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ABSTRACT In this paper, we propose a new spectral collocation method for the time-fractional heat
equation in hollow composite cylinders. The model is based on a finite difference approximation for the
time-fractional derivative, known for its computational efficiency, and a Chebyshev polynomial basis in
space, which provides spectral accuracy. Its main originality consists of the rigorous a priori error estimates
that demonstrate the theoretical convergence and stability of the method. The numerical simulations
indicate that the scheme is an accurate and effective method for describing such complex composite
systems. The results show that the present method is robust and widely applicable to advanced thermal

analysis.

INDEX TERMS Chebyshev polynomials, Heat transfer, Collocation method, Composite cylinders,

Fractional partial differential equations.

I. INTRODUCTION

Composite geometries are crucial in many engineering
applications, as they involve more than one material
within a single structure, particularly for heat conduction
problems. Such composites have extensive applications in
different fields, including nuclear applications [1], heat
exchangers [2], ground exchanger linings [3], antenna
construction [4], and for improving magnetic materials
[5]. Each of these applications requires an understanding
of how different materials thermally interact, especially in
a complex configuration such as the hollow composite
cylinders shown in Figure 1.

Conventional heat conduction models of these
cylinders are typically based on integer-order differential
equations, according to Fourier's law, which assumes
instantaneous and direct proportionality between heat
transfer and the temperature gradient. While these models
effectively present hollow composite cylinders as separate
layers of material, they have difficulty in accurately
predicting complex thermal phenomena at the interfaces.
This restriction implies strong discontinuities in
temperature and heat flux, contradicting the physical
coherence of the model. The increasing use of advanced
composites in advanced engineering systems requires a
paradigm shift in these types of advanced simulation tools.

To solve these traditional models, various methods are

employed, such as the line heat-source approach [6-7], the
Laplace transform method [8-9], orthogonal and quasi-
orthogonal expansion techniques [10-12], the method of
variable separation [13], finite integral transform approach
[14], Green's function method [15-16] and meshless
method [17].
However, applying fractional mathematical models to
describe heat transfer has received increasing attention in
recent publications, as in works [18-32]. These papers are
all part of an extensive research on heat transfer in various
geometries. In the references [18-22], the fractional heat
transfer in slabs and plates is considered, while [23-27]
focus on the fractional heat transfer in layered spheres.
The problems of fractional heat transfer in cavities are
discussed in [28-32]. A set of accurate and approximate
methods were applied to solve fractional heat diffusion
equations such as the Fourier transform [18,21], integral
transform [19,21,28,30], Green's function approach[20],
superposition method[22], variable separation [23,26],
Laplace transform [25,29], implicit finite difference
method [27], Fourier series [31, 32].

The Caputo derivative is shown to be a promising
option for simulating the fractional-heat conduction in
such cylinders. It provides an insight into heat spreading
and thermal coupling within layers, and it accounts for the
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memory dependence. Such an approach eliminates the 3 e t) Hy (o0, ©) = O, Pageéoz)'
drawbacks of classical models. It provides valuable " ap in H1 %P0 " '

- - - - aH ,t

mformatlon about _tlme_-depender_lt_ _thermal behavior, o n(Pn )+ Bowe Hy(ps £) = s (1.3)
allowing for consideration of initial and boundary dp

conditions of composite materials over an extensive range.
Accordingly, with respect to energy system design, the
Caputo formulation is a promising candidate for
optimizing designs in, for example, insulation and energy
storage systems, as well as the development of advanced
heat exchangers, where a thorough understanding of the
complex thermal behavior of layered materials is required.

-« Pj
Pm

Figure 1. A hollow cylinder with an m-layer composite.

