Benha International Journal of Physical Therapy

Benha International Journal of Physical Therapy

Online ISSN: 3009-7266 Home page: https://bijpt.journals.ekb.eg/

Original research

Assessment of Isokinetic Muscle performance of Hip Abductors in Knee Osteoarthritis.

Ahmed F Mohamed 1*, Salwa F Abd El Magid², Nesreen F Mahmoud³

- 1. Physical therapist at Qalyubia Health Administration affiliated with the Ministry of Health, Egypt 2. Professor at department of Musculoskeletal disorders and its surgery, Faculty of Physical
- .Therapy, Cairo University, Egypt
- 3. Lecturer at department of Musculoskeletal disorders and its surgery, Faculty of Physical Therapy, Cairo University, Egypt.

*Correspondene to: Ahmed F Mohamed, Physical therapist at Qalyubia Health Administration affiliated with the Ministry of Health, Egypt. E-mail:

ahmedfarag164 095@gmail.co

<u>III</u>

Article history: Submitted: 9-10-

2025 Revised: 29-10-

2025

Accepted: 06-11-2025

Abstract:

Background: Knee osteoarthritis (OA) is characterized by the progressive degeneration of articular cartilage. Emerging evidence suggested that hip muscle strength influences knee joint loading and may contribute to disease progression. Hip abductor strength has been associated with reduced knee adduction moments, potentially decreasing pain and improving function in individuals with knee OA. Isokinetic dynamometry provides a valid and reliable means of assessing joint torque, power, and velocity. Purpose: This study aimed to evaluate differences in the isokinetic performance of the hip abductor muscles between the painful and less painful sides in patients with knee osteoarthritis, and to examine the correlations of these parameters with pain intensity and functional disability. Thirty-five patients diagnosed with unilateral or bilateral knee OA were recruited from the outpatient clinic of the Faculty of Physical Therapy, Cairo University, Egypt. Isokinetic performance of the hip abductors—including peak power, torque, and work—was evaluated using the Biodex isokinetic dynamometer. Results: Significant differences were observed in hip abductor isokinetic performance between the painful and the less or non-painful sides in both unilateral and bilateral OA cases. In unilateral OA, the p-values were: power = 0.012, torque = 0.002, and work = 0.008. Similarly, in bilateral OA, significant differences were found (power < 0.001, torque < 0.001, and work < 0.001). Conclusion: The painful side exhibited reduced hip abductor performance compared to the less or non-painful side in patient suffered from either unilateral or bilateral knee osteoarthritis. No significant correlations were found between isokinetic parameters and either pain severity or functional disability in patient with chronic knee osteoarthritis.

Keywords: Hip abductors, Isokinetic dynamometer, Knee Osteoarthritis, Muscle power, Muscle torque.

Introduction

Knee osteoarthritis (OA) is traditionally regarded as a progressive degeneration of the articular cartilage. However, recent evidence suggests that OA is a multifactorial inflammatory condition affecting the entire synovial joint. This includes not only the mechanical deterioration of the cartilage but also structural and functional

alterations in the meniscus, synovial fluid, ligaments, subchondral bone, and surrounding soft tissues ¹.

Osteoarthritis pathology encompasses physiological and biological changes in the hyaline cartilage and periarticular structures, accompanied by subchondral sclerosis, synovial proliferation, and osteophyte formation ².

Please cite this article as follows: Mohamed A, El Magid S, Mahmoud N. Assessment of Isokinetic Muscle performance of Hip Abductors in Knee Osteoarthritis. B Int J PT 2025 Dec;3(2):285 -293. DOI: 10.21608/bijpt.2025.431119.1122

Weakness in the hip abductor muscles has been implicated in the development of various hip and knee disorders. In individuals with knee osteoarthritis, elevated peak knee adduction moments have been observed ³.

The knee adduction moment refers to the medial load acting on the knee joint in the frontal plane, which results in medial rotation of the tibia relative to the femur during walking ⁴.

This mechanical load has been directly associated with the severity and progression of medial compartment osteoarthritis ⁵.

