

Journal of Al-Azhar University Engineering Sector

Vol. 20, No. 77, October 2025, 1474 - 1493

APPLICATION OF BIOMIMETIC FACADES FOR A MORE SUSTAINABLE FUTURE

Ahmad H. Abouisaadat

Department Of Architectural Engineering; Faculty Of Engineering, Tanta University, Tanta, Egypt

* Correspondence: Ahmed.Aboulsaadat@F-Eng.Tanta.Edu.Eg

Cita**ti**on:

A. H. Abouisaadat," Application of Biomimetic Facades For A More Sustainable Future", Journal of Al-Azhar University Engineering Sector, vol. 20(77), pp. 1474-1493. 2025.

 Received:
 06 May 2025

 Revised:
 03 July 2025

 Accepted:
 24 July 2025

Doi: 10.21608/auej.2025.382274.1833

ABSTRACT

A significant shift in thinking has been underway in the architecture and building industry, driven by growing concerns over excessive energy consumption and its environmental impact. This shift has transformed the early stages of building design, shifting the focus from geometry and form to performance, from structural considerations to the building's envelope, and from abstract aesthetics to bioclimatic aesthetics. In response, sustainable, intelligent, and adaptive building façades have been extensively researched and developed. The primary challenge for façade designers is identifying innovative and sustainable technologies that achieve high structural performance while maintaining aesthetic appeal. This paper reviews the performance and limitations of existing façade systems in sustainable building design. Among contemporary façade technologies, Double Skin Façades (DSFs) are emerging as a promising solution for enhancing energy efficiency, indoor air quality, and visual appeal. Nonetheless, they come with certain drawbacks, including inter-floor sound transmission, elevated upfront costs, and vibrations in the external layer. Meanwhile, adaptive façades—designed to dynamically optimize energy use and occupant comfort—are becoming increasingly popular, though they remain challenged by intricate design processes, construction demands, and compliance with regulatory standards. Green wall systems enhance air quality and visual appeal, while photovoltaic façades contribute to lowering energy bills. However, both solutions often involve significant upfront investment and ongoing maintenance demands. For a building design to be genuinely sustainable, architects, engineers, and builders must implement façade systems that strike a balance between energy efficiency, affordability, user comfort, and ecological impact. Various typologies, strategies, and conceptual frameworks have been developed to enhance adaptive façade performance. This paper examines earlystage design approaches for adaptive façades and presents the theoretical foundations of three biomimetic frameworks. This analysis provides insight into the concepts, opportunities, and limitations of biomimetic adaptive facades in sustainable architecture.

Copyright © 2025 by the authors. This article is an open access article distributed under the terms and conditions Creative Commons Attribution-Share Alike 4.0 International Public License (CC BY-SA 4.0)

KEYWORDS: Façade, adaptive, biomimetic, methodology, Dual-Skin Façades, green wall systems, photovoltaic façades, sustainable façade materials

تطبيق الواجهات المستوحاة من الطبيعة من أجل مستقبل أكثر استدامة

أحمد حسين أبو السعادات

قسم الهندسة المعمارية، كلية الهندسة، جامعة طنطا، طنطا، مصر

البريد الالكتروني للباحث الرئيسي: Ahmed.Aboulsaadat@F-Eng.Tanta.Edu.Eg

الملخص

تهدف هذه الورقة البحثية إلى استعراض التطورات في تصميم واجهات المباني، مدفوعة بالتحول من الاعتبارات الجمالية والشكلية إلى الأداء الطاقي والبيئي. يركز البحث على تحليل أنظمة الواجهات الحديثة وأدائها في تحقيق الاستدامة، مع تسليط الضوء على أنواعها الرئيسية وقيودها. يُناقش البحث الواجهات ذات الطبقتين (DSFs) كحلٍ واعدٍ لتعزيز كفاءة الطاقة، ولكنه يُشير إلى عيوبها مثل التكلفة الأولية العالية ومشكلات انتقال الصوت. كما يستعرض الواجهات التكيفية التي تُحسن استهلاك الطاقة وراحة المستخدم ديناميكيًا، مع الإشارة إلى تعقيدات تصميمها. بالإضافة إلى ذلك، يتناول البحث دور أنظمة الجدران الخضراء والواجهات الكهروضوئية في تحسين جودة الهواء وتوليد الطاقة، مع ذكر متطلباتها من حيث التكلفة والصيانة. وفي الختام، يؤكد البحث على ضرورة تحقيق توازن بين كفاءة الطاقة، التكلفة، وراحة المستخدم لتحقيق الاستدامة الحقيقية. ويُقدم إطارًا نظريًا لتصميم الواجهات التكيفية المُستوحاة من الطبيعة (البيوميميتك)، موفرًا بذلك فهمًا أعمق للمفاهيم والفرص والقيود المتعلقة بهذه الأنظمة في العمارة المستدامة.

الكلمات المفتاحية: واجهة؛ تكيفية، محاكاة الطبيعة (بيوميميتك)، منهجية، واجهات ذات طبقتين(Dual-Skin Façades)، أنظمة الجدران الخضراء، الواجهات الفوتوفولطية، مواد الواجهات المستدامة.

1. INTRODUCTION

The building sector is responsible for around 40% of global energy use, playing a major role in greenhouse gas (GHG) emissions [1]. It also accounts for nearly 39% of worldwide carbon dioxide emissions and 50% of raw material consumption, highlighting the importance of energy-efficient practices in both construction and building operations [1,2]. Given the finite nature of Earth's resources and the growing challenges posed by climate change, mitigating the environmental footprint of the construction industry is vital for reducing energy demand and conserving natural resources.

In this context, the development of sustainable strategies in the building industry is critical for achieving energy efficiency and mitigating climate change [3]. As climate change and rising energy demands continue to shape the built environment, sustainability has become an increasingly important consideration in architectural design [4]. Sustainable buildings should be designed to minimize their environmental impact while optimizing the use of non-renewable resources.

An essential component of sustainable architecture is climate-responsive design, which focuses on passive strategies that harness natural elements like sunlight, heat, wind, and rainfall [4]. Through the implementation of environmentally conscious design solutions, buildings can significantly lower their carbon emissions and support the conservation of the environment [2,5]. Consequently, a paradigm shift in architectural design is underway, emphasizing environmentally conscious approaches [6].

One effective strategy for enhancing sustainability in buildings is the integration of adaptive façade systems. These systems respond dynamically to outdoor environmental conditions by regulating natural light, providing solar protection, and harnessing renewable energy, thereby improving overall building performance and sustainability [4,7].

