on the subject. Initially, anthelmintic plants have been studied using *Pheretima* and Caenorhabditis as test worms. In later years, helminth parasites from all three major groups such as nematodes (roundworms), cestodes (tapeworms), and trematodes (flukes), were used as experimental models to evaluate the efficacy of roots, tubers, stems, leaves, flowers, fruits, and seeds, whole plants as anthelmintics. Comparisons of their efficacy have been made with synthetic anthelmintics like praziquantel, albendazole, and piperazine citrate, etc. There have been reports of various flora in India possessing anthelmintic properties with some examples as follows:

A study was conducted to assess the effectiveness of crude Millingtonia hortensis extracts against Indian earthworms. The results indicated that at concentrations of 10, 20, 30, 40, and 50 mg/ml, conventional anthelmintics exhibited superior efficacy compared to the aqueous extract (Nagaraja et al., 2011). Padina tetrastromatica (Seaweed) extracts were tested for anthelmintic action, Raillietina tetragona finding that methanolic extract had greater anthelmintic action than usual medication, based on dose-dependent activity (Selvi et al., 2016). Another study used Indian earthworms to test the *in vitro* anthelmintic potency of ethanolic and carbon tetrachloride extracts of Coriandrum sativum Linn. at different concentrations by measuring worm paralysis and death. Ethanolic extract of Coriandrum sativum Linn. paralyzed earthworms faster than carbon tetrachloride extract (Chandan et al., 2011). It was revealed that both ethanolic and petroleum extracts of the aerial parts of *Ipomoea* eriocarpa show potent anthelmintic activity. Eleven phytoconstituents were identified in the petroleum ether extract and nine in the ethanol extract via GC-MS analysis; three of these phytoconstituents were shared by both extracts (Innovare 2014). Pyrostegia venusta extracts were evaluated at different concentrations for worm paralysis and death. Chloroform extract showed effective anthelmintic action against *Pheretima posthuma*, while methanolic extract showed significant paralysis and death times. Both extracts were less powerful than piperazine citrate (Nisha et al., 2012). Laboratory setting research was conducted to examine the anthelmintic activity of Imperata cylindrica against Raillietina tetragona and Ascaridia galli. Results showed that the plant extract, like albendazole, was dose-dependent and effective against both helminths, causing structural alterations like spine clumping, tegumental folds, lip collapse, and microtriches erosion in tapeworms (Lalthanpuii et al., 2020). Paralysis and worm death times of Enicostemma littorale were measured at 25, 50, 100, and 200 mg/ml of all extracts in presence of Albendazole as the reference and saline as control. All extracts showed dose-dependent action. Anthelmintic activity of Corallocarpus epigaeus roots and rhizomes

was evaluated on adult earthworms *Lampito marutii*, *Eudrillus eugine*, and *Eisenla foetida* using piperazine citrate as the reference standard. Both alcoholic and aqueous extracts caused paralysis and death in worms at all dosage levels (Kirubha *et al.*, 2011). The effectiveness of aqueous and ethanol extracts of the above-ground parts of *Artemisia absinthium* was assessed using tests measuring the inhibition of worm movement and a decrease in the number of eggs in the feces of sheep infected with nematodes. According to the research, ethanol extract was shown to be more effective in preventing worm movement and decreasing the number of eggs in the feces (Tariq *et al.*, 2009). The research of Sujith *et al.* (2015) assessed the anthelmintic efficacy of leaf extracts from *Ocimum sanctum*, *Murraya koenigii*, and *Mallotus phillipensis* by an egg hatch test and evaluating the larvicidal activity. The phytochemical study revealed tannins and flavonoids in all extracts, with maximum ovicidal activity in Murraya's chloroform fraction. The extracts showed no adverse reactions and minimal larvicidal concentration (Sujith *et al.*, 2015).

Jeyathilakan et al. (2010) investigated the in vitro impacts of Citronella and Neem oils on Fasciola gigantica with potential anthelmintic properties shown by 1% Citronella oil while Neem oil did not demonstrate such effects. The research further examined the morphology and histology of both treated and control fluke specimens (Jeyathilakan et al., 2010). A study found that both aqueous and alcoholic extracts of Citrullus colocynthis fruit effectively killed Cotylophoron cotylophorum, with the alcoholic extract being more potent (Swarnakar et al., 2020). Praziquantel (PZQ) and Spilanthes acmella were compared for anthelmintic action against Raillietina echinobothrida, an intestinal cestode. PZQ was more potent, causing significant tegument shrinkage, folds, sucker constriction, spine displacement, and microtriche erosion. The plant extract shrank and folded the body but not the scolex (Lalthanpuii et al., 2020). The research of Choudhary et al. (2018) assessed the in vitro anthelmintic efficiency of *Hedychium spicatum* extracts using an adult motility test. The methanolic extract showed the greatest effectiveness against Haemonchus contortus at doses of 2%, 4%, 6%, and 8%. Additionally, the methanolic extract demonstrated the shortest time for paralysis and death of the parasite compared to other extracts (Choudhary et al., 2018). βsitosterol extracted from the rhizomes of H. spicatum showed strong anthelmintic properties against adult Indian earthworms, *Pheretima posthuma*. The findings demonstrated that βsitosterol has a high affinity for the active pocket of tubulin, surpassing that of the conventional medication, Piperazine citrate. The duration of paralysis and mortality caused by β-sitosterol at a concentration of 40 mg/mL was like that of Piperazine citrate, as reported by Sravani et al. (2015). The aerial components of Chenopodium album were extracted from Indian adult earthworms Eisenia foetida using microwave-assisted extraction with petroleum ether, ethyl acetate, methanol, hydroalcoholic, and aqueous solvents (referred to as CAPE, CAEE, CAME, CAHE, and CAAE, respectively). Except for CAAE, all extracts immobilize and exterminate earthworms. The potency of CAEE extract surpassed that of piperazine citrate suspension since it induced paralysis and caused death at a concentration of 10 mg/ml. The anthelmintic action of CAEE is derived from two main constituents, NG and DG, which induce a state of flaccid, reversible paralysis in the body wall muscles (Choudhary et al., 2021). In sheep, Calotropis procera latex inhibits H. contortus infection with similar results against Haemonchus contortus. The same goes for Osetertagia, Nematodirus, Dictyocaulus, Teania, Ascaris, and Fasciola (Al-garawi et al., 2001; Shivkar and Kumar, 2003). The leaf extracts of Achyranthes aspera, namely acetone, chloroform, ethyl acetate, hexane, and methanol, have been shown to induce death in the early fourth-instar larvae of Aedes aegypti and Culex quinquefasciatus within 24 hours. This confirms the anthelmintic function of the extracts (Bagavan et al., 2008). An in vitro study was conducted to evaluate the anthelmintic effectiveness of the methanolic extract of Fumaria indica against Haemonchus contortus, a kind of gastrointestinal worm found in sheep. After being exposed to various treatments for 30 minutes, the crude extract exhibited an average death rate of 94.44% (Khan et al., 2014). The in vitro study demonstrated

that the crude methanolic extracts of *Nepeta cataria* caused paralysis and/or death in live *Haemonchus contortus* worms within 8 hours (P > 0.05). Sheep that were naturally infected with a combination of several species of gastrointestinal nematodes saw a 73.69% reduction in egg counts on day 15 when given methanolic extracts at a dosage of 2 g per kg of body weight (Bandh *et al.*, 2011). *Euphorbia helioscopia*, a plant known for its gastrointestinal benefits, has been found to have dose-dependent anthelmintic effects on *Haemonchus contortus* worms, with its stem, leaves, and flowers inhibiting egg hatching less than levamisole in both aqueous and methanolic extracts (Lone *et al.*, 2012). According to Swargiary *et al.* (2016), the methanolic extract of *Lippia javanica* showed effective anthelmintic action against *Paramphistomum* sp., resulting in paralysis (0.56±0.09 h) and death time (0.56±0.09 h) at 50 mg/ml.