A previous study indicated that the strength of hip abductor muscles is crucial in minimizing the adduction moment on the knee. These muscles are essential for stabilizing the pelvis, as they counteract the drop on the opposite side when standing on one leg during walking. This stabilization helps distribute forces more effectively, preventing excessive stress on the inner part of the knee, particularly during the stance phase of walking ⁶.

In individuals with knee osteoarthritis, both the Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) and the McGill Pain Questionnaire (MPQ) have demonstrated a strong association between pain severity and functional impairment ⁷. Persistent pain often leads to reduced physical activity, which may contribute to muscle atrophy and further functional decline ⁸.

The widespread application of isokinetic devices in orthopedic and sports medicine has led to the development of several reliable tools for assessing muscular performance ⁹.

Among these, the Biodex system has been extensively utilized for isokinetic testing of muscle strength, offering objective evaluations of muscular function that are commonly employed in clinical and rehabilitation research ¹⁰.

Despite the recognized role of hip abductors in knee joint mechanics, limited research has explored their isokinetic performance in individuals with knee osteoarthritis, particularly when comparing painful and less painful limbs. Understanding whether differences exist in muscle performance, and whether these differences correlate with pain or functional disability, may offer insights into rehabilitation strategies. Therefore, this study aimed to assess the isokinetic performance of the hip abductors in patients with unilateral or bilateral knee OA and to investigate

the relationship between isokinetic parameters, pain intensity, and functional limitation.

Methods:

This observational correlational study was conducted at the outpatient clinic and isokinetic laboratory of the Faculty of Physical Therapy, Cairo University.

A total of Thirty-five participants, comprising both men and women aged between 40 and 65 years, were recruited from the outpatient clinic. This study extended from June 2024 and ended to Mars 2025. All participants were diagnosed with unilateral or bilateral primary knee osteoarthritis (OA), classified as Grade II (mild) or Grade III (moderate) according to the Kellgren-Lawrence grading system.

Ethical approval for the study was obtained from the Ethical Committee of the Faculty of Physical Therapy, Cairo University (approval NO: P.T.REC/012/005242).

Inclusion Criteria:

Participants were eligible for inclusion in the study if they met all of the following conditions:

- •Were aged between 40 and 65 years, irrespective of sex 11.
- •Had been referred by an orthopedic surgeon and diagnosed with unilateral or bilateral primary knee osteoarthritis (with one knee more painful than the other), classified as Grade II (mild) or Grade III (moderate) according to the Kellgren–Lawrence (KL) scale¹².
- •Presented a body mass index (BMI) between 18.5 kg/m^2 and 41.33 kg/m^2 13 .

Exclusion Criteria:

Candidates were excluded from participation if they met any of the following conditions:

- •Had a history of systemic or neurological disorders affecting lower extremity biomechanics (e.g., stroke, cerebral palsy, or spinal cord injury) 14,15.
- •Reported previous lower limb trauma or sustained injuries to knee ligaments or the meniscus ¹⁶.
- •Had undergone prior surgical procedures on the knee or hip 17 .

Assessment Methods:

Before data collection, participants received a detailed explanation of the study protocols and provided written informed consent. Anthropometric measurements were obtained using a calibrated weight and height scale, and body mass index (BMI) was calculated.

Visual analogue scale:

Pain intensity was quantified using the visual analogue scale (VAS). Participants were instructed to mark the point on a 10-centimeter horizontal line that best reflected their pain level, with one end representing "no pain" and the other end corresponding to "severe pain" ¹⁸.

Assessment of muscular performance:

Muscular performance was evaluated using the Biodex System 4 Pro in concentric mode. This device has demonstrated excellent test–retest reliability for measuring muscle torque, power, and work ¹⁹.

During testing, the dynamometer's rotational axis was aligned with the hip center in the coronal plane. A custom hip attachment secured the test limb via a strap positioned just above the knee, ensuring proper fixation and minimal extraneous movement ²⁰.

A familiarization session was conducted in which subjects performed 5 to 10 submaximal practice repetitions to ensure proper technique, as verified by the examiner. During the isokinetic testing phase, subjects were positioned in front of the Biodex dynamometer with the device's axis properly aligned to the center of the hip. To minimize trunk movement, each subject was instructed to grasp the dynamometer head firmly for support. Testing commenced with the right limb, with each subject performing 5 maximaleffort repetitions at an angular velocity of 120°/s; trials exhibiting excessive trunk motion were excluded from analysis. Following a 60-second rest interval, the same protocol was repeated for the left limb. Peak hip abduction torque, power, and work were recorded for subsequent analysis (Fig.1).²¹.