2. RESEARCH METHODOLOGY

This research seeks to examine existing literature on adaptive building façades, with a specific emphasis on biomimetic strategies. Over time, numerous types of adaptive façades have emerged, each characterized by distinct technical features, though many exhibit similar functional capabilities [8]. Central to these systems is their ability to adapt—an attribute that closely resonates with the core concepts of biomimicry [9]. The review will explore many methodological frameworks in biomimetic design to establish a comprehensive approach for the initial stages of adaptive façade development. These frameworks will be analyzed in terms of their potential to enhance façade performance and sustainability.

3. LITERATURE REVIEW

1. Facades

The word "façade" is derived from the French term meaning "front" or "face" (Simpson 1989 a, b) and denotes the exterior surface of a building, encompassing its architectural elements and design features [10]. As a fundamental component of a building's envelope, the façade serves both functional and aesthetic purposes, influencing structural performance, energy efficiency, and indoor comfort. Façade materials have gradually transitioned from traditional options like clay, stone, wood, and brick to contemporary materials such as steel and glass, responding to different climatic conditions and functional requirements [5,11]. This ongoing advancement in both materials and construction methods has resulted in a wide range of façade types, each designed to meet particular architectural demands and environmental challenges [5,11].

With growing awareness of the building envelope's significance in managing energy and environmental conditions, façades have evolved from serving merely as passive protective barriers to functioning as active regulators of a building's energy performance [5,12]. This transformation demands façades that are adaptable to changing environmental conditions, allowing them to optimize energy use and enhance occupant comfort [13]. In this context, the design and functionality of building façades are increasingly being inspired by natural systems.

Much like the skin of living organisms, which regulate body temperature through physiological, morphological, and behavioral thermoregulation mechanisms, façades must evolve to (respond dynamically) to environmental fluctuations while maintaining thermal comfort within buildings [14,15]. This concept aligns closely with biomimicry, a design approach that draws inspiration from nature to develop (innovative, sustainable architectural solutions) [16]. By integrating biomimetic principles, adaptive façades can (enhance resilience, improve energy efficiency, and reduce operational demands), making them a crucial component of next-generation sustainable buildings.

Façade performance can be evaluated through four key indicators: biological, climatic, biophilic, and energy factors [4,8,17,18].

- **Biological Factors:** Façades must adjust indoor lighting and thermal conditions to meet occupants' needs on a daily or seasonal basis for comfort and well-being.
- Climatic Factors: Façades should respond to outdoor climate elements like humidity, wind, solar radiation, and precipitation, optimizing the interaction between the indoor and outdoor environments.
- Biophilic Factors: Façades should incorporate natural features like light, air, acoustics, and design elements that connect occupants to nature, improving comfort and psychological wellbeing.
- **Energy Factors:** Energy efficiency is crucial, as façades regulate the amount of energy needed for heating and cooling, directly affecting building sustainability by controlling heat and light transfer [4,8,17,18].

These indicators highlight the role of façades in enhancing energy efficiency, comfort, and occupant well-being.

2. Biomimetics

Biomimetics involves the study of biological structures and processes to explore their possible applications in technology [18,19]. This interdisciplinary field connects biology, technology, and design, aiming not only to replicate living organisms but also to grasp the underlying biological principles to create innovative solutions [20,21]. As a fast-expanding area within engineering and architecture, biomimetics enables the development of multifunctional, sophisticated, and adaptive designs. By borrowing strategies from nature, it moves beyond static building façades, aiming to improve energy performance through adaptive designs [22].

Biomimetic typologies can be categorized into three levels:

Organism Level: Imitating organisms or parts of their systems.

Behavior Level: Translating how organisms interact with their environment.

Ecosystem Level: Replicating the principles of entire ecosystems [23–24].

The adaptation properties of organisms to environmental changes are particularly relevant to building façades, aiming to improve energy performance by creating adaptive systems that respond to changing conditions in nature [17,25]. Building façades have evolved from basic load-bearing components to more complex systems that regulate thermal, acoustic, and visual conditions. Examining nature's adaptable morphologies can inform the design of dynamic building envelopes, using smart materials to enhance performance and support building-environment interaction [25].

Recent technologies like adaptive façades allow buildings to adjust to environmental changes, improving energy efficiency and occupant comfort [26]. Biomimicry can be motivated by three key goals:

Innovation: Using biological systems to inspire modern technologies [27].

Sustainability: Enhancing environmental performance in both technology and the built environment.

Contributing to human psychological well-being through bio-inspired designs.

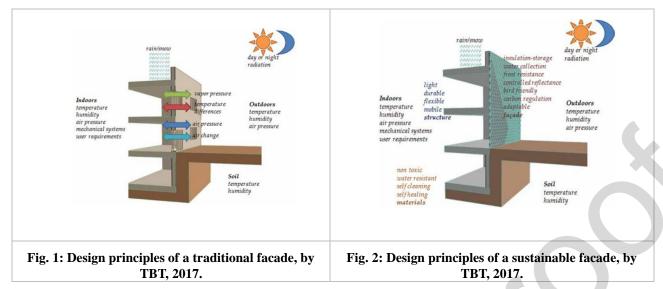
Advances in biology, particularly the application of thermodynamics, show how organisms maintain optimal temperature ranges despite environmental fluctuations. These principles can inform building thermal performance through adaptive, functional features [28].

Biomimetic architecture addresses the growing complexity of modern buildings by adopting interdisciplinary approaches to create functional and sustainable systems. This trend draws inspiration from biological mechanisms to control environmental conditions [15,29], transforming buildings into living, interactive systems that foster innovation and creativity in design [30]. Advances in digital design tools and composite materials have further enabled nature-inspired architecture [15,29].

Biomimetic architecture can be categorized into two main types:

Structural Biomimetics: Focuses on how organisms achieve material-efficient, multi-level structures with independent functions.

Process Biomimetics: Examines how biological systems control physical and chemical environments, particularly in regulating external climate and internal building conditions [30].


The primary advantage of biomimicry in architecture is the development of energy-efficient thermoregulatory systems for building façades [31]. However, a significant challenge lies in the gap between biosystems and human-made architecture, as biomimicry is a natural evolution process. This limited exchange of information between biologists and architects has been identified as a key barrier to applying biomimicry effectively in architectural design [32].

3. Design Considerations for Sustainable Biomimetic Façades

A building's façade, while primarily serving as the outer layer separating interior spaces from the external environment, also plays a crucial role in defining its visual identity. As façades directly respond to climatic factors and influence indoor comfort, sustainable design prioritizes material selection and energy efficiency (see Figure 1). To enhance façade performance, architects and engineers leverage thermal, optical, airflow, and electrical systems. Aksamija characterizes high-performance sustainable façades as building envelopes that minimize energy use while maintaining indoor comfort and supporting occupant Heath and productivité [33].