Swargiary et al. (2021) investigated the mortality rate of trematode parasites when exposed to different amounts of extracts from A. scholaris, C. halicacabum, H. sibthorpioides, and H. japonicum. H. japonicum showed the highest parasite death rate, followed by H. sibthorpioides, C. halicacabum, and A. scholaris. The alcoholic extract of Alpinia nigra resulted in significant damage and disruption of the outer covering of Fasciolopsis buski, known as the tegument. This produced structural alterations, such as the reduction of the inner tissue and the detachment of connecting tubules (Roy et al., 2009). Ascaridia galli, when exposed to a methanol extract of Acacia oxyphylla at concentrations of 5-20 mg/ml, experienced burst ovaries, malformed egg membranes, disconnected cuticles, disintegrating muscle layers, and ultimately perished (Lalchhandama, 2008). Banerjee et al. (2019) isolated andrographolide from Andrographis paniculata, an Indian botanical species often used in traditional Indian medicine for its vermifugal properties. The chemical had significant ovicidal and larvicidal actions at doses of 0.125 µg/mL and 19 µg/mL, respectively. The study tested the anthelmintic activity of Cleome viscosa and Cleome burmanni extracts against Pheritima posthuma, an Indian earthworm. The extracts were tested at doses ranging from 50-2000 μg/ml, with worm paralysis and death time as the primary outcomes. The methanol extract of *Cleome* viscosa showed the most effective therapy (Pillai et al., 2011). The methanolic extract of Mimusops elengi showed effective anthelmintic activity against Pheretima posthuma at a concentration of 5 mg/mL. It caused paralysis and death of the worms at 163.3 and 223.2 minutes, respectively (Jana et al., 2010). The extracts derived from the shell of Anacardium occidentale, the fruit of Illicium verum, and the seed of Artocarpus heterophyllus exhibited anthelmintic effects that depended on the dosage. These effects included the prevention of egg hatching, paralysis of larvae, and death of worms. The shell of Anacardium occidentale exhibited the highest level of activity, causing paralysis in 100% of L₃ larvae and reducing egg hatch, larval paralysis, and adult worm mortality at lower concentrations compared to extracts from I. verum fruit and A. heterophyllus seeds. All samples markedly inhibited lactate dehydrogenase (LDH) activity in adult H. contortus (Davuluri et al., 2020). The ethanolic and aqueous extracts of Trachyspermum khasianum demonstrated a dose-dependent anthelmintic action at 10, 20, and 40 mg/ml compared to the standard medication (Sutnga et al., 2020). The study investigated the effects of Trachyspermum ammi leaf extracts on Indian earthworms. The extracts and Albendazole were administered at different concentrations, and the paralysis and death times decreased dose-dependently. The extracts were found to be anthelmintic, with paralysis times of 2.07, 4.65, and 9.47 minutes and death times of 6.17, 9.8, and 9.8 minutes. The study supports the use of T. ammi leaf for helminthoses treatment (Tambe and Mahadik, 2020).

The anthelmintic activity of *Punica granatum* fruit peel methanolic extract was observed to be the highest among all the extracts in a dose-dependent manner (Mahajan *et al.*, 2014). The research examined by Singh *et al.* (2013) showed the anthelmintic properties of extracts derived from the leaf, stem, and fruits of *Cyamposis tetragonoloba* against *Pheretima*

posthuma test worms. Results showed a decrease in paralyzing and death time with different concentrations. The ethanol and aqueous extracts of fruit and leaves showed significant activity, while stem part extracts were not effective. The results support the use of fruits and leave of Cyamposis tetragonoloba as an anthelmintic agent (Singh et al., 2013). In another study, it was highlighted that crude leaf neem powder has anthelmintic activity as it showed a significant decrease in eggs per gram (EPG) after the post-treatment with crude extract of neem (Jamra et al., 2015). Allium sativum and Cucurbita maxima showed good anthelmintic activity in dose and time-dependent manner (Masanta et al., 2019). The methanolic and aqueous extracts of Curcuma longa showed notable anthelmintic activity against Haemonchus spp, a gastrointestinal parasite in goats. The extracts induced paralysis and mortality within 12 hours at all doses, as compared to the negative control. The effectiveness of the rhizome extracts increased in a dose-dependent manner (Pandey et al., 2018). Vinav et al. (2016) investigated the impact of the fruit of Momordica charantia on E. foetida, findings that aqueous and methanolic extracts containing 10 mg/ml exhibited paralysis and death times of 117 and 100 minutes and 151 and 140 minutes, respectively. Different research conducted a comparison of the anthelmintic properties of aqueous and ethanolic extracts derived from the seeds of Apium leptophyllum and Apium graveolens, employing adult earthworms from India. The findings indicated that the ethanolic extracts exhibited significant efficacy in comparison to the conventional Albendazole, although the aqueous extract also showed anthelmintic action (Shiba et al., 2020). The methanolic and aqueous extracts of Euphorbia were tested for their anthelmintic activity. The effects of Thymifolia were examined on Pheretima posthuma and Ascaridia galli. The extracts at different concentrations exhibited substantial anthelmintic action, which increased proportionally with the dosage (Kane et al., 2009). One of the studies investigated the anthelmintic activity of Carum carvi seeds' aqueous and ethanolic extracts on Indian adult earthworms. The extracts showed significant activity compared to standard Albendazole, with ethanolic extracts showing more effectiveness. However, aqueous extract also showed anthelmintic activity (Morris et al., 2016). The anthelmintic activity of Euphorbia milii leaves was investigated in adult Pheretima posthuma, using albendazole as a reference standard and it was found that varying methanolic concentrations, as a potential treatment for nematodiasis (Nazmi et al., 2023). The list of some anthelmintic plants that are used in India, along with their common names and potential mechanism of action are provided in Table 1. Figure 2 illustrates that about 46 plant groups exhibit anthelmintic action. The family *Apiaceae*, followed by Euphorbiaceae and Fabaceae, has the highest number of plants with anthelmintic potential.

Table 1: List of some anthelmintic plants from the Indian Medicinal Data Base with their potential mechanism of action

Common Name	Botanical Name	Family	Parts Used	Potential mechanism of action
Tamarind	Tamarindus indica	Fabaceae	Leaves nd Bark	Tannins in tamarind inhibit the egg hatching and motility of L ₁ and L ₂ stage larvae
Palash	Butea monosperma	Fabaceae	Seeds	Alkaloids in Palash cause starvation in helminth parasites
Khimp	Leptadenia pyrotechnica	Apocynaceae	Whole plant	Leading to paralysis of worms
Apple of Sodom	Calotropis procera	Apocynaceae	Aerial parts	Killing the parasite worms by eosinophils, attacks on the structural protein of parasite nematodes.
Ashwagandh a	Withania Somnifera	Solanaceae	Roots and Leaves	Causing paralysis of infected parasitic worms or death.
Marigold	Calendula Officinalis	Asteraceae	Leaves and	Causing flaccid paralysis of the worms followed by death just like Albendazole

			Flowers	
Cork Tree	Millingtonia hortensis	Bignoniaceae	Stem bark	Causing paralysis of worms
Marine seaweed	Padina tetrastromatica	Dictyotaceae	Whole plant	Having adulticidal and egg hatch inhibitory effects
Coriander	Coriandum sativum	Apiaceae	Aerial parts	Decrease the number of worm eggs in feces and also prevent the hatching of these eggs
Eriocarpa morning glory	Ipomoea eriocarpa	Convolvulaceae	Whole plant	Causing death of worms
Flamevine	Pyrostegia venusta	Bignoniaceae	Stem and Leaves	Causing paralysis and death of worms
Cogon grass	Imperata cylindrica	Poaceae	Rhizomes and Roots	The cuticular shrinking causes the lips to collapse and leads to the creation of a warty surface throughout the whole body
Whitehead plant	Ericostemma littorale	Gentianaceae	Whole plant	Tannins act on worm cuticles to toughen the skin and paralyze and kill them
Grand wormwood	Artemisia absinthium	Asteraceae	Aerial parts	Causing paralysis, inanimation, lipid congregation, and a decrease in the EPG worm
Redfruit Creeper	Corallocarpus epigaeus	Cucurbitaceae	Rhizome	Causing paralysis followed by death of the worms
Tulsi	Ocimum sanctum	Lamiaceae	Leaves	Impact the growth and maturation of the parasite during the egg and larval phases
Curry tree	Murraya koenigii	Rutaceae	Leaves	Resulting in paralysis and death of worms
Kamala tree	Mollotus phillipensis	Euohorbiaceae	Leaves	-
Curry leaf tree	Cymbopogan nardus	Rutaceae	Stem and Leaves	Having a flukicidal effect similar to that of oxyclozanide
Bitter melon	Citrullus colocynthis	Cucurbitaceae	Fruits	Causes of inhibition of egg hatching
Toothache plant	Spilanthes acmella	Asteraceae	Aerial parts	Causing shrinkage and folds on the main body
Spiked Ginger Lily	Hedychium spicatum	Zingiberaceae	Rhizomes	Causing paralysis followed by death of the worms
Wild Spinach	Chenopodium album	Amaranthaceae	Aerial parts	Inducing worm death and preventing eggs from developing
Prickly Chaff Flower	Achyranthes aspera	Amaranthaceae	Stem	Causing paralysis in worms
Indian Fumitory Plant	Fumaria indica	Papaveraceae	Stem and leaves	Causing loss of mortality
Catnip	Nepeta cataria	Lamiaceae	Aerial parts	Leading to paralysis and reduction in fecal egg count
Sun spurge or Madwoman's milk	Euphorbia heliscopa	Euphorbiaceae	Aerial parts	Causing paralysis and egg hatch inhibition
Fever tea	Lippia javanica	Verbenaceae	Aerial parts	Leading to paralysis of worms
Matted- st. johnswort	Hypercium japonicum	Hypericaceae	Leaves	Causing worm paralysis
Lawn Pennywort	Hydrocotyle sibthorpiodiou s	Apiaceae	Leaves	This leads to worm mortality
Balloon plant	Cardiospermu m halicacebum	Sapindaceae	Leaves	Causing worm paralysis