Fig (1) Patient familiarized with 5 repetitions to the machine before testing.

Functional Assessment:

The Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) was employed as a self-report tool to evaluate functional disability. The WOMAC questionnaire consists of 24 items, categorized into three domains: pain (5 items), stiffness (2 items), and physical function (17 items). Participants completed this questionnaire to assess their condition over the past 48 hours. Higher total scores on the WOMAC indicate greater levels of impairment in pain, stiffness, and physical function **Appendix** (1) ²².

PF subscale:	ج) الحركة الوظيفية :
What degree of difficulty do you have	ما هي شدة الصعوبة ؟
1: descending stairs	1 - عندما تنزل الدرج
2: ascending stairs	2 - عندما تصعد الدرج
3: rising from sitting	3 - عند الوقوف بعد الجلوس
4: standing	4 - عند الوقوف
5: bending to floor	5 - عندما تتحنى إلى الأرض.
6: walking on flat	6 - عندما تمشى على أرض مستوية
7: getting in / out of car	7 - عندما تركب أو تتزل السيارة
8: going shopping	8 - عندما تذهب إلى السوق
9: putting on socks / stockings	9- عندما تلبس الجوارب (القلسيط، الكلاسط، التقاشر)
10: rising from bed	10- عندما تقوم من الفراش.
11: taking off socks / stockings	11- عندما تتزع الجوارب (القلسيط، الكلاسط، التقاشر)
12: lying in bed	12 - عندما تستلقى على الغراش.
13: getting in / off bath	13 - عندما تدخل أو تخرج من حوض الاستحمام
14: sitting	14 - عند الجلوس على الكرسيّ.
15: getting on / off toilet	15 - عندما تجلس أو تقوم من المرحاض.
16: heavy domestic duties	16 - عندما تقوم بأعمال منزلية كبيرة.
17: light domestic duties	10 - عندما تقوم بأعمال منزلية خفيفة. 17 - عندما تقوم بأعمال منزلية خفيفة.

Annex 1. English and Arab versions of WOMAC index

Appendix (1) Arabic version of WOMAC for Functional Assessment.

Statistical analysis

Descriptive statistics were calculated for demographic and clinical variables. Group comparisons were performed using unpaired t-test, while data normality was evaluated using both the Shapiro-Wilk and Kolmogorov-Smirnov tests. Pearson's correlation coefficient was computed to assess the relationships. Furthermore, paired t-tests were conducted to compare isokinetic parameters between the painful and non-painful or less painful sides; when significant differences were observed, the Least Significant Difference (LSD) test was subsequently applied. All statistical analyses were performed using IBM SPSS Statistics for Windows, Version 25 (IBM SPSS, Chicago, IL, USA), with a significance level set at p < 0.05.

Results

Participant Characteristics:

A total of 35 participants (23 women, 12 men) with knee osteoarthritis (OA) completed the study. The demographic data of the participants are presented in **Table 1**. Nine patients (30%) had unilateral knee OA (right: n=4; left: n=5), while 26 patients (70%) had bilateral involvement.

In bilateral cases (n=26), the mean pain intensity on VAS for the more painful side was 4.73 ± 1.12 , and for the less painful side was 2.13 ± 0.74 . However, in unilateral cases (n=9), the mean pain

intensity on VAS for the painful side was 4.22 \pm 1.09.

The overall mean WOMAC score was 29.71 ± 7.33 (n = 35).