Biomimicry and biophilic design have long informed façade innovation, though not all nature-inspired solutions are inherently sustainable. For a façade to be truly sustainable, design decisions must align with ecological principles—examining how natural organisms manage heating, cooling, shading, and light regulation. In this light, sustainable design can interpret organic skin as dynamic and responsive to natural elements like wind, sunlight, precipitation, and temperature extremes. Such façades may also replicate vital life-supporting functions such as respiration, carbon absorption, and water regulation, often through multi-layered systems.

Loonen highlights adaptability, multifunctionality, and evolvability as core principles of bioinspired façade design [34]. Figure 2 illustrates the key concepts underpinning sustainable façade design. Therefore, achieving sustainability requires a holistic integration of energy performance, functionality, and structural optimization.

4. Energy Requirements

Building sustainability is frequently assessed by the amount of energy needed to sustain comfortable indoor conditions. A large share of this energy use goes toward heating and cooling, which is largely impacted by the design of the façade. Serving as the main boundary for heat and light exchange between the interior and exterior, the façade's performance is influenced by factors such as solar radiation, outdoor temperature, wind speed, humidity levels, and sky temperature. Sustainable façade design generally focuses on three key aspects: thermal comfort, visual comfort, and the integration of renewable energy generation (see Table 1).

Table 1: Three Main Areas Sustainable Façade Design

Aspect	Description	Examples/Technologies	References
Thermal Comfort	The façade's ability to regulate heat transfer depends on material properties (e.g., thermal absorption, emissivity, density, specific heat, thermal conductivity) and design strategies like solar orientation, insulation, and shading. Advanced technologies enhance performance.	 Thermal mass Dynamic insulation Radiative cooling Phase change materials Energy storage BioTRIZ-inspired open-cell honeycomb structure (4.5°C reduction in surface temperature) 	[35]
Visual Comfort	Determined by optimal light levels and absence of glare. Façade design influences light transmission, transparency, translucency, color, and reflection. Innovative solutions dynamically adjust shading and lighting.	 Electrochromic glass Homeostatic façade systems (e.g., Decker Yeadon's dielectric elastomer-based self-shading glass) 	[36]
Renewable Energy Production	Façades can generate renewable energy by mimicking natural processes or integrating energy-harvesting technologies.	 Photovoltaic systems (artificial photosynthesis) Bioactive façades (algae for biodiesel, bioethanol) Building-integrated nano-wind turbines 	[37, 38]

5. Form and Structural Efficiency

Biomimicry in architecture often involves drawing inspiration from natural forms and structures to enhance both aesthetics and functionality. While many biomimetic designs focus on surface morphology, some go beyond mere visual analogy to incorporate functional benefits. For example, the Esplanade Theaters in Singapore, designed by DP Architects, draw inspiration from the spiky texture of the durian fruit to develop a sun-shading system that lowers energy consumption and reduces the reliance on artificial lighting [39].

3.1.1. Form Generation:

Biomimetic design often uses computational methods like parametric modeling and evolutionary algorithms to generate complex geometries. Gruber et al. suggest a multi-step design approach involving the identification of design features, extraction of "feature genes," creation of evolved typologies (phenotypes), and adjustment of these genes to enhance the design [40]. This approach allows for the creation of efficient, biomimetic structures that can be fabricated using digital technologies like CNC machining or 3D printing, ensuring material efficiency and ease of production.

3.1.2. Structural Systems Inspired by Nature:

Historically, structural systems have been influenced by natural forms, such as **Table 2**:

Table 2: Historically, structural systems have been influenced by natural forms

Masonry structures inspired by insect mounds (e.g., pyramids),	
Shell structures inspired by eggshells,	
Tensile structures inspired by spider webs,	
Cellular structures inspired by honeycombs,	
Pneumatic structures inspired by soap bubbles [41].	

Pioneers like Dischinger (reinforced concrete domes), Buckminster Fuller (geodesic domes), and Frei Otto (lightweight tensile structures) demonstrated how biomimicry can lead to innovative structural solutions. Contemporary examples include the One Ocean Pavilion by SOMA Architecture and Knippers Helbig Engineering, which draws inspiration from fish gills and the opening mechanism of the bird of paradise flower to develop a hinge-free, adaptive façade that controls light and airflow [42].

Bio-Kinematics:

The transfer of biological motion (bio-kinematics) to technical constructions enables the creation of dynamic, ever-changing surfaces. This approach aligns structural design with natural principles, ensuring stability, durability, and minimal environmental impact.

6. Sustainability considerations

Sustainability in architecture involves minimizing ecological footprints by optimizing resource use, reducing waste, and leveraging natural processes. Nature offers valuable insights for sustainable design, as it operates on principles like carbon utilization, zero waste, and energy efficiency through solar and gravitational energy. Façades play a critical role in sustainability by addressing air quality, water efficiency, carbon capture, and the use of non-toxic, low-energy materials. Biomimetic façades can also exhibit biological behaviors, such as responsiveness, adaptability, and self-regulation, to enhance environmental performance. Key Sustainability Considerations:

Table 3: Sustainability Considerations

Aspect	Description	Examples/Technologis	References
Carbon Sequestration and Air Quality	Façades can incorporate systems like photosynthesizing or fog-eating mechanisms to capture carbon and improve air quality. Greenery integrated into façades regulates heat, air, water, and electricity flows, enhancing energy efficiency and indoor air quality.	- Photosynthesizing façades - Fog-eating systems - Council House 2, Melbourne (tree-inspired multilayered façade with foliage, sunscreens, and microclimate management)	[43], [44] Council House
Water Efficiency and Harvesting	Water management in buildings involves protection from water damage and efficient use of freshwater resources. Biomimetic designs, such as water-harvesting façades, can capture and utilize water sustainably.	- BioGen methodology for biomimetic design - Thorny Devil-inspired water-harvesting façade (bumpy surface, capillary grooves, storage chambers)	[45]

Thorny Devil-inspired

Low-Impact Materials and Energy Efficiency

Sustainable façades prioritize materials with low embodied energy, non-toxicity, and minimal waste. Biomimetic processes, such as photosynthesis and water harvesting, reduce reliance on external energy sources.

- Low-embodied energy materials
- Non-toxic materials
- Biomimetic processes (e.g., photosynthesis, water harvesting)

[46]

Sustainable façades

4. BIOMIMETIC BUILDING MATERIALS AND TECHNIQUES FOR FAÇADE APPLICATIONS

Biomimetic façades have evolved beyond serving as mere protective barriers; they are now engineered to be adaptive, multifunctional, and visually appealing, all while improving energy efficiency, durability, and overall sustainability. By drawing inspiration from nature, interdisciplinary approaches have led to innovative materials and techniques that mimic biological processes such as self-healing, self-cleaning, and self-assembly. These advancements are transforming façades into living, responsive systems that interact with the environment.