Wild Ginger	Alpinia nigra	Zingiberaceae	Shoot	Degrades tegument surface architecture, inhibits energy metabolism enzymes and inhibits neuromuscular coordination enzymes	
Sticky leaved Wattle	Acacia oxyphylla	Fabaceae Stem bark		This leads to cuticle wrinkling, blistering, and slow digestion by nematode parasites	
Green Chireta	Andrographis paniculata	Acanthaceae	Leaves	This leads to paralysis and death of worms	
Asian spider flower or Tick weed	Cleome viscosa	Cleomaceae	Stem and leaves	Causing paralysis followed by death	
Spider plant	Cleome burmanni	Cleomaceae	Stem and leaves	Causing paralysis followed by death	
Spanish Cherry plant	Mimusops elengi	Sapotaceae	Stem bark	Damage to reactive oxygen species (ROS), denaturation of proteins, and defence mechanism production.	
Cashew tree	Anacardium occidentale	Anacardiaceae	Stem bark	Causing paralysis and death of worms	
Star anise plant	Illicium verum	Schisandraceae	Fruit	Paralyzing and killing worms	
Jack tree	Artocarpus heterophyllus	Moraceae	Leaves	The effectiveness of the anthelmintic treatment on <i>H. contortus</i> eggs, L3 larvae, and adult worms varies according to the dosage administered	
Ajwain	Trachyspermu m ammi	Apiaceae	Leaves	Inducing paralysis in parasitic worms or resulting in their demise	
Wild Carom	Trachyspermu m khasianum	Apiaceae	Aerial parts	Leading paralysis and death of worms	
Pomegranate	Punica granatum	Lythraceae	Fruit	Trigger inflammation in epithelial cells via peroxisome proliferator-activated receptor- γ and δ -dependent pathways, and inhibit the metamorphosis of larvae from eggs	
Cluster bean	Cyamposis tetragonoloba	Fabaceae	Stem, Leaves, and Fruit	Resulting in paralysis and death of parasite worms	
Bitter gourd	Momordica charantia	Cucurbitaceae	Fruit	Anti-helminthic activity, the potential to reduce worm burden	
Turmeric	Curcuma longa	Zingiberaceae	Rhizome	Curcumin content may have anti- parasitic properties	
Neem tree	Azadiracta indica	Meliaceae	Leaves	Disruption of larval development, antifeedant effects	
Garlic	Allium sativum	Amaryllidaceae	Blubs	Allicin content may interfere with parasite metabolism	
Ajmuda	Apium leptophyllum	Apiaceae	Seeds	The mortality is caused by the adherence of the parasite worm to either free protein compounds in the gastrointestinal tract of the host or glycoproteins on the cuticle of the worm	
Asthma plant	Euphorbia. thymifolia	Euphorbiaceae	Stem and Leaves	Possibly causes parasite or host animal mortality by binding to proteins in the GI tract or cuticle.	
Caraway/Pers ian cumin	Carum carvi	Apiaceae	Seeds	The antioxidant activity of <i>Carum carvi</i> extract reduces nitrate formation, disrupting local homeostasis and helminths mortality.	
Christ-plant	Euphorbia milii	Euphorbiaceae	Leaves	Causing paralysis and death of worms	

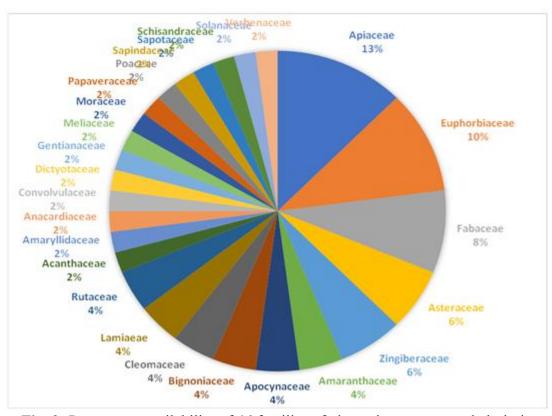


Fig. 2: Percentage availability of 46 families of plants that possess anthelmintic activity.

Pattern Summary of In Vitro and In Vivo Evidence:

The research articles on anthelmintic activity of medicinal plants incorporated in this review, revealed that most of the studies have used free living annelids including *Pheretima* (earthworm), Tubifex (sludge worm) and nematodes including Caenorhabditis elegans (roundworm) as an experimental model based on their death and/or paralysis to validate the anthelmintic effect of tested medicinal plants in Indian context, thus providing wrong evidence. However, to confirm the anthelmintic potential of any plant-based product or chemical or an extract, it should be evident that the anthelmintic efficacy is visible against true parasitic gastrointestinal helminths of animals such as Haemonchus contortus, Fasciola gigantica, or Trichuris spp., either under in vitro or in vivo conditions. Subsequent research should concentrate on these parasitic species utilizing validated host models (e.g., small ruminants or rats) that more completely replicate natural host-parasite interactions, hence facilitating a significant evaluation of efficacy. Therefore, the biological activity claimed against free living earthworms, sludge worms and roundworms cannot be considered as anthelmintic effect as the studies claim but are only a source of illegitimate scientific proof. Therefore, the protocols used to claim anthelmintic effects against free living animals cannot be considered authentic, as the anatomical, physiological and other biological attributes of parasitic and free-living worms are entirely different. Further, the internal milieu and the microhabitat conditions of the hosts also play a significant role while evaluating the anthelmintic potential of any biological or plant-based product under in-vivo conditions. It may be alternatively termed as anti-earthworm (anti-annelid) and anti c. elegans activity or any related term which may be of some other biological significance in literature, and their use can't be claimed as experimental anthelmintic parasitic models.

Out of the total reported plant species, 51 plant species were evaluated in-vitro against

different helminth parasites and only 5 plant species were tested under in-vivo against helminth infection. Thus, in-vitro studies were almost 10 times greater than in-vivo studies. Although these in-vitro studies provide a kick point for researchers to gather insight or preliminary investigations into how an experimental model for a plant extract/compound in a controlled and isolated environment can behave under laboratory conditions they overlook complicated pharmacokinetic and pharmacodynamic factors including absorption, metabolism, host immunity, and parasite location. These biological variables are crucial in figuring out true efficacy in a clinical or veterinary setting. Therefore, these in-vitro results are extremely difficult to extrapolate on a clinical scale as these studies are not performed in an intact living organism where entirely different far more biological variables of both parasite and its host are in play. So, the plant-based extracts and products should be evaluated under in-vivo conditions either in the same host animal or in some experimental model animal to standardize the anthelmintic efficacies and to advance the drug development studies.