In the present paper, we consider a composite medium
consisting of an m-layer cylinder with a hollow depicted in
Fig. 1. Let the radius range be p, < p < p,,, the interior
and exterior faces of the cylinder are denoted by p, and p,,,,
whereas both the inside and outside radii of the j¢" layer are
marked by p;_; and p;. The following equation governs the
heat conduction within the j*" layer:

o 7 7t ,
pj ot dp p Op oj
pj-1=p=p;,1<j<m0<ic=s1

(1.1)
where H;(p,t),0,u; represent the layer's temperature,

thermal conductivity, and thermal diffusivity, respectively,
and w;(p,t) Symbolizes the creation of heat inside the
layer. The general form describes the boundary conditions
for the cylinder's interior and exterior surfaces as follows:

where a;,, , bip, Qour boyr are constants chosen carefully
to satisfy possible boundary conditions, and 0y, , Oy
denote the outside influences (specified temperature or
thermal flux) imposed on the interior and exterior faces of
the cylinder, respectively. The following conditions,
guaranteeing the continuity of thermal flux and
temperature at the interfaces between layers, are matched:

H; (pj,t) = Hjs1 (pj 1), (14)
o OH;(pj,t) _  9Hu(pst) (15)
L oep N ap '
also, the initial conditions as follows
Hj(p,t = 0) = 9;(p). (1.6)
. .. 9MH(pt) .
The temporal fractional derivative S 1S computed

using the Caputo fractional derivative with order (0 <
A < 1) described as follows in [33]:

0 H(p,t 1 t 0H (p,
.8 _ f (t—s)"lﬂds.
o 0s

atrt T ra-2

In this study, the temperature field is expanded in terms of
Chebyshev polynomials, and by enforcing the governing
heat equation at collocation points, the method achieves
exponential convergence rates for smooth solutions, which
is well beyond what traditional finite difference or finite
element approaches can achieve [34]. This high accuracy is
particularly beneficial in cylindrical coordinates, where a
thin layer containing the radial temperature variation maps
to the standard Chebyshev interval [-1, 1] for each layer,
allowing for the computation of heat flux with great
precision, even for wide samples, at a minimal grid
resolution. In addition, the non-uniform organization of
mesh points close to the domain definition and interfaces
allows this method to automatically capture high variation
near the inner and outer edges of a hollow cylinder
(stemming from heat conduction), thereby alleviating
computational costs while guaranteeing a reliable solution
for both steady-state and transient conditions throughout.

The Chebyshev collocation method can easily handle
the complex situation of unfavorable layered structures with
multiple layers in a single simulation, and provides a
framework based on modular and scalable basis functions
that can be employed to treat non-homogeneous materials
with different thermal properties. We provide a domain
decomposition for each layer, and only need simple
algebraic constraints on the continuity of temperature and
heat flux to ensure independent solutions match across
layers without having the complex interface meshing
required by mesh-based methods. This flexibility enables us
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to handle arbitrary layer counts with only modest increases
in computational complexity, as the global system remains
sparse and well-conditioned due to the orthogonality of
Chebyshev bases. Moreover, the proposed method has been
shown to significantly simplify parametric studies, where
varying layer thicknesses or conductivities can be evaluated
with  minimal reformulation for use in engineering
applications, such as thermal insulation design or composite
material ~ optimization, where quick, high-fidelity
approximations are needed.

The Chebyshev Collocation Method has been used
before to solve diffusion equations in composite regions by
using normal integer-order derivatives and in a single
region with fractional-order derivatives. Nevertheless, the
originality of the current approach lies in merging their
treatment and applying the Chebyshev Collocation Method
to solve the fractional transient heat conduction equations in
composite cylinders with hollow cores. The resulting
composite method makes it possible to effectively treat
complicated geometries as well as nonlocal fractional
dynamics, with high accuracy and computational efficiency.
The importance of this application can be appreciated in
scientific fields such as engineering science, where studies
on the design of thermal insulation and optimization of
composite materials require rapid, high-accuracy parametric
studies to find new solutions.