Table 1: Demographic characteristics of patients with osteoarthritis (OA) of the knee

	N	Minimum	Maximum	Mean	Std. Deviation
Age (years)	35	40	63	56.29	5.322
Weight (kg)	35	52.0	122.0	91.349	13.8974
Height (cm)	35	165	186	176.34	5.11
BMI (kg/m²)	35	19.1	35.8	29.180	3.8334
Duration of disease	35	4	180	80.69	42.357

Isokinetic Assessment:

The isokinetic performance of the hip abductors was systematically compared between the painful and less or non-painful sides in both unilateral and bilateral knee osteoarthritis (OA) groups. As summarized in Table 2, patients with unilateral OA (n = 9) demonstrated significantly lower mean values for power, torque, and work on the painful side compared to the non-painful side (power: $28.04 \pm 15.15 \, \text{W}$ vs. $48.77 \pm 11.98 \, \text{W}$, p = 0.012; torque: $50.72 \pm 10.33 \, \text{Nm}$ vs. $66.86 \pm 7.80 \, \text{Nm}$, p = 0.002; work: $94.16 \pm 51.93 \, \text{J}$ vs. $152.03 \pm 19.72 \, \text{J}$, p = 0.008). Similarly, in the bilateral OA group (n = 26), the more painful side

exhibited significantly reduced isokinetic parameters relative to the less painful side (power: 20.98 ± 10.92 W vs. 45.72 ± 28.21 W, p < 0.001; torque: 48.68 ± 14.90 Nm vs. 73.37 ± 27.48 Nm, p < 0.001; work: 72.05 ± 33.19 J vs. 115.48 ± 51.83 J, p < 0.001).

These findings indicate a marked reduction in hip abductor muscle performance on the affected side, regardless of whether OA involvement was unilateral or bilateral. The statistical significance of these differences, as well as the mean differences and confidence intervals, are detailed in Table 2.

Table 2. Isokinetic Performance of Hip Abductors: Painful vs. Less/Non-painful Side

Group	Parameter		Less/Non-painful Side Mean ± SD	Mean Difference (95% CI)	t-value	p-value
Unilateral (n=9)	Power (W)	28.04 ± 15.15	48.77 ± 11.98	-20.72 (-35.46, -5.97)	-3.24	0.012
	Torque (Nm)	50.72 ± 10.33	66.86 ± 7.80	-16.13 (-24.26, -8.00)	-4.58	0.002
	Work (J)	94.16 ± 51.93	152.03 ± 19.72	-57.87 (-99.31, -19.44)	-3.47	0.008
Bilateral (n=26)	Power (W)	20.98 ± 10.92	45.72 ± 28.21	-24.74 (-33.98, -15.50)	-5.512	<0.001
	Torque (Nm)	48.68 ± 14.90	73.37 ± 27.48	-24.69 (-33.47, -15.91)	-5.79	< 0.001
	Work (J)	72.05 ± 33.19	115.48 ± 51.83	-43.43 (-59.40, -27.46)	-5.60	< 0.001

Values are expressed as mean \pm SD (standard deviation); mean differences (95% CI) and t-values derived from paired t-tests; p < 0.05 considered statistically significant.

Correlations:

Pearson's correlation analyses were used to examine the associations between isokinetic measures (peak power, peak torque, and total work), pain intensity (VAS), and functional disability (WOMAC) in patients with unilateral and bilateral knee osteoarthritis. As shown in Table 3, none of the isokinetic performance variables

Table (3). Pearson Correlations between Isokinetic Parameters, Pain (VAS), and WOMAC Scores in Unilateral and Bilateral Knee OA Groups.

correlated significantly with either VAS or WOMAC scores—neither on the most painful side (whole sample, n=35) nor on the less painful side in those with bilateral involvement (n=26) (all p > 0.05). These findings suggest that hip abductor muscle performance, as assessed by isokinetic testing, is not directly associated with self-reported pain intensity or functional limitation in this study. Parameters, Pain (VAS), and WOMAC Scores in

Group	Isokinetic Parameter	VA	AS	WOMAC		
		r	p	r	P	
Most painful for all sample (n = 35)	Power (W)	0.08	0.82	-0.19	0.62	
	Torque (Nm)	-0.12	0.74	-0.23	0.55	
	Work (J)	0.15	0.70	-0.11	0.76	
Less painful in the bilateral sample (n = 26)	Power (W)	-0.09	0.66	-0.17	0.41	
	Torque (Nm)	-0.14	0.52	-0.21	0.31	
	Work (J)	-0.10	0.63	-0.18	0.39	

 $r = Pearson \ correlation \ coefficient; \ p = p$ -value. No significant correlations were found (all p > 0.05).