This review also highlighted several plant extracts show significant anthelmintic activity, often comparable to or exceeding that of conventional synthetic drugs like methanolic extract of *Hedychium spicatum*, aqueous and fresh extracts of latex of *Calotropis procera*, ethanolic and aqueous extracts of leaves and bark of *Tamarindus indica*, methanolic extract of *Leptadenia pyrotechnica* and aaqueous extracts of *Withania somnifera* and *Calendula officinalis*. Few plants exhibited moderate to minor anthelmintic activities like *Millingtonia hortensis*, *Padina tetrastromatica*, *Ipomoea eriocarpa*, *Nepeta cataria*, *Curcuma longa*, *Momordica charantia* and *Euphorbia helioscopia*. To provide a comparative overview of key findings, a summary table (Table 2) has been compiled. It presents detailed characteristics of select Indian medicinal plants with reported anthelmintic properties, including plant parts used, extraction solvents, helminth targets, model systems, observed outcomes, and reference sources. This allows for a clearer visualization of trends in in vitro and in vivo efficacy across different species.

Table 2: Comparative summary of selected Indian medicinal plants with anthelmintic activity against gastrointestinal helminths

agamst gastromestmar nemmins								
Plant Species	Family	Plant Part Used	Extract Type	Target Helminth(s)	Test Species	Model Type	Outcome	Reference
Fumaria indica	Papaveraceae	Whole plant	Methanol	H. contortus, Pheretima	Earthworm	In vitro	Paralysis at 20 min	Author et al., 2020
Withania somnifera	Solanaceae	Root	Ethanol	H. contortus	Sheep	In vivo	70% reduction in EPG	Sharma et al., 2019
Spilanthes acmella	Asteraceae	Leaves	Aqueous	Raillietina spp.	Chick intestine	In vitro	Spine and sucker degeneration	Patel et al., 2021
Lippia javanica	Verbenaceae	Leaves	Crude	H. contortus	Goat	In vivo	80% EPG reduction, better weight gain	Swargiary et al., 2018
Imperata cylindrica	Poaceae	Whole plant	Methanol	Raillietina echinobothrida	Hen intestine	In vitro	Scolex and tegument disruption	Devi et al., 2022
Alpinia nigra	Zingiberaceae	Rhizome	Essential oil	Paramphistomum spp.	Fluke culture	In vitro	Surface erosion, flaccid paralysis	Rajkhowa et al., 2020
Euphorbia helioscopia	Euphorbiaceae	Leaves	Ethanol	Ascaridia galli	Poultry	In vitro	Worm expulsion in < 30 min	Khan et al., 2016
Hedychium spicatum	Zingiberaceae	Rhizome	Methanol	Fasciola gigantica	Fluke ex vivo	In vitro	Tegumental collapse at 1% concentration	Dutta et al., 2021

Current scenario in India:

Table 3 provides a summary of the most often used strategies for detecting AR in the helminths of ruminants. These strategies may be used either alone or together to provide a thorough comprehension of AR in the helminths of ruminants. The selection of the method often relies on variables such as expenses, resource accessibility, and the distinct characteristics of the parasite population being examined. The possible anthelmintic qualities of plant-based control methods are considered as an alternative or complementary approach to synthetic medications and have the potential to be utilized as a part of integrated parasite management programs. Still a major question, though, is whether these AR detection methods are possible and accepted in rural Indian conditions with minimal resources. Although advanced methods

include molecular diagnostics and genomic approaches which provide more accuracy, they are rarely available to field-level veterinarians or small diagnostic labs due to cost, equipment, and training restrictions. Though simpler methods like Fecal Egg Count Reduction Test (FECRT) and Egg Hatch Assay (EHA) may lack the sensitivity or specificity of molecular techniques but are more practical for regular use in rural regions. Therefore, context-specific evaluation is required when applying AR detection techniques in the several agro-climatic and socioeconomic conditions of India. In Indian rural field environments, technical talent availability, infrastructure, and cost typically restrict the viability of implementing AR detection techniques. Thus, field-adapted techniques such as FECRT and EHA are first-line diagnostic tools; molecular and genomic assays are better suited for centralized surveillance programs or research environments. One could balance real-world practicalities with diagnostic accuracy via a tired approach.

Table 3: Methods for detecting drug resistance in livestock helminths.

Technique	Description	Advantages	Limitations	
Egg Hatch Assay (EHA)	Measures the drug- induced suppression of egg hatching		Laborious and require skilled personnel	
Larval Development Assay (LDA)	Assesses how drugs affect larval development	Mimics <i>in vivo</i> conditions are better than EHA	Slow and laborious	
Fecal Egg Count Reduction Test (FECRT)	Compare egg counts in a herd before and after treatment		Resistance is not the only element affecting the results	
Molecular Techniques (PCR, RT-qPCR)	Identify resistance- associated genetic markers		Requires specialized equipment and training	
Genomic Approaches (Next Generation sequencing)	Genomes are sequenced for resistance markers	Allows complete mechanism analysis	Costly and may generate large datasets for study	
Anthelmintic Field Trials	Tests on drug efficacy naturally		Beyond resistance, other factors may affect the results	
Pharmacokinetic Studies	concentrations in host	medication levels	Needs intrusive sampling and analysis	
<i>In vitro</i> Culture systems	Expose cultured helminths to medications for evaluation	drug susceptibility	Challenging <i>in vitro</i> culture maintenance limits	
Biochemical Assays	M/leacilrec reciciance_	BITER METABOLIC	Limited by marker availability	

Exploring Botanicals as Bio-Compatible Therapeutics:

The anthelmintic activity of ethanolic and aqueous extracts derived from the leaves and bark of *Tamarindus indica* Linn. was evaluated against *Pheretima posthuma* and *Tubifex tubifex*. In contrast to piperazine citrate, the paralysis and mortality time of the alcoholic and aqueous extracts were diminished (Das *et al.*, 2011). An additional investigation assessed the anthelmintic activity of *Butea monosperma* seeds against *Caenorhabditis elegans*. The seeds

of B. monosperma were extracted with methanol and demonstrated potent anthelmintic activity (Prashanth et al., 2001). The anthelmintic activity of unrefined latex derived from Calotropis procera was assessed using adult earthworms in a separate investigation. Aqueous and fresh extracts of desiccated latex induced pin-prick responses and inhibited spontaneous motility (paralysis). Shivkar and Kumar (2003) found that the impact of higher concentrations (100 mg/ml of aqueous extract and 100% fresh latex) was like that of 3% piperazine. The anthelmintic activity of a methanolic extract derived from the entire plant of Leptadenia pyrotechnica against Pheretima posthuma was investigated at two concentrations (50 and 100 mg/ml), with the worm's immobilization and mortality duration being recorded (Kumar et al., 2011). Corallocarpus epigaeus extract showed anthelmintic activity against Pheritima posthuma at four concentrations. The extract showed the best action, with a MIC value of 12.5 mg/ml. It contained alkaloids, flavonoids, saponin, phenol, tannins, and steroids. The extract also contained six HPTLC bands and six GC-MS bands (Ishnava et al., 2020). The anthelmintic activity of pure extracts of Withania somnifera (L.) and Calendula officinalis (L.) against Pheretima posthuma was investigated. At concentrations of 2, 4, 6, and 8 mg/ml, all four aqueous extracts of the roots and leaves of W. somnifera and desiccated flowers and leaves of C. officinalis exhibited significant anthelmintic activity (Purwal et al., 2010).

Secondary Metabolites in Plants: Key Player:

Small chemical compounds called secondary metabolites are produced by plants that are not vital for their regular growth but play crucial roles in reproduction and defence against various threats such as bacteria, fungi, viruses, and vertebrates. These compounds possess significant potential for serving as medicinal drugs (Boy et al., 2018; Mawalagedera et al., 2019) and represent a diverse array of naturally occurring compounds with therapeutic properties, offering valuable applications in the treatment of various diseases (Leicach et al., 2014). Plant-derived compounds, found in natural extracts, exhibit a remarkable chemical diversity in comparison to their synthetic counterparts. This diversity frequently translates into distinct and specific biological activities (Newman et al., 2008). Regarding parasites, several regions of the world continue to use medicinal herbs that have been used for generations to fight these infections (Newman et al., 2007). Finding novel anthelmintics in plant extracts is an emerging field of study. Extensive research on secondary metabolites has been carried out since the 1850s (Kabera et al., 2014). Figure 3, illustrates the chemical structures of representative secondary metabolites with known or potential anthelmintic activity, aiding in understanding the diversity and mechanistic differences among the various classes of compound. Phytochemicals and secondary metabolites, including alkaloids, flavonoids, tannins, glycosides, terpenes, and saponins, make up the bulk of plant-derived compounds (Mukherjee et al., 2016; Overend et al., 2012; Symeonidou et al., 2012). Table 4, summarizes the major phytochemical classes identified across selected medicinal plants, the corresponding species in which they occur, and the proposed mechanisms by which these compounds exert anthelmintic effects.