Table 4: Key Biomimetic Solutions for Façades

Biomimetic Solution	Inspiration from Nature	Application in Façades	Benefits	Refere nces
Self-Cleaning Surfaces	Lotus effect (hydrophobic surfaces)Gecko feetPond skatersShark skin	 Self-cleaning paints and tiles Photocatalytic TiO₂ nanoparticles for pollutant breakdown (e.g., NOx) 	Reduces maintenance Improves air quality Enhances surface durability	[47-48]
Anti-Reflective Coatings	- Elephant hawk moth's eyes (nanostructured moth-eye arrays)	- Glazing for skyscrapers - Coatings for solar cells	Reduces light reflectionImproves energyefficiency	[49, 50]
Phase-Changing Materials (PCMs)	- Organisms in arid climates (energy storage during phase transitions)	- Thermal insulation in façades	Maintains indoorcomfortReduces energyconsumption	[51, 52]
Living Façades	- Photosynthesis in plants and algae	- Green walls - Microalgae photobioreactors	- Captures CO ₂ - Produces energy - Enhances energy efficiency	[53, 54]
Biomineralization and Self-Healing Materials	- Biocalcification (microbial-induced calcium carbonate precipitation)	- BioMason TM (bacteria- hardened sand) - Self-healing concrete	Improves durabilityRepairs cracks naturallyEco-friendly	[55, 56]
Fungal Mycelium Insulation	- Fungal mycelium growth	- FungInsulation TM (thermal insulation from agricultural waste)	Recycles wasteProvides energy-efficient insulationEco-friendly	[57]

Applications and Benefits:

- **Functional and Aesthetic Design**: Biomimetic façades combine form and function, offering solutions like self-cleaning, anti-reflective, and energy-efficient surfaces.
- **Sustainability**: By mimicking natural processes, these materials reduce waste, lower energy consumption, and improve durability.
- **Interdisciplinary Innovation**: Combining biology, architecture, and engineering has led to breakthroughs like microbial binders, living façades, and fungal insulation.

Future Directions:

- Biomimetic façades are evolving toward adaptive, living systems that mimic natural skins, offering enhanced functionality and sustainability.
- Ongoing research and development promise more energy-efficient, durable, and eco-friendly solutions for building envelopes.

Biomimetic materials and techniques are revolutionizing façade design, offering sustainable, functional, and innovative solutions that align with nature's principles. These advancements pave the way for smarter, more adaptive building skins that contribute to a sustainable built environment.

7. Modern Applications of Biomimetic Facades

Benyus categorizes biomimicry into two main types: mimicking natural forms and replicating natural processes. Designers may draw inspiration from the physical traits of organisms or emulate their behavioral patterns. Beyond these approaches, a more advanced form of biological inspiration—known as bio-collaborative design—involves integrating living organisms directly into the façade system. The following examples illustrate how natural principles and materials are employed to create diverse and innovative façade solutions [58].

Fig. 1: Media-TIC Building

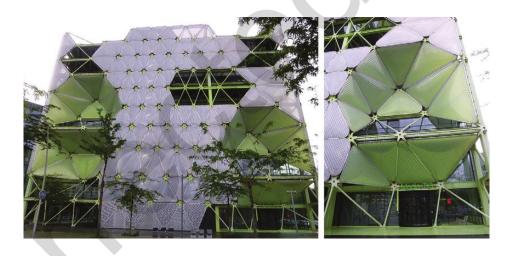


Fig. 2: Elevation: Shows the modular, inflatable ETFE cushions in detail, illustrating how they act as an adaptive outer layer.

The Media-TIC Building, designed by architect Enric Ruiz-Geli and located in Barcelona, exemplifies the integration of biomimetic principles within a performative architectural framework. Recognized with the World Building of the Year Award in 2011 and awarded LEED Gold certification, the project stands as a benchmark for sustainable and technologically responsive design. A defining feature of the building is its innovative façade system, composed of inflatable ETFE (ethylene tetrafluoroethylene) cushions arranged in three layers. These cushions are modulated by the injection of air or nitrogen to dynamically alter their opacity, thereby emulating the functional behavior of plant stomata—natural microstructures that regulate the exchange of heat and light in response to environmental stimuli. This adaptive façade enables passive ventilation, dynamic solar shading, and efficient thermal regulation, aligning the building's environmental performance with biological analogs. It is estimated that such strategies contribute to an energy consumption reduction of approximately 20%. In elevation, the envelope presents as a translucent, responsive "second skin,"

functioning as a climatic interface between the interior and exterior—a conceptual and functional parallel to the respiratory function of plant epidermis.

The Media-TIC Building exemplifies a sophisticated application of biomimicry within contemporary architectural practice, demonstrating how biologically inspired systems can enhance both environmental performance and design innovation. Through the implementation of a responsive ETFE façade that mimics the adaptive behavior of plant stomata, the building successfully merges aesthetic expression with functional efficiency. Its performative envelope not only reduces energy consumption but also fosters a dynamic interaction between the built environment and natural forces. As such, the Media-TIC Building stands as a paradigmatic case of biomimetic and performative architecture, offering a compelling model for future sustainable design strategies that aspire to emulate the intelligence, adaptability, and resilience inherent in natural systems.

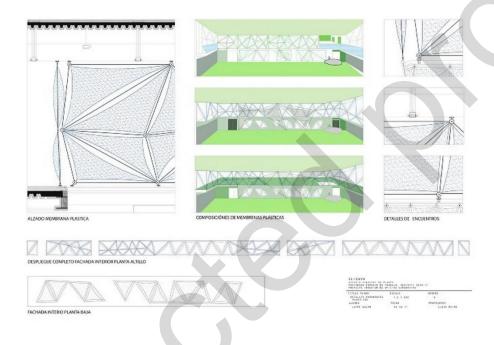


Fig. 3: Section: Clearly reveals the external steel frame system, open floor plans, and central atrium. The galleries and lightweight structure optimize both functionality and energy use.