Discussion

This study demonstrated that individuals with knee osteoarthritis (OA) exhibit significantly reduced peak torque, power, and work of the hip abductors on the more painful limb compared to the less painful or non-painful side. Notably, no significant correlations were observed between isokinetic performance measures and either pain intensity (assessed by VAS) or functional disability (evaluated via WOMAC). These findings suggest that, although hip abductor muscle weakness is evident in the painful limb, it may not directly relate to the subjective experience of pain or the degree of self-reported functional limitation in this study.

Isokinetic Assessment:

The use of isokinetic dynamometry provided an objective and reliable method to quantify muscle strength deficits, with prior research demonstrating excellent intraclass correlation coefficients (ICC ranging from 0.74 to 0.99) for torque measurements ²³. Isokinetic testing is widely regarded as the gold standard for muscle

performance evaluation due to its capacity to control contraction velocity and isolate specific muscle groups, thereby minimizing measurement variability ⁹. Furthermore, hip abduction assessment at 120°/second in a standing position has been shown to offer excellent reliability and better mimic functional movement patterns compared to non-weight-bearing protocols ²⁴.

Correlation between hip abductors and knee osteoarthritis:

The observed reductions in hip abductor power—42.5% lower in unilateral OA patients on the affected side—likely contribute to impaired pelvic stabilization during gait and consequently increase medial knee joint loading, a key factor in OA progression ⁶.

This asymmetry in muscle performance may reflect compensatory mechanisms aimed at offloading the affected knee, consistent with studies linking hip abductor weakness to elevated knee adduction moments and disease progression. This association supports the biomechanical rationale that strengthening the hip abductors may

Please cite this article as follows: Mohamed A, El Magid S, Mahmoud N. Assessment of Isokinetic Muscle performance of Hip Abductors in Knee Osteoarthritis. B Int J PT 2025 Dec;3(2):285 -293. DOI: 10.21608/bijpt.2025.431119.1122

^{**.} Correlation is significant at the 0.01 level (2-tailed).

mitigate medial compartment loading and benefit patients with knee OA ²⁵.

Several studies corroborate the present findings of hip abductor deficits in knee OA populations. Rutherford et al. (2014) observed significantly lower isometric hip abductor strength in medial knee OA patients compared to healthy controls ²⁶. Alnahdi et al. (2012) reported a 24% reduction in hip abductor strength among this demographic ²⁷. Hislop et al. (2022) compared people with unilateral knee OA to healthy controls and found that hip abduction strength (measured bilaterally by dynamometry) was ~9% lower on the symptomatic limb and ~16% lower (range 16-34%) bilaterally in the OA group versus controls ²⁸. Systematic reviews confirm a frequent presence of weakness in hip abductors and external rotators in medial knee OA, which may contribute to altered joint mechanics and increased medial compartment loading ^{29,30}. Additionally, Hinman et al. (2010), Ferber et al. (2011), and Hui et al. (2019) identified associations between hip muscle weakness, altered gait biomechanics, and knee OA pathomechanics 31,32,33.

Despite the evident weakness in hip abductor muscles, the absence of significant correlations between isokinetic parameters and pain or function diverges from some prior studies. For example, Costa et al. (2010) reported a strong negative correlation between hip abductor peak torque and both pain intensity and functional impairment in a cohort of 50 knee OA patients. In that study, weaker hip abductors were consistently associated with greater pain and disability, directly contradicting the present null findings for VAS and WOMAC associations ³⁴.

Hislop et al. (2023) further found that in individuals with unilateral knee OA, hip muscle strength measured in multiple directions was positively related to performance on functional tests (such as the 40-meter walk, sit-to-stand, and stair climb) and balance tasks. Particularly, hip abduction torque was a strong predictor of better mobility and balance, as demonstrated by large coefficients of determination ($R^2=0.48-0.65$) ³⁵. These results suggest a clear functional link between hip abductor strength and real-world mobility; however, such a relationship was not replicated in the present study, which relied on **WOMAC** for functional assessment. divergence raises the possibility that objective performance-based tests may be more sensitive than subjective self-reported outcomes, or that sample differences affected these findings.