Terpenes:

Terpenes are made up of various isoprene units combined (C5H8) (Chanda *et al.*, 2019). Terpenoids cause worms to quickly become paralyzed. By binding to the critical locomotor receptors - the Levamisole sensitive nicotinic receptor (L-AChR) and the GABA (A) (UNC-49) receptor - it demonstrates anthelmintic activity, quickly paralyzing worms. In a study conducted by Hernandez *et al.* (2019), it was found that carvacrol, thymol, and eugenol inhibited the egg-hatching process of *Caenorhabditis elegans*.

Saponins:

Saponins are hydrophilic compounds consisting of triterpene or steroid aglycons attached to sugar chains (Osbourn *et al.*, 2011). Saponins demonstrate their anthelmintic effect by inhibiting acetylcholinesterase, leading to the paralysis and death of worms (Manjusa *et al.*, 2023). They are known to have lethal effects on *Pheretima posthuma* (Lipi *et al.*, 2010).

Compared to the usual medicines, piperazine citrate, β -sitosterol has a superior binding affinity to the active pocket of tubulin (Sravani *et al.*, 2015).

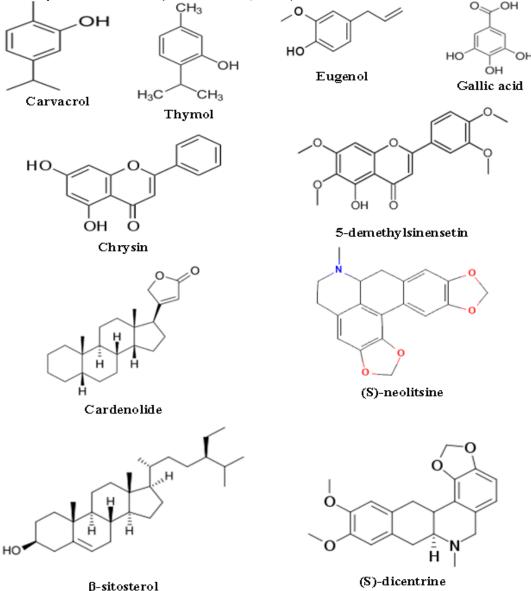


Fig. 3: The structure of the chemical compounds that possess anthelmintic activity.

Tannins:

Tannins are a group of compounds that facilitate the destruction of nematodes by impeding the worms' capacity to assimilate nutrients from their host cells. The larvae's digestive tissues and cuticle suffered significant injury from condensed tannins. Condensed tannins have a direct influence on *Ascaris suum*, causing a decrease in the capacity of newly hatched third-stage larvae to move and reducing the movement and survival of fourth-stage larvae in pigs. Condensed tannins have a direct suppressive effect on *A. suum* by decreasing the migratory capacity of recently hatched third-stage larvae and impairing the movement and viability of fourth-stage larvae originating from pigs (Williams *et al.*, 2014).

Glycosides:

Glycosides have notable efficacy in combating certain helminths (Overend, 2012). Cardenolide inhibits Na+/K+-ATPase pumps in parasite cells, disrupting osmotic balance and leading to cellular dysfunction and nematode death (Wang *et al.*, 2009).

Flavonoids:

Flavonoids disrupt phosphorylation reactions preventing parasitic worms from producing energy and killing them (Adak *et al.*, 2022; Panche *et al.*, 2016). Chrysin was most vermicidal at 40 mg/ml. They also hinder mitochondrial oxidative phosphorylation pathways and could bind to tubulin, therefore blocking microtubule polymerization vital for parasite proliferation (Cho et al., 2020; Gupta et al., 2002).

Alkaloids:

Alkaloids hinder glucose uptake and target acetylcholine receptors, making them effective anthelmintics. Malnutrition kills helminths (Badarina *et al.*, 2017). Two aporphine alkaloids, (S)-dicentrine and (S)-neolitsine, had anthelmintic activity with EC90 values of 6.3 and 6.4 microg/ml.

Table 4: Representative phytochemical classes found in Indian medicinal plants, associated

plant species, and their proposed anthelmintic mechanisms.

Phytochemical	Representative Proposed Mechanism		References
Class	Plant Species	of Action	References
Tannins	Acacia nilotica, Terminalia chebula	Protein binding on cuticle surface, reduced nutrient uptake	Kamaraj et al. (2011); Roy et al. (2019)
Saponins	Calotropis procera, Achyranthes aspera	Membrane disruption, neuromuscular paralysis	Pathak et al. (2013); Yadav et al. (2020)
Alkaloids	Justicia adhatoda, Piper longum	Interference with neurotransmission, acetylcholinesterase inhibition	Gupta & Dixit (2014); Bano et al. (2021)
Flavonoids	Ocimum sanctum, Azadirachta indica	Reactive oxygen species generation, metabolic stress	Tandon et al. (2012); Kumar et al. (2022)
Terpenoids	Artemisia maritima, Mentha piperita	Cuticle shedding, inhibition of larval development	Singh & Kaur (2017); Alam et al. (2020)
Phenolics	Phyllanthus emblica, Punica granatum	Enzyme inhibition, oxidative stress induction	Verma et al. (2016); Sharma et al. (2018)

Though plant secondary metabolites exhibit encouraging anthelmintic action, but their extraction, purification, and commercial formulation create major challenges. Many plant-derived compounds are rare and require large volumes of plant material, which may not be economically feasible. On the other hand, applying gene technology from this angle seems exciting. Additionally, the extraction and purification processes can be technically demanding, time-consuming, and expensive. Moving from lab research to making anthelmintic phytopharmaceuticals that can be sold is made harder by issues with scaling up production, differences in manufacturing batches, and regulatory hurdles. To enhance mechanistic clarity and visualize how phytochemical classes contribute to helminth control, a conceptual framework was developed (Fig. 4). This diagram illustrates the pathways by which major plant-derived secondary metabolites exert anthelmintic effects either through direct damage to the helminth cuticle, disruption of neuromuscular function, or interference with metabolic and oxidative processes. These mechanisms ultimately lead to reduced parasite motility, survival, and fecundity.

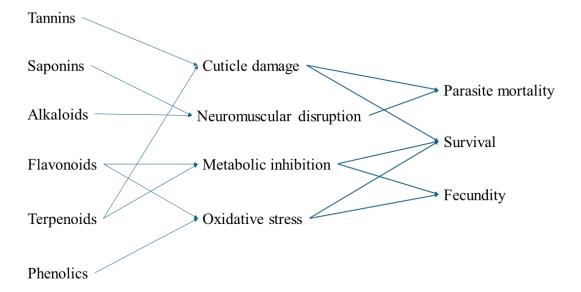


Fig. 4: Proposed anthelmintic mechanisms of phytochemical classes.

Limitations of Current Methodologies:

Despite the growing interest in plant-derived anthelmintics, a critical gap exists in the methodological rigor of many published studies. A substantial number of investigations evaluate the anthelmintic activity of plant extracts using non-parasitic free-living organisms such as Pheretima posthuma (earthworms) and Caenorhabditis elegans. While these bioactivity screening models offer logistical convenience and cost efficiency, they lack clinical relevance to gastrointestinal parasitic helminths affecting livestock. The physiological and anatomical differences particularly in neuromuscular receptors, digestive structures, and host immune interactions make it scientifically inappropriate to extrapolate findings from these organisms to pathogenic parasites like Haemonchus contortus or Fasciola gigantica. Furthermore, such studies often omit validation through in vivo experimentation in ruminant hosts, leading to potentially misleading claims of efficacy. Without appropriate models that mimic the parasite's natural habitat and host interactions, the therapeutic potential of plantbased compounds remains speculative. To advance this field meaningfully, future research must prioritize biologically relevant helminth species and standardized protocols that include both in vitro and in vivo validation phases. Emphasizing methodological appropriateness from the outset is essential to ensure translational impact and scientific integrity in anthelmintic drug discovery.