Aspect	Description	Key Features/Technologies	Benefits	References
Adaptive	Inspired by breathing	- Southeast façade: 104	- Reduces heat	[59]
ETFE Façade	organisms, the building	inflatable ETFE cushions with	gain.	
	features a dynamic envelope	three air chambers to control	- Improves	
	made of ethylene	solar radiation.	thermal	
	tetrafluoroethylene (ETFE), a	- Southwest façade: ETFE	insulation.	
	lightweight and flexible	sheets filled with nitrogen and	- Contributes to	
	material that adapts to external	oil for variable shading.	20% energy	
	conditions like sunlight and	- 2,500 m ² ETFE cladding:	savings.	
	weather.	Nonstick surface, fire-safe, and		
		low maintenance.		
Sustainability	The building integrates	Photovoltaic Roof: Produces	- Significant	[60, 61]
Features	renewable energy systems and	half of the building's energy	CO ₂ reduction.	
	smart technologies to minimize	needs. Rainwater Harvesting:	- Energy	
	environmental impact and	Collects and stores rainwater	efficiency.	
	resource use.	for flushing toilets.	- Resource	
		Smart Sensors and ETFE	conservation.	
		Sun Filters: Cut CO ₂		
		emissions by 55%.		
Biomimetic	Inspired by jellyfish, the	- Interior Paint: Captures	- Provides self-	[62]
Interior	interior design incorporates	solar energy throughout the	sustaining	
Design	self-sustaining lighting	day and emits a green	lighting.	
	systems.	luminescence at night.	- Reduces	
			external energy	
			consumption.	
Biomimetic	The building's design mimics	- Form and Function: ETFE	- Combines	[63]
Principles	natural systems to achieve	façade mimics natural	biomimicry	
	sustainability, adaptability, and	adaptability.	with advanced	
	energy efficiency.	- Energy Efficiency:	technology.	
		Integrates renewable energy	- Sets a	
		and adaptive shading.	benchmark for	
		- Sustainability: Reduces CO ₂	sustainable	
		emissions and resource use.	design.	

8. Kinetic Façade of the One Ocean Building

The One Ocean Building, a thematic pavilion for the EXPO 2012 in Yeosu, South Korea, designed by SOMA architects in collaboration with Knippers Helbig Advanced Engineering, presents a compelling case study in kinetic and biomimetic architecture. Its defining feature is a large-scale, adaptive façade composed of 108 kinetic lamellas made from glass fiber-reinforced polymers (GFRP). This innovative system directly references biological movement, specifically the gill structures of marine life or the rippling surface of the ocean, to dynamically control light, airflow, and visual connection with the surroundings. Through a computer-controlled bus system, individual lamellas can be articulated to create wave-like choreographies, allowing the building to "breathe" and modulate its interaction with natural forces. This performative envelope not only enhances energy efficiency by regulating solar gain and natural ventilation but also transforms the building's aesthetic into a living, responsive entity, demonstrating how mimicking natural mechanisms can lead to both functional optimization and expressive design in contemporary architecture.

Fig. 4: Lamella façade - movement from closed to 60° opening - cut through the middle of a lamella with different length of the 108 kinetic lamellas made from glass fiber-reinforced polymers

Table 6: Kinetic Façade of the One Ocean Building

Aspect	Description	Key Features/Technologies	Benefits	References
Biomimetic Inspiration	The façade mimics the bird of paradise flower (torsional buckling to open/close petals) and fish gills (wave-like movement).	 Bird of paradise flower: Controlled buckling and elastic deformation. Fish gills: Wave-like patterns on the façade. 	Dynamic,adaptivemovement.Aestheticappeal.	[64]
Material and Design	The façade consists of 108 fiberglass lamellas made of glass fiber-reinforced polymers (GFRP).	- GFRP lamellas : 9 mm thick, up to 14 m long Combines high strength and flexibility Lateral-torsional buckling for doubly curved shapes.	High durability.Reversible elastic deformation without fatigue.	[65]
Mechanism and Functionality	The lamellas are moved by actuators powered by solar panels on the roof. Compression forces induce elastic deformation, causing bending and rotation.	 - Actuators: Located at top and bottom edges. - Solar-powered: Energy-efficient operation. - Elastic deformation: Controls light and airflow. 	- Energy efficiency Improved indoor environmental conditions.	[66]
Aesthetics and Functional Benefits	The façade creates animated , wave-like patterns and regulates light and airflow.	- Wave-like patterns: Enhances visual appeal Light and airflow regulation: Improves energy efficiency and indoor comfort.	- Combines aesthetics with functionality. - Sustainable design.	[67]

9. Innovative façade combines biomimicry: Manuel Gea Gonzalez Hospital, Mexico City

The Manuel Gea González Hospital in Mexico City stands as a pioneering example of how architecture can actively contribute to urban environmental health through biomimicry. Designed with an innovative façade system by Elegant Embellishments, the building incorporates hexagonal tiles coated with titanium dioxide (TiO2), a photocatalytic material. This "smog-eating" skin is inspired by natural processes, particularly the way certain organisms or systems interact with their environment to purify or regulate.

When exposed to ambient ultraviolet light, the TiO2 reacts with urban air pollutants like nitrogen oxides (NOx) and volatile organic compounds (VOCs), breaking them down into less harmful compounds. This dynamic surface, resembling a vast, porous organism, not only mitigates local air pollution, equivalent to the daily emissions of numerous vehicles, but also serves as a striking visual statement. The Gea Hospital exemplifies a direct and impactful application of biomimetic principles, showcasing a performative envelope that integrates ecological function with aesthetic design, offering a compelling model for future urban development in polluted environments [68].

Fig. 5: Innovative environmentally sustainable construction techniques, technologies and materials, as well as infrastructures. materials used According to recent studies of the technology, the facade at Torre de Especial is reducing pollution by 1,000 cars per day. [69]

Innovative façade combines biomimicry: Expo 2015 Italian Pavilion, Milan

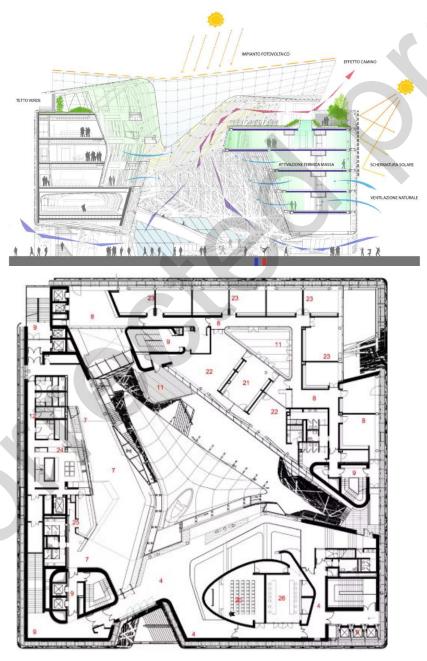


Fig. 6: This space is the starting point for the exhibition route, in the midst of the four volumes that make up Palazzo Italia. These four volumes house the Exhibition zone (West), the Auditorium and Events zone (South), the Office zone (North) and the Conference and Meeting zone (East). The façade of Palazzo Italia is clad in more than 700 I. Active BIODYNAMIC concrete panels with Italcementi's patented TX Active technology. [72]