Discrepancies in the literature may reflect methodological variation. For instance, Tevald et al. (2016) utilized handheld dynamometry in non-weight-bearing positions, as opposed to the standing, weight-bearing isokinetic testing used in the present study. Differences in participant characteristics, assessment tools, and study design likely contributed to the varying results ³⁶.

In addition, the present findings suggest that hip abductor weakness, while measurable objectively, may not alone explain the variance in patient-reported pain or functional limitation, highlighting the multifactorial nature of symptom manifestation in knee OA.

The literature supports the role of hip abductor strengthening as a component of therapeutic interventions. Exercise programs targeting these muscles, either in isolation or combined with broader lower extremity exercises, have been shown to increase muscle strength, reduce knee pain, and improve function ^{37,38}.

The intensity of such programs typically ranged from 50 to 80% of maximum voluntary contraction, performed three to five times per week over six weeks to three months, and demonstrated clinically meaningful benefits ³⁹. These findings endorse the inclusion of hip abductor strengthening within rehabilitation protocols for knee OA patients.

Nevertheless, it remains uncertain whether hip abductor weakness is primarily a consequence of knee OA or a modifiable risk factor influencing disease progression ⁴⁰. Future longitudinal studies are warranted to clarify the directionality of this relationship (whether hip abductor weakness was the cause or the consequence of knee OA). Additionally, the implications of strengthening exercises on knee joint loading warrant further investigation to optimize exercise prescriptions aimed at altering disease trajectory.

Conclusions:

The findings of this study indicate that patients with osteoarthritis (OA) of the knee show lower isokinetic torque, power, and work in the hip abductor muscles on the painful side compared to the non-painful side in cases of unilateral knee OA. Similarly, patients with bilateral knee OA exhibit lower isokinetic torque, power, and work in the hip abductor muscles on the most painful side compared to the less painful side. Additionally,

Please cite this article as follows: Mohamed A, El Magid S, Mahmoud N. Assessment of Isokinetic Muscle performance of Hip Abductors in Knee Osteoarthritis. B Int J PT 2025 Dec;3(2):285 -293. DOI: 10.21608/bijpt.2025.431119.1122

there is no correlation found between measures of hip abductor isokinetic performance and pain or functional disability for either the most painful side or the less painful side in patients with knee OA. **Funding:**

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Conflicting interest:

None.

Acknowledgement:

The authors would like to express their sincere gratitude to Professor Dr. Mona Mohammed Ebrahim for her valuable assistance and guidance in the statistical analysis of this study. Her expertise and support greatly contributed to the completion of this work.

References

- 1. Kan HS, Chan PK, Chiu KY, Yan CH, Yeung SS, Ng YL, Shiu KW, Ho T. Non-surgical treatment of knee osteoarthritis. Hong Kong Med J. 2019 Apr;25(2):127-133.
- 2.McDonough CM, Jette AM. The contribution of osteoarthritis to functional limitations and disability. Clin Geriatr Med. 2010;26:387–99.
- 3.Hurwitz D. E., Ryals A. B., Case J. P., Block J. A., Andriacchi T. P. The knee adduction moment during gait in subjects with knee osteoarthritis is more closely correlated with static alignment than radiographic disease severity, toe out angle and pain. Journal of Orthopaedic Research. 2002;20(1):101–107.
- 4.Creaby MW. It's not all about the knee adduction moment: the role of the knee flexion moment in medial knee joint loading. Osteoarthr Cartil. 2015; 23:1038–1040.
- 5. Mündermann A, Dyrby CO, Andriacchi TP. Secondary gait changes in patients with medial compartment knee osteoarthritis: Increased load at the ankle, knee, and hip during walking. Arthritis Rheum. 2005;52(9):2835–2844.
- 6.Chang A, Hayes K, Dunlop D, Song J, Hurwitz D, Cahue S. Hip abduction moment and protection against medial tibiofemoral osteoarthritis