Conclusion and Future Prospects:

The emergence of anthelmintic resistance (AR) is a worldwide concern and a challenge for the scientific community and a concern for a pastoralist as the conventional anthelmintics are becoming either ineffective or less effective. Therefore, this problem demands urgent and concerted attention. Moreover, the cost of synthetic drugs not only exacerbates the AR problem but also increases their level of toxicity. This kind of scenario has sensitized the research community to explore the alternatives. Among these alternatives, herbal or plant-based products have shown promising potential as effective and viable options against helminth infections. This review paper provides a thorough examination of the use of unrefined plant extracts to study anthelmintic properties, with a focus on a variety of *in vitro* experiments in light of the limited *in vivo* investigation protocols and techniques. Development and application of frameworks for clinical trials and standardized testing procedures should be the main goals of the next research projects. Measures will cover improving funding and fostering cooperation among academic institutions, governmental agencies, and industry players to help

plant-based anthelmintics move from laboratory research to practical usage. These steps will help plant-based anthelmintics go from lab to clinical use. Additionally, detailed investigations on the phytochemical, clinical efficacy, toxicological and molecular mechanisms of action of the anthelmintic plants/extracts are strongly recommended. There is also a need to either refine existing anthelmintic drugs or identify novel molecular targets that can lead to the development of next generation anthelmintics. This can be accomplished using a multidisciplinary strategy that integrates natural product chemistry with the synthetic synthesis of structural variants to boost activity and mitigate resistance. The integration of ancient knowledge with contemporary scientific approaches is equally essential, encompassing community involvement, acknowledgment of indigenous practices, and respect for intellectual property rights. These inclusive methodologies enhance study outcomes while guaranteeing the ethical and sustainable use of natural resources. Moreover, investigations into combinatorial strategies such as the integration of phytochemicals with synthetic pharmaceuticals may yield synergistic advantages that enhance efficacy while postponing the emergence of resistance. Finally, initiatives must be undertaken to standardize potent plant extracts, facilitating the creation of reliable and high-quality herbal formulations that may boost or substitute current synthetic anthelmintics. These integrated tactics will be essential for attaining sustainable and effective parasite control in the future.

Declarations:

Ethical Approval: Not required

Competing interests: The authors have no conflicts of interest to declare that are relevant to the content of this article.

Author's Contributions: ZI: Writing original draft, KAT: Reviewing and editing, AI: Data curation and Methodology; JS: Formal analysis and validation, SH: Reviewing and editing, IK: Methodology and Formal analysis, FA: Supervision, reviewing and editing.

Funding: This study did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Availability of Data and Materials: The datasets generated during and/or analysed during the current study are present in the manuscript file in the form of figures and tables.

Declaration of generative AI and AI-assisted technologies in the writing process

The authors have not used any AI or AI-assisted technologies in the writing process of this review.

Acknowledgements: Zeenat Islam is thankful to the Council of Scientific & Industrial Research (CSIR), India for providing research fellowship.

REFERENCES

- Abbott KA, Taylor MA, Stubbings L (2012) Sustainable worm control strategies for sheep, 4th Edition. A Technical Manual for Veterinary Surgeons and Advisers. *Sustainable Control of Parasites*. Published by SCOPS.
- Adak M, Kumar P (2022) Herbal anthelmintic agents: a narrative review. *Journal of Traditional Chinese Medical Sciences* 42(4): 641–651.
- Ahmed MAA (2010) Gastrointestinal (nematode) infections in small ruminants: epidemiology, anthelmintic efficacy and the effect of wattle tannins. Dissertation, University of KwaZulu-Natal. http://hdl.handle.net/10413/708
- Al-Qarawi AA, Mahmoud OM, Sobaih MA, Haroun EM, Adam SEI (2001) A preliminary study on the anthelmintic activity of *Calotropis procera* latex against *Haemonchus contortus* infection in Najdi sheep. *Veterinary Research Communications* 25: 61-70.
- Arya D, Singh SJ (2020) Livestock Contribution to the Indian economy. *Indian Farmer*, 7(06): 510-214.

- Athanasiadou S, Githiori J, Kyriazakis I (2007) Medicinal plants for helminth parasite control: facts and fiction. *Animal* 1(9): 1392-1400.
- Badarina I, Putranto HD, Sulistyowati E (2017) In vitro anthelmintic activity of the extract of coffee husk fermented with *Pleurotus ostreatus* for *Ascaridia galli. Animal Production* 19(1): 55-60.
- Bagavan A, Rahuman AA, Kamaraj C, Geetha K (2008) Larvicidal activity of saponin from *Achyranthes aspera* against *Aedes aegypti* and *Culex quinquefasciatus* (Diptera: Culicidae). *Parasitology Research* 103: 223-229.
- Baloyi MA, Laing MD, Yobo KS (2012) Use of mixed cultures of biocontrol agents to control sheep nematodes. *Veterinary Parasitology* 184(2-4): 367-370.
- Bandh SA, Lone BA, Chishti MZ, Kamili AN, Ganai BA, Saleem S (2011) Evaluation of anthelmintic and antimicrobial activity of the methanolic extracts of *Nepeta cataria*. *New York Science Journal* 4:129-35.
- Banerjee T, Singh A, Kumar S, Dhanani T, Gajbhiye NA, Koley TK, Filgona J (2019) Ovicidal and larvicidal effects of extracts from leaves of *Andrographis paniculata* (Burm. f.) Wall. ex Nees against field isolates of human hookworm (*Ancylostoma duodenale*). *Journal of Ethnopharmacology* 235:489-500.
- Bihaqi, S. J., Allaie, I. M., Banday, M. A. A., Sankar, M., Wani, Z. A., & Prasad, A. (2020). Multiple anthelmintic resistance in gastrointestinal nematodes of Caprines on Mountain Research Centre for Sheep and Goat at Kashmir Valley, India. *Parasite epidemiology and control*, 11: e00163.
- Boy HIA, Rutilla AJH, Santos KA, Ty AMT, Alicia IY, Mahboob T, Nissapatorn V (2018). Recommended medicinal plants as source of natural products: a review. *Digital Chinese Medicine* 1(2):131-142.
- Carmichael I, Visser R, Schneider D, Soll M (1987). *Haemonchus contortus* resistance to ivermectin. *Journal of the South African Veterinary Association* 58(2):93.
- Chanda, S., & Ramachandra, T. V. (2019). A review on some Therapeutic aspects of Phytochemicals present in Medicinal plants. *International Journal of Pharmacy & Life Sciences*, 10(1): e05917
- Chandan HS, Tapas AR, Sakarkar DM (2011) Anthelmintic activity of extracts of *Coriandrum* sativum linn in Indian earthworm. *International Journal of Phytomedicine*, 3(1): 36-40.
- Cho, I., Song, H. O., & Cho, J. H. (2020). Flavonoids mitigate neurodegeneration in aged Caenorhabditis elegans by mitochondrial uncoupling. *Food science & nutrition*, 8(12): 6633-6642.
- Choudhary GK, Singh SP, Kumar RR (2018) In vitro antioxidant and anthelmintic properties of rhizome extracts of *Hedychium spicatum*. *Indian Journal of Animal Sciences* 88:300-303
- Choudhary N, Khatik GL, Choudhary S, Singh G, Suttee A (2021) In vitro anthelmintic activity of *Chenopodium album* and in-silico prediction of mechanistic role on *Eisenia foetida*. *Heliyon*, 7(1): e05917.
- Coffey L, Hale M, Terrill T, Mosjidis J, Miller J, Burke J (2007). Tools for managing internal parasites in small ruminants: Sericea Lespedeza. Lake Mary, FL, USA: ATTRA.
- Cringoli, G., Veneziano, V., Rinaldi L, Sauvé C, Rubino R, Fedele V, Cabaret J (2007) Resistance of trichostrongyles to benzimidazoles in Italy: a first report in a goat farm with multiple and repeated introductions. *Parasitology Research* 101:577-581.
- Das B, Tandon V, Saha N. 2006; Effect of isoflavone from *Flemingia vestita* (Fabaceae) on the Ca2+ homeostasis in *Raillietina echinobothrida*, the cestode of domestic fowl. *Parasitology International* 55(1): 17-21.
- Das M, Himaja M (2014) Phytochemical screening, GC-MS analysis and biological activity of