The Expo 2015 Italian Pavilion, "Palazzo Italia," designed by Nemesi & Partners, stands as a profound architectural embodiment of biomimicry, drawing direct inspiration from the concept of an "urban forest" and an "osmotic organism." Its most striking feature is the intricate, branched external envelope, composed of over 700 unique, pre-cast concrete panels made from a special "i.active BIODYNAMIC" cement. This innovative material, containing titanium dioxide (TiO2), functions as a photocatalyst. Much like the process of photosynthesis in plants, when this "smog-eating" skin is exposed to sunlight, it actively breaks down air pollutants, converting them into inert salts and thereby helping to purify the surrounding atmosphere. Beyond its air-cleaning capabilities, the building's design, with its interplay of solids and voids and its "canopy" inspired roof with integrated photovoltaic glass, functions as a high-performance, energy-efficient structure. The Italian Pavilion thus exemplifies a holistic biomimetic approach, where the building's form, materials, and environmental performance are deeply intertwined with the regenerative and adaptive qualities observed in natural ecosystems.

Table 7. innovative façade combines biomimicry

Aspect	Description	Key	Benefits	Ref.
		Features/Technologies		
Photocatalytic TiO2	Developed by	- Self-cleaning effect (since	- Reduces smog	[70]
Technology	Italcementi, TiO2 acts	1995).	levels.	
	as a catalyst when	- Air-cleaning	- Improves air	
	activated by sunlight,	property (TX Active®	quality.	
	converting harmful	technology, 2006).	- Low	
	pollutants like NOx	- Durable and long-lasting.	maintenance.	
	into inert substances			
	(e.g., calcium nitrate,			
	water, and CO2).			
Manuel Gea Gonzalez	A 2,500 m² façade	- Biomimetic tiles:	 Improves local 	[71]
Hospital, Mexico City	designed by Elegant	Quasicrystal line pattern	air quality.	
	Embellishments,	based on sponges and corals.	- Provides cleaner	
	featuring biomimetic	- TiO2-coated ABS-	air for hospital	
	tiles inspired by	polycarbonate plastic:	surroundings.	
	sponges and corals.	Increases surface area and		
		creates turbulence for better		
		pollutant capture.		
		- Pollution reduction:		
		Neutralizes pollution		
		equivalent to 1,000 cars per		
		day.		
Expo 2015 Italian	A 9,000 m ² façade with	- Biodynamic concrete	- Reduces urban	[72]
Pavilion, Milan	900 biodynamic	panels: Made from 80%	pollution.	
	concrete panels,	recycled materials (e.g.,	- Combines	
	designed by Nemesi	Carrara marble scraps).	aesthetics with	
	and Partners. The	- NOx reduction : 20–80%	functionality.	
	design mimics a	(average 45%).	- Uses sustainable	
	"petrified forest" with	- Aesthetic design:	materials.	
	branching patterns	Resembles tree branches,		
	inspired by the tree of	symbolizing urban forests.		
	life.			
Biomimetic	The feeded mimi-	- Form and Function:	- Combines	[72]
	The façades mimic			[73]
Design Dringiples	natural structures (e.g.,	Mimics natural adaptability.	biomimicry with	
Principles	sponges, corals, and	- Sustainability: Uses	advanced	
	trees) to enhance	recycled materials and	technology Sets a	
	pollutant capture and	renewable energy.		
	air purification.	- Innovation: Integrates	benchmark for	
		TiO ₂ for active air	sustainable	
		purification.	design.	

5. RESULTS

Integrating biomimetic principles into façade design is a transformative approach for sustainable architecture. By drawing inspiration from nature, biomimetic adaptive façades significantly enhance energy efficiency, occupant comfort, and overall environmental performance. We've observed a clear evolution from passive to active façade systems, with notable advancements in:

- Double-skin façades: Improving thermal insulation and natural ventilation.
- Green walls: Contributing to thermal regulation, air quality, and biodiversity.
- Photovoltaic panels: Generating renewable energy.
- Self-regulating materials: Adapting dynamically to changing environmental conditions, optimizing performance without constant human intervention.

These developments demonstrate the significant potential for responsive building envelopes that actively adapt to their surroundings.

RECOMMENDATIONS:

Despite the promising advancements, several challenges need to be addressed to facilitate the widespread adoption of biomimetic façades:

- Cost Reduction: Focus on developing more cost-effective biomimetic solutions to overcome the barrier of high initial investment.
- Regulatory Simplification: Streamline regulatory processes to encourage innovation and implementation of these advanced systems.
- Interdisciplinary Collaboration: Foster stronger collaboration among architects, engineers, and biologists from the early stages of design to integrate diverse expertise effectively.
- Material Performance Enhancement: Prioritize future research on improving the durability, efficiency, and sustainability of biomimetic materials.
- Smart Technology Integration: Invest in research and development to seamlessly integrate smart technologies, further enhancing the adaptability and functionality of biomimetic façades.

By addressing these points, the architecture and construction industries can fully leverage biomimicry in early-stage design processes. This will lead to façade systems that not only minimize environmental impact but also contribute significantly to the resilience and sustainability of the built environment, fostering a deeper connection between architecture and nature.

CONFLICT OF INTEREST

The authors have no financial interest to declare in relation to the content of this article.

REFERENCES

- [1] Bannister, P., Moffitt, S., Zhang, H., Johnston, D., Shen, D., Robinson, D., Cooper, P., Ma, Z., Gomis, L. L., & Green, L. (2018). Building code energy performance trajectory: Final technical report. CRC for Low Carbon Living.
- [2] Yu, J.-S., Kim, J.-H., Kim, S.-M., & Kim, J.-T. (2017). Thermal and energy performance of a building with PV-applied double-skin façade. Proceedings of the Institution of Civil Engineers-Engineering Sustainability, 170(4), 345–353.
- [3] Klee, C., & Love, A. (2012). Thermal performance of façades. Fayette Research.
- [4] Nadoushani, Z. S. M., Akbarnezhad, A., Jornet, J. F., & Xiao, J. (2017). Multi-criteria selection of façade systems based on sustainability criteria. Building and Environment, 121, 67–78.
- [5] Sung, D. (2016). A new look at building façades as infrastructure. Engineering, 2(1), 63–68.