- progression. Arthritis Rheum. 2005;52:3515–3519.
- 7.Creamer, P., Lethbridge-Cejku, M., & Hochberg, M. C. Factors associated with functional impairment in symptomatic knee osteoarthritis. Rheumatology, 2004, 39(5), 490-496. 203-206.
- 8.Dekker, J., Tola, P., Aufdemkampe, G., & Winckers, M. Negative affect, pain and disability in osteoarthritis patients: the mediating role of muscle weakness. Behaviour research and therapy, 1993, 31,(2)
- 9. Feiring, D. C., Ellenbecker, T. S., & Derscheid, G. L. Test-retest reliability of the Biodex isokinetic dynamometer. Journal of Orthopaedic & Sports Physical Therapy, 1990, 11(7), 298-300.
- 10.Taylor, N.A.S., Sanders, R.H., Howick, E.I. et al. Static and dynamic assessment of the Biodex dynamometer. Europ. J. Appl. Physiol. 62, 180–188.
- 11.Gonçalves, G. H., Selistre, L. F. A., Petrella, M., & Mattiello, S. M. Kinematic alterations of the lower limbs and pelvis during an ascending stairs task are associated with the degree of knee osteoarthritis severity. The Knee, 2017, 24(2), 295-304.
- 12.Kellgren JH, Lawrence JS. Radiological assessment of osteo-arthrosis. Ann Rheum Dis. 1957:16:494–502.
- 13.Renata Alqualo Costa, Leda Magalhaes de Oliveira, Sandra Hiroko Watanabe, Anamaria Jones, Jamil Natour, Isokinetic assessment of the hip muscles in patients with osteoarthritis of the knee, 2010, Clinics, Volume 65, Issue 12,
- 14.Wu, CH., Mao, HF., Hu, JS. et al. (2018). The effects of gait training using powered lower limb exoskeleton robot on individuals with complete spinal cord injury. Journal of NeuroEngineering and Rehabilitation, 15, 14. DOI:10.1186/s12984-018-0355-1
- 15. Jyoti, Joshi, S., & Yadav, V.S. (2020). Knee Joint Muscle Flexibility in Knee Osteoarthritis Patients and Healthy Individuals.
- 16.Gonçalves, G. H., Selistre, L. F. A., Petrella, M., & Mattiello, S. M. (2017). Kinematic alterations of

- the lower limbs and pelvis during an ascending stairs task are associated with the degree of knee osteoarthritis severity. The Knee, 24(2), 295-304.
- 17.Berger, M. J., McKenzie, C. A., Chess, D. G., Goela, A., & Doherty, T. J. (2012). Sex differences in quadriceps strength in OA. International journal of sports medicine, 33(11), 926-933.
- 18.Huskisson EC, Woolf DL, Balme HW, Scott J, Franklyn S. Anti-inflammatory drugs for rheumatoid arthritis. Br Med J. 1976 Aug 21;2(6033):472
- 19.Castro MP, Ruschel C, Santos GM. Isokinetic hip muscle strength: a systematic review of normative data Sports Biomech 2020; 19: 26–54
- 20 .Brent JL, Myer GD, Ford KR, Paterno MV, Hewett TE. The effect of sex and age on isokinetic hip-abduction torques. J Sport Rehabil. 2013 Feb;22(1):41-46.
- 21. Johnson ME, Mille ML, Martinez KM, Crombie G, Rogers MW. Age-related changes in hip abductor and adductor joint torques. Arch Phys Med Rehabil. 2004;85(4):593–597.
- 22.Kim M, Kim Y, Lee M, Lee S. Association of the Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) with muscle strength in community-dwelling elderly with knee osteoarthritis. Ann Rehabil Med. 2020;44(2):96–104.
- 23.Drouin, J. M., Valovich-mcLeod, T. C., Shultz, S. J., Gansneder, B. M., & Perrin, D. H. (2004). Reliability and validity of the Biodex system 3 pro isokinetic dynamometer velocity, torque and position measurements. European Journal of Applied Physiology, 91(1), 22–29.
- 24.Contreras-Diaz G, Chirosa-Rios LJ, Martinez-Garcia D, Intelangelo L, Chirosa-Rios I, Jerez-Mayorga D. Reliability of isokinetic hip abductor and adductor strength measurements: A systematic review and meta-analysis. Proceedings of the Institution of Mechanical Engineers, Part P: Journal of Sports Engineering and Technology. 2022
- 25. Thorp LE, Wimmer MA, Foucher KC, Sumner DR, Shakoor N, Block JA. The biomechanical effects of focused muscle training on medial knee