- Ipomoea eriocarpa leaf extracts. International Journal of Pharmacy & Life Sciences 6(4): 592-594.
- Das SS, Dey M, Ghosh AK (2011) Determination of anthelmintic activity of the leaf and bark extract of *tamarindus indica* linn. *Indian Journal of Pharmacy*, 73(1):104–107.
- Davuluri T, Chennuru S, Pathipati M, Krovvidi S, Rao GS (2020) In Vitro Anthelmintic Activity of Three Tropical Plant Extracts on *Haemonchus contortus*. *Acta Parasitologica*, 65(1):11–18.
- Dixit, A. K., Das, G., Dixit, P., Singh, A. P., Kumbhakar, N. K., Sankar, M., & Sharma, R. L. (2017). An assessment of benzimidazole resistance against caprine nematodes in Central India. *Tropical animal health and production*, 49: 1471-1478.
- Drudge JH, Szanto J, Wyant ZN, Elam G (1964) Field studies on parasite control in sheep: comparison of thia-bendazole, ruelene, and phenothiazine. *American Journal of Veterinary Research* 25(108): 1512-1518.
- Fitzpatrick JL (2013) Global food security: the impact of veterinary parasites and parasitologists. *Veterinary Parasitology* 195(3-4): 233-248.
- Geerts S, Gryseels B (2001) Anthelmintic resistance in human helminths: a review. *Tropical Medicine & International Health* 6(11): 915-21.
- Gupta K, Panda D (2002). Perturbation of microtubule polymerization by quercetin through tubulin binding: a novel mechanism of its antiproliferative activity. *Biochemistry* 41(43): 13029–13038.
- Hernando G, Turani O, Bouzat C (2019) *Caenorhabditis elegans* muscle Cys-loop receptors as novel targets of terpenoids with potential anthelmintic activity. *PLoS Neglected Tropical Diseases* 13(11): e0007895.
- Ishnava KB, Konar PS (2020) In vitro anthelmintic activity and phytochemical characterization of *Corallocarpus epigaeus* (Rottler) Hook. f. tuber from ethyl acetate extracts. *Bulletin of the National Research Centre*, 44(1): 33.
- Jackson R, Rhodes AP, Pomroy WE, Leathwick DM, West DM, Waghorn TS, Moffat JR (2006) Anthelmintic resistance and management of nematode parasites on beef cattle-rearing farms in the North Island of New Zealand. *New Zealand Veterinary Journal* 54(6): 289-296.
- Jamra N, Das G, Singh P, Haque M (2015) Anthelmintic efficacy of crude neem (*Azadirachta indica*) leaf powder against bovine strongylosis. *Journal of Parasitic Diseases*, 39(4): 786–788.
- Jana GK, Dhanamjayarao M, Vani M (2010) Evaluation of anthelmintic potential of *Mimusops* elengi Linn (sapotaceae) leaf. *Journal of Pharmaceutical Research* 3(10): 2514-2515.
- Jeyathilakan N, Murali K, Anandaraj A, Latha BR, Basith SA (2010) Anthelmintic activity of essential oils of *Cymbopogan nardus* and *Azadirachta indica* on *Fasciola gigantica*. *Journal of Veterinary and Animal Sciences* 6(6): 204-9.
- Kabera JN, Semana E, Mussa AR, He X (2014) Plant secondary metabolites: biosynthesis, classification, function and pharmacological properties. *Journal of Pharmacy and Pharmacology* 2(7): 377-392.
- Kalkal, H., & Vohra, S. (2021). Multiple Anthelmintic Resistance in Goat Farms from semi-Arid Zone of Haryana. *Journal of Animal Research* 11(5): 933-937.
- Kane SR, Mohite SK, Shete JS (2009) Antihelmintic activity of aqueous and methanolic extracts of *Euphorbia thymifolia* Linn. *International Journal of Pharmtech Research* 1: 666-669.
- Kettle PR, Vlassoff A, Reid TC, Hotton CT (1983) A survey of nematode control measures used by milking goat farmers and of anthelmintic resistance on their farms. *New Zealand Veterinary Journal* 31(8):139-143.
- Khan A, Tak H, Nazir R, Lone BA, Parray JA (2014) In vitro anthelmintic and antimicrobial activities of methanolic extracts of *Fumaria indica*. *Clinical Microbiology and*

- *Infection* 3(161): 2.
- Kirubha TSV, Senthamarai R, Vasuki K, Rao AV, Selvadurai S (2011) Anthelmintic activity of roots and rhizomes of *Corallocarpu sepigaeus*. *Journal of Natural Product and Plant Resources* 1(1): 81-84.
- Kuchay JA, Chishti MZ, Zaki MM, Ahmad J (2011) Prevalence of nematode parasites in sheep of Ladakh-India. *Journal of Agricultural Extension and Rural Development* 3 (13): 229-231.
- Kumar S, Chaudhary S, Jha KK (2011) Anthelminthic activity on the *Leptadenia pyrotechnica* (forsk.) decne. *Journal of Natural Product and Plant Resources* 1(4): 56-59.
- Shalander K, Roy MM (2013) Small ruminant's role in sustaining rural livelihoods in arid and semiarid regions and their potential for commercialization. In: New paradigms in livestock production from traditional to commercial farming and beyond. Agrotech Publishing Academy, Udaipur, pp. 57–80.
- Lalthanpuii PB, Lalchhandama K (2020) Phytochemical analysis and in vitro anthelmintic activity of *Imperata cylindrica* underground parts. *BMC Complementary Medicine and Therapies* 20(1): 332.
- Lalthanpuii PB, Zokimi Z, Lalchhandama K (2020) Anthelmintic activity of praziquantel and *Spilanthes acmella* extract on an intestinal cestode parasite. *Acta Pharmaceutica* 70(4): 551-560.
- Leathwick DM, Pomroy WE, Heath ACG (2001) Anthelmintic resistance in New Zealand. *New Zealand Veterinary Journal* 49(6): 227-235.
- Leicach SR, Chludil HD (2014) Plant secondary metabolites: Structure–activity relationships in human health prevention and treatment of common diseases. *Studies in Natural Products Chemistry* 42: 267-304.
- Lipi P, Vivek S, Makode KK, Jain UK (2010) Anthelmintic activity of aqueous extracts of some saponin containing medicinal plants. *Der Pharmacia Lettre* 2(4): 476-481.
- Lone BA, Chishti MZ, Bhat FA, Tak H, Bandh SA (2012) In vitro and in vivo anthelmintic activity of *Euphorbia helioscopia L. Veterinary Parasitology* 189(2-4): 317-321.
- Mahajan DC, Satyapal US, Tatke PA, Naharwar V (2014) Antimicrobial and anthelmentic activity of *Punica granatum* fruit peel extracts. *International Journal of Pharmacognosy and Phytochemical Research* 6: 482-487.
- Manikkavasagan I, Binosundar ST, Raman M (2015) Survey on anthelmintic resistance to gastrointestinal nematodes in unorganized goat farms of Tamil Nadu. *Journal of Parasitic Diseases* 39: 258-261.
- Manjusa A, Pradeep K (2022) Herbal anthelmintic agents: a narrative review. *Journal of Traditional Chinese Medical Sciences* 42(4): 641.
- Masanta T, Ghosh N, Rakshit S, Dasgupta RK (2019) Anthelmintic activity of crude extracts of *Allium Sativum* and *Cucurbita Maxima*. *Indian Research Journal of Pharmacy and Science* 6(1): 1774-1777.
- Matthew J Page, Joanne E McKenzie, Patrick M Bossuyt, *et al.* (2021): The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ 2021 Mar 29:372:n71. doi: 10.1136/bmj.n71.
- Mawalagedera SM, Callahan DL, Gaskett AC, Rønsted N, Symonds MR (2019). Combining evolutionary inference and metabolomics to identify plants with medicinal potential. *Frontiers in Ecology and Evolution* 7: 267.
- Morris SS, Jeyabalan G, Jha AK, Verma S, Swarnkar Y (2016) Phytochemical Screening and In-vitro Athelmintic activity of Seed Extracts of Plants Carumcarvi of Family Apiaceae. *Asian Journal of Research in Pharmaceutical Sciences* 6(4): 246-254.
- Mukherjee N, Mukherjee S, Saini P, Roy P, & P Sinha Babu S (2016) Phenolics and terpenoids; the promising new search for anthelmintics: a critical review. *Mini-Reviews in*