- [6] Körner, A., Born, L., Mader, A., Sachse, A., Saffarian, A., Westermeier, A., Poppinga, S., Bischoff, M., Gresser, G., Milwich, M., et al. (2017). A biomimetic compliant shading for complex free form façades. Smart Materials and Structures, 27(1), 017001.
- [7] Sendi, M. (2014). The effect of technology to integrate aesthetic desire of contemporary architecture with environmental principles in façade design. Journal of Architectural Engineering, 2(6).
- [8] Tabadkani, A., Roetzel, A., Li, H. X., & Tsangrassoulis, A. (2021). Design approaches and typologies of adaptive façades: A review. Automation in Construction, 121, 103450.
- [9] Yaman, M. (2021). Different façade types and building integration in energy efficient building design strategies. International Journal of Buildings Engineering Studies, 8(2), 49–61.
- [10] Shahin, H. S. M. (2019). Adaptive building envelopes of multi-story buildings as an example of high-performance building skins. Alexandria Engineering Journal, 58(1), 345–352.
- [11] Nalcaci, G. (2020). Modeling and implementation of an adaptive façade design for energy efficiently buildings based biomimicry. In Proceedings of the 2020 8th International Conference on Smart Grid (icSmartGrid) (pp. 140–145). IEEE.
- [12] Gaspari, J., Naboni, E., Ponzio, C., & Ricci, A. (2019). A study on the impact of climate adaptive building shells on indoor comfort. Journal of Façade Design and Engineering, 7(1), 27–40.
- [13] Tabadkani, A., Shoubi, M., Soflaei, F., & Banihashemi, S. (2019). Integrated parametric design of adaptive façades for user's visual comfort. Automation in Construction, 106, 102857.
- [14] Attia, S., Lioure, R., Declaude, Q., & Aujard, F. (2020). Future trends and main concepts of adaptive façade systems. Energy Science & Engineering, 8(9), 3255–3272.
- [15] Varshabi, N., Selçuk, S., & Avinç, G. (2022). Biomimicry for energy-efficient building design: A bibliometric analysis. Journal of Biomimetics, 7(1), 21.
- [16] Meena, A., D'costa, D., Bhavsar, S., Kshirsagar, M., & Kulkarni, S. (2021). Applications of biomimicry in construction and architecture: A bibliometric analysis. Library Philosophy and Practice, 2021.
- [17] Simões, I., Simões, N., Santos, I., Brett, M., Tadeu, S. F., & Silva, H. (2019). Energy and sustainable performance of a multifunctional façade. Journal of Energy and Sustainable Development, 237, 51–61.
- [18] Wang, J., Beltrán, L., & Kim, J. (2014). From static to kinetic: A review of acclimated kinetic building envelopes. In Proceedings of the Solar 2014 Conference, American Solar Energy Society. American Solar Energy Society.
- [19] Loonen, R. C. G. M., Trc ka, M., Cóstola, D., & Hensen, J. L. M. (2013). Climate adaptive building shells: State-of-the-art and future challenges. Renewable and Sustainable Energy Reviews, 25, 483–493.
- [20] Hachem-Vermette, C. (2018). Multistory building envelope: Creative design and enhanced performance. Solar Energy, 159, 710–721.
- [21] Al-Din, S. S. M., & Nia, H. A. (2017). "Beauty" based on the functionality of smart skin in buildings. Open House International, 42(2), 60–69.
- [22] Hubert, T., Dugué, A., Wu, T. V., Aujard, F., & Bruneau, D. (2022). An adaptive building skin concept resulting from a new bioinspiration process: Design, prototyping, and characterization. Energies, 15(3), 891.
- [23] Webb, M. (2021). Biomimetic building façades demonstrate potential to reduce energy consumption for different building typologies in different climate zones. In Springer eBooks. Springer.
- [24] Arbabzadeh, M., Etessam, I., & Shemirani, M. M. (2020). Passive thermoregulation in vernacular and biomimetic architecture in hot and arid climate. International Journal of Architecture & Urban Planning, 30(2), 198–211.
- [25] Tokuç, A., Özkaban, F., & Çakır, F. (2018). Biomimetic façade applications for a more sustainable. In F. Pacheco Torgal (Ed.), Interdisciplinary expansions in engineering and design with the power of biomimicry (pp. 119–137). IntechOpen.
- [26] Gruber, P., & Gosztonyi, S. (2010). Skin in architecture: Towards bioinspired façades. Journal of Design and Nature, 138, 503–513.
- [27] Gosciniak, M., & Januszkiewicz, K. (2019). Architecture inspired by nature. The human body in Santiago Calatrava's works. In IOP Conference Series: Materials Science and Engineering, 471(8), 082041.

- [28] Sadegh, S. O., Haile, S. G., & Jamshidzehi, Z. (2022). Development of two-step biomimetic design and evaluation framework for performance-oriented design of multi-functional adaptable building envelopes. Journal of Daylighting, 9(1), 13–27.
- [29] Karakoç, E., & Çağdaş, G. (2021). Adaptive architecture based on environmental performance: An advanced intelligent façade (AIF) module. Journal of the Gazi Faculty of Architecture and Engineering, 30(2), 630-650.
- [30] Kasinalis, C., Loonen, R., Cóstola, D., & Hensen, J. (2014). Framework for assessing the performance potential of seasonally adaptable façades using multi-objective optimization. Energy and Buildings, 79, 106–113.
- [31] Moghtadernejad, S., Mirza, M. S., & Chouinard, L. E. (2019). Façade design stages: Issues and considerations. Journal of Architectural Engineering, 25(2), 04018033.
- [32] Mohtashami, N., Fuchs, N., Fotopoulou, M., Drosatos, P., Streblow, R., Osterhage, T., & Müller, D. (2022). State of the art of technologies in adaptive dynamic building envelopes (ADBEs). Energies, 15(3), 829.
- [33] Aksamija, A. (2013). Sustainable façades: Design methods for high-performance building envelopes. Wiley.
- [34] Loonen, R. C. G. M. (2015). Bio-inspired adaptive building skins. In F. Pacheco Torgal, J. A. Labrincha, M. V. Diamanti, C. P. Yu, & H. K. Lee (Eds.), Biotechnologies and biomimetics for civil engineering (pp. 115–134). Springer International Publishing.
- [35] Craig, S., Harrison, D., Cripps, A., & Knott, D. (2008). Bio-TRIZ suggests radiative cooling of buildings can be done passively by changing the structure of roof insulation to let longwave infrared pass. Journal of Bionic Engineering, 5(1), 55–66.
- [36] Dahl, R. (2013). Cooling concepts: Alternatives to air conditioning for a warm world. Environmental Health Perspectives, 121(1), a18.
- [37] Poppinga, S., Zollfrank, C., Prucker, O., Rühe, J., Menges, A., Cheng, T., & Speck, T. (2017). Toward a new generation of smart biomimetic actuators for architecture. Advanced Materials, 29(40), 1703653.
- [38] Szczyrba, S. (2016). Human and nature symbiosis: Biomimic architecture as the paradigm shift in mitigation of impact on the environment [master's thesis, Miami University].
- [39] Arslan, S., & Gönenç, S. A. (2007). Biomimetic Influence on the Architectural Design Paradigm. Journal of the Gazi Faculty of Architecture and Engineering 22(2), 451–460.
- [40] Gruber, P., McGinley, T., & Muehlbauer, M. (2017). Towards an agile bio digital architecture: Supporting a dynamic evolutionary and developmental view of architecture. In A. T. Esteves (Ed.), 3rd International Conference of Bio digital Architecture and Genetics.
- [41] Tuğrul, F., & Savaşır, K. (2012). Biomimetics: An Examination of the Architectural Concept in the Context of Sustainability. In Sustainable Building Design Conference
- [42] Speck, T., Knippers, J., & Speck, O. (2015). Self-X materials and structures in nature and technology: Bioinspiration as a driving force for technical innovation. Architectural Design, 85(5), 34–39.
- [43] Forouzanfar, M. H., et al. (2015). Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks in 188 countries, 1990-2013: A systematic analysis for the Global Burden of Disease Study 2013. The Lancet, 386(10010), 2287–2323.
- [44] Melbourne City Council. (2004). CH2 setting a new world standard in green building design.
- [45] Badarnah, L., & Kadri, U. (2015). A methodology for the generation of biomimetic design concepts. Architectural Science Review, 58(2), 120–133.
- [46] Teng, A. [Photographer]. (n.d.). [CC BY 3.0]. Wikimedia.
- [47] Fujishima, A., Zhang, X., & Tryk, D. (2008). TiO2 photocatalysis and related surface phenomena. Surface Science Reports, 63(12), 515–582.
- [48] Burton, A. (2012). Titanium dioxide photo cleans polluted air. Environmental Health Perspectives, 120(6), A243.
- [49] Boden, S. A., & Bagnall, D. M. (2006). Bio-mimetic subwavelength surfaces for near-zero reflection sunrise to sunset. In Conference Record of the 2006 IEEE 4th World Conference on Photovoltaic Energy Conversion (pp. 1358–1361). IEEE.
- [50] Yang, Q., Zhang, X., Bagal, A., Guo, W., & Chang, C.-H. (2013). Antireflection effects at nanostructured material interfaces and the suppression of thin-film interference. Nanotechnology, 24(23), 235202.