- loads in OA of the knee: A pilot, proof of concept study. J Musculoskelet Neuronal Interact. 2010;10(2):166–173
- 26.Rutherford DJ, Hubley-Kozey C, Stanish W. Hip abductor function in individuals with medial knee osteoarthritis: Implications for medial compartment loading during gait. Clin Biomech. 2014;29(5):545–550.
- 27.Alnahdi AH, Zeni JA, Snyder-Mackler L. Muscle Impairments in Patients With Knee Osteoarthritis. Sports Health. 2012;4(4):28
- 28.Hislop, A., Collins, N. J., Tucker, K., & Semciw, A. I. (2022). Hip strength, quadriceps strength and dynamic balance are lower in people with unilateral knee osteoarthritis compared to their non-affected limb and asymptomatic controls. Brazilian Journal of Physical Therapy, 26(6), 100467.
- 29. Powers, C. M. (2003). The influence of altered lower-extremity kinematics on patellofemoral joint dysfunction: A theoretical perspective. Journal of Orthopaedic & Sports Physical Therapy, 33(11), 639–646.
- 30.Sled, E. A., Khoja, L., Deluzio, K. J., Olney, S. J., & Culham, E. G. (2010). Effect of a home program of hip abductor exercises on knee joint loading, strength, function, and pain in people with knee osteoarthritis: A clinical trial. Physical Therapy, 90(6), 895–904.
- 31.Hinman RS, Hunt MA, Creaby MW, Wrigley TV, McManus FJ, Bennell KL. Hip muscle weakness in individuals with medial knee osteoarthritis. Arthritis Care Res. 2010;62(8):1190–3.
- 32.Ferber, R., Kendall, K. D., & Farr, L. (2011). Changes in knee biomechanics after a hip-abductor strengthening protocol for runners with patellofemoral pain syndrome. Journal of Athletic Training, 46(2), 142–149.
- 33.Hui, T. C., Sharma, L., Dunlop, D. D., et al. (2019). Hip muscle strength and protection against structural worsening and poor function and disability outcomes in knee osteoarthritis: A cohort-based study. Osteoarthritis and Cartilage Open, Article 100003.

- 34.Costa RA, Oliveira LM, Watanabe SH, Jones A, Natour J. Isokinetic assessment of the hip muscles in patients with osteoarthritis of the knee. Clinics (Sao Paulo). 2010;65(12):1253-9.
- 35.Hislop, A., Collins, N. J., Tucker, K., & Semciw, A. I. (2023). The association between hip strength, physical function and dynamic balance in people with unilateral knee osteoarthritis: A cross-sectional study. Musculoskeletal Science & Practice, 63, Article 102696.
- 36.Tevald, M. A., Murray, A. M., Luc, B. A., Lai, K., Sohn, D., & Pietrosimone, B. (2016). Hip abductor strength in people with knee osteoarthritis: A cross-sectional study of reliability and association with function. Knee, 23(1), 57–62.
- 37.Singh S, Pattnaik M, Mohanty P, Ganesh GS. Effectiveness of hip abductor strengthening on health status, strength, endurance and six-minute walk test in participants with medial compartment symptomatic knee osteoarthritis. J Back Musculoskelet Rehabil. 2016;29(1):65–75.
- 38. Wang J, Xie Y, Wang L, Lei L, Liao P, Wang SQ, et al. Hip abductor strength—based exercise therapy in treating women with moderate-to-severe knee osteoarthritis: a randomized controlled trial. Clin Rehabil. 2020;34(2):160–9.
- 39.Thomas DT, R S, Prabhakar AJ, Dineshbhai PV, Eapen C. Hip abductor strengthening in patients diagnosed with knee osteoarthritis a systematic review and meta-analysis. BMC Musculoskelet Disord. 2022 Jun 29;23(1):622.
- 40.Hinman, R. S., Hunt, M. A., Creaby, M. W., Wrigley, T. V., McManus, F. J., & Bennell, K. L. (2010). Hip muscle weakness in individuals with medial knee osteoarthritis. Arthritis Care & Research, 62(8), 1190–1193.