- Medicinal Chemistry 16(17): 1415-1441.
- Nazmi SS, Rani MS (2023) Anthelmintic activity of methanolic extract of *Euphorbia milii*. World Journal of Pharmacognosy & Phytochemistry 12(5): 202-204.
- Nagaraja MS, Paarakh PM (2011). In vitro anthelmintic activity of stem bark of *Millingtonia hortensis* Linn. *International Journal of Pharmacy and Biological Sciences* 2(2): 15-19
- Newman DJ, Cragg GM (2007) Natural products as sources of new drugs over the last 25 years. *Journal of Natural Products* 70(3): 461-477.
- Newman DJ, Cragg GM, Kingston DG (2008) Natural products as pharmaceuticals and sources for lead structures. In: *The Practice of Medicinal Chemistry (Fourth Edition)*, Wermuth CG, Aldous D, Raboisson P, Rognan D. (Eds.), Academic Press (2015), pp. 101-139.
- Nisha PV, Shruti N, Swamy KS, Meera K, Vedamurthy AB, Krishna V, Hoskeri JH (2012) Anthelmintic activity of *Pyrostegia venusta* using *Pheretima posthuma*. *International Journal of Pharmaceutical Sciences and Drug Research* 4(3): 205-208
- Osbourn A, Goss RJ, Field RA (2011) The saponins: polar isoprenoids with important and diverse biological activities. *Natural Product Reports* 28(7): 1261–1268.
- Overend DJ, Phillips ML, Poulton AL, Foster CED (1994) Anthelmintic resistance in Australian sheep nematode populations. *Australian Veterinary Journal* 71(4): 117-121.
- Overend WG (2012) Glycosides In: The carbohydrates Eds. Pigman W, Horton D 279-353.
- Panche AN, Diwan AD, Chandra SR (2016) Flavonoids: an overview. *Journal of Nutritional Science* 5: e47
- Pandey J, Mishra S, Jaiswal, K (2018) In vitro evaluation of the anthelmintic activity of rhizome extracts of *Curcuma Longa* (Linn.). *In Vitro*, 11: 12.
- Pillai LS, Nair BR (2011) A comparative study of the anthelmintic potential of *cleome viscosa* L. And *cleome burmanni* w. And a. *Indian Journal of Pharmaceutical Sciences* 73(1): 98-100.
- Prashanth D, Asha MK, Amit A, Padmaja R (2001) Anthelmintic activity of *Butea monosperma*. *Fitoterapia*, 72(4): 421-422.
- Lipi P, Vivek S, Makode KK, Jain UK (2010) Anthelmintic activity of aqueous extracts of some saponin containing medicinal plants. *Der Pharmacia Lettre*, 2(4): 476-481.
- Roy B, Dasgupta S, Tandon V (2009) Ultrastructural observations on *Fasciolopsis buski* and its alterations caused by shoot extract of *Alpinia nigra*. *Microscopy Research and Technique*, 72(2): 61-66.
- Schnyder M, Torgerson PR, Schönmann M, Kohler L, Hertzberg H (2005) Multiple anthelmintic resistance in *Haemonchus contortus* isolated from South African Boer goats in Switzerland. *Veterinary Parasitology* 128(3-4): 285-290.
- Selvi BC, Santhanam A (2016). Evaluation of anthelmintic activity using solvent extract of *Padina tetrastromatica* in Indian earthworm (*Pheretima posthuma*). *International Journal of Therapeutic Applications* 32: 77-80.
- Sharma VP (2004) Livestock economy of India: current status, emerging issues and long-term prospects. *Indian Journal of Agricultural Economics* 59(3): 512.
- Shiba SM, Jeyabalan G, Jha AK, Tapas M (2020) Phytochemical screening and in-vitro anthelmintic activity ofseed extracts of plants Apium leptophyllum and Apium graveolens of Family Apiaceae. *Asian Journal of Phytomedicine and Clinical Research* 8(2): 68-85.
- Shivkar YM, Kumar VL (2003) Anthelmintic activity of latex of *Calotropis* procera. Pharmaceutical Biology 41(4): 263-265.
- Singh S, Devi B (2013) Anthelminthic activity of *Cyamopsis tetragonoloba* (L.) taub. *International Journal of Pharmaceutical Research and Development* 5: 15-21.
- Singh V, Varshney P, Dash SK, Lal HP (2013) Prevalence of gastrointestinal parasites in sheep and goats in and around Mathura, India. *Veterinary World* 6(5): 260.

- Sravani T, Paarakh PM, Shruthi SD (2014) In silico and in vitro anthelmintic activity of stigmasterol β-D-glucoside isolated from rhizomes of *Hedychium spicatum* Buch. Ham. *World Journal of Pharmacy and Pharmaceutical Sciences* 3(9): 664-672.
- Sravani T, Paarakh PM, Shruthi SD (2015) In silico and in vitro anthelmintic activity of β-sitosterol isolated from rhizomes of *Hedychium spicatum* Buch.-Ham. *Indian Journal of Natural Products and Resources* 5(3): 258-261.
- Sujith S, Sreedevi R, Priya MN, Deepa CK, Darsana U, Sreeshitha SG, Juliet S (2015) Anthelmintic activity of three Indian medicinal plants. *International Journal of Pharmacognosy and Phytochemical Research* 7(2): 361-364.
- Sutnga I, Marbaniang B, Hazarika G, Goswami P, Choudhury A (2020) Anthelmintic and Analgesic Activities of *Trachyspermum Khasianum* H. *World Journal of Pharmacy and Pharmaceutical Sciences* 23(4): 230–236.
- Swargiary A, Daimari A, Daimari M, Basumatary N, Narzary E (2016) Phytochemicals, antioxidant, and anthelmintic activity of selected traditional wild edible plants of lower Assam. *Indian Journal of Pharmacology* 48(4): 418.
- Swargiary A, Roy MK, Verma AK (2021) In vitro study of the antioxidant, antiproliferative, and anthelmintic properties of some medicinal plants of Kokrajhar district. *Journal of Parasitic Diseases* 45(4): 1123–1134.
- Swarnakar G, Menaria K, Kumawat A, Roat K, Damor RN (2020) In-vitro anthelmintic effect of *Citrullus colocynthis* extract on *Cotylophoron cotylophorum*. *Indian Veterinary Journal* 97(05): 9-11.
- Symeonidou I, Bonos E, Moustakidis K, Florou-Paneri P, Christaki E, Papazahariadou M (2018) Botanicals: a natural approach to control ascaridiosis in poultry. *Journal of the Hellenic Veterinary Medical Society* 69(1): 711-722.
- Tambe MM, Mahadik MS (2020) The Anthelmintic activity of leaves of *Trachyspermum ammi*. *International Journal of Scientific Engineering and Research* 11(9): 1752-1756.
- Tariq KA, Chishti MZ, Ahmad F, Shawl AS (2009) Anthelmintic activity of extracts of *Artemisia absinthium* against ovine nematodes. *Veterinary Parasitology* 160(1-2): 83-88.
- Upton M (2004) The role of livestock in economic development and poverty reduction. https://ageconsearch.umn.edu/record/23783/?v=pdf
- Varshney TR, Singh YP (1976) Development of resistance of *Haemonchus contortus* worms against phenothiazine and thiabendazole in sheep. *Indian Journal of Animal Sciences* 46: 666- 668.
- Vinav G, Jigna V, Mohaddesi B (2016) Phytochemical and in vitro anthelmintic activity of *Momordica charantia* Linn fruit extracts. *International Journal of Research in Ayurveda and Pharmacy* 7: 123-127.
- Waller PJ (2003) Global perspectives on nematode parasite control in ruminant livestock: the need to adopt alternatives to chemotherapy, with emphasis on biological control. *Animal Health Research Reviews* 4(1): 35-44.
- Wang XB, Li GH, Zheng LJ, Ji KY, Lü H, Liu FF, Zhang KQ (2009) Nematicidal cardenolides from *Nerium indicum* Mill. *Chemistry and Biodiversity* 6(3): 431-436.
- Williams AR, Fryganas C, Ramsay A, Mueller-Harvey I, Thamsborg SM (2014) Direct anthelmintic effects of condensed tannins from diverse plant sources against *Ascaris suum. PlOS One*, 9(5): e97053.
- Yadav CL (1990) Fenbendazole resistance in *Haemonchus contortus* of sheep. *Veterinary Record* 126: 23.