- [51] Soares, N., Costa, J. J., Gaspar, A. R., & Santos Soares, P. N. (2013). Review of passive PCM latent heat thermal energy storage systems towards buildings' energy efficiency. Energy and Buildings, 59, 82–103.
- [52] Tokuç, A., Yesügey, S. C., & Başaran, T. (2017). An evaluation methodology proposal for building envelopes containing phase change materials: The case of a flat roof in Turkey's climate zones. Architectural Science Review, 60(5), 408–423.
- [53] Sardá, C., & Gómez Pioz, J. (2015). Architectural bio-photo reactors: Harvesting microalgae on the surface of architecture. In F. Pacheco Torgal, J. A. Labrincha, M. V. Diamanti, C. P. Yu, & H. K. Lee (Eds.), Biotechnologies and biomimetics for civil engineering (pp. 163–179). Springer International Publishing.
- [54] Öncel, S. Ş., Köse, A., & Öncel, D. Ş. (2016). Façade integrated photobioreactors for building energy efficiency. In Start-Up Creation (pp. 237–299). Springer.
- [55] Satyanarayana, T., Prakash, A., & Johri, B. N. (2012). Microorganismes in environemental management: Microbes and environement. (pp. 1–819). Springer.
- [56] Madigan, M. T., Martinko, J. M., Stahl, D. A., & Clark, D. P. (2000). Brock biology of microorganisms (13th ed.). Pearson Education.
- [57] Cloud 9. (2007). Media-Tic building press release.
- [58] Zarateman [Photographer]. (n.d.). [CC0]. Wikimedia Commons.
- [59] Juaristi, M., & Monge-Barrio, A. (2016). Adaptive façades in temperate climates. An in-use assessment of an office building. In 11th Conference on Advanced Building Skins.
- [60] Google. (2018). Google maps. [Online map]. https://www.google.com/maps/@30.0444,31.2357,15z
- [61] Composites and architecture. (2012). [Composites and architecture]. https://compositesandarchitecture.com/?p=68
- [62] Masselter, T., Poppinga, S., Lienhard, J., Schleicher, S., Knippers, J., & Speck, T. (2012). The flower of Strelitzia reginae as concept generator for the development of a technical deformation system for architectural purposes. In 7th Plant Biomechanics International Conference (p. 391).
- [63] Chickadel, L. (2006). [Strelitzia reginae]. From Bermuda Botanical Gardens.
- [64] ArchDaily. (2011). In progress: One ocean soma. https://www.archdaily.com/208700/in-progress-one-ocean-soma
- [65] Hyolee2 [Photographer]. (n.d.). [CC BY-SA 3.0]. Wikimedia Commons.
- [66] James, M. (2017). FAÇADE-integrated sustainable technologies for tall buildings: A discussion of the extent of adoption of such technologies in the most sustainable fifth generation tall buildings and the trends of the future. International Journal of Engineering Technology, Management and Applied Sciences, 5(5), 154–160.
- [67] Topličić-Ćurčić, G., Jevtić, D., Grdić, D., Ristić, N., & Grdić, Z. (2017). Photocatalytic concrete—Environment friendly material. In 5th International Conference Contemporary Achievements in Civil Engineering.
- [68] Shebl, S. S., Seddeq, H. S., & Aglan, H. A. (2011). Effect of micro-silica loading on the mechanical and acoustic properties of cement pastes. Construction and Building Materials, 25(10), 3903–3908. https://doi.org/10.1016/j.conbuildmat.2011.04.021
- [69] Gumińska, A. (2017). Correlations between climate change and the modern European construction. IOP Conference Series: Materials Science and Engineering, 245, 062026. https://doi.org/10.1088/1757-899X/245/6/062026
- [70] Salla, F. (2014). Rhino projects: A smog-eating façade. VisualArq. https://blog.visualarq.com/2014/03/07/rhino-projects-a-smog-eating-facade/
- [71] New Atlas. (2014). Palazzo Italia to get air-purifying facade for Milan Expo 2015. https://newatlas.com/palazzo-italia-milan-expo-smog-purifying-facade/32204/
- [72] Architizer. (n.d.). Italy pavilion, Milan Expo 2015. https://architizer.com/projects/italy-pavilion-milan-expo-2015/
- [73] Lizenz, C. [Photographer]. (n.d.). [Creative Commons by-sa-3.0 de]. Wikimedia Commons.