The Chebyshev collocation approach is highly
beneficial for a wide range of equations, including both
linear and non-linear ordinary differential equations [35-
37]. Partial differential equations [38-40], Troesch's
problem [41], partial integro-differential equations [42],
integro-differential equations [43-45], and eigenvalue
problems [46]. This paper is structured in six parts, each of
which is directed to a particular objective. The first section
is a comprehensive summary of the study. Section 2 is
devoted to introducing definitions and notation of
Chebyshev polynomials. In Section 3, we propose a new
approach to address the fractional transient heat transfer
model in composite cylinders with hollow interiors (1.1)—
(1.6). An a priori error estimation of the solution is derived
in Section 4. Section 5 presents an application of the
method, accompanied by specific examples. Finally, the
study's main findings are summarized in Section 6.

[I. Fundamental Relations

Once shifted, the Chebyshev Polynomials of n*" degree can
be correlated with p within the [p;_q, p;] range as stated
below:

2.7)

Pj=Pj-1

P, (p) = cos <n arccos (w))

Throughout the range [p;_4, p;], the polynomial 15, (p) hits
its maximum value (n+ 1) times, reversing its sign at
each peak

where

Page 11 -~
W}nloo =1, lpn(pi) = (_1)i'
where the norm ||y, || is defined as the maximum norm,

as it represents the maximum value of |, (p)|. The
Chebyshev collocation points, labeled p;, are established

by:
P = Pi” Pj [(pj al pj_1> + cos (l—n>]
' 2 pj = Pj-1 n/|

i=012..,n

(2.8)

By employing the shifted first-type Chebyshev function
Yn(p) within the interval [p;_4,p;], the estimation of
H(p) is achieved using a truncated shifted Chebyshev
sequence, outlined as:

H(p) =X 45" ¥s(p), pj-r < p <pj.  (29)

The integer order derivatives are formulated similarly as
follows:

N
H®(p) = Z _Oqs*(” ¥ (p), pioa<p<p;. (210)

The function H(p) and its derivatives are represented in a
matrix form as follows:

H(p) =vy*(p) Q*, (2.11)

H® (p) =" (p) Q" (2.12)

where
Y (p) = [Yolp) Yilp) i) Yr(p)],

Q' =5a5 qi -~ ail”
Lemma 2.1. [37] The derivation of the vector Q* ™ from
vector Q* is accomplished through the formula:

4 A
Q"™ = (;;7— . > D" Q" (2.13)
j ~ Pj-1

where
o o 2 o 2 d, ]
2 2 2
0 0 2 0 4 0 d,
0O 0 O 3 0 5

(=]
(=]
(=]
(=]
(=]
S

d].:g' d2=0, d3=n,f0r0ddn,
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d; =0, d, =n, d; =0, foreven n.

This leads to the explanation of H(p) as follows:

H®(p) = (L) Y (p)DT Q" (2.14)
Pj — Pj-1

Ill. Methodology explanation
For the inner j* layer of m layer hollow composite
cylinder, the Chebyshev collocation approach is
systematically introduced with discretized governing
equations at Chebyshev collocation points within the
interval  [p;j_q,p;] to establish an associated discrete
Chebyshev system. The related methodology is also
elaborated with the other layers of the composite cylinder,
with equations and boundary conditions considering their
material properties and geometrical layouts. The discrete
Chebyshev systems for each layer are then assembled into a
global system while maintaining continuity across the layer
interfaces. Such integration is essential, as these
dependencies in the thermal behavior among all layers
establish a complete knowledge of the composite structure
for modeling purposes. Finally, this complete system is
solved to obtain the overall thermal response of the
composite cylinder and understand its transient heat transfer
behavior.

We commence by segmenting time into a lattice with
t, = K 8t, where &t is the prescribed time step. The
Caputo fractional derivative of H;(p,t) at the coordinates

(p, t,) is formulated as:

al H](pr tK) _

ot
tL+1
E 3 Hj(pw)
m > f —u)~4 —L—dt. (3.15)
ty

Using the Traditional first-order finite difference method
results in the following formulation :

A

H; N
ata (p:t;c)zD H(p't)c)
§ Ll_H/ trta -2 _
r(1 D L . f (t—uw)y*du =

Z A L(HL+1 _HL)

8tAr2-2) f (3.16)
here Hf stands for H;(p, t;), and a; = L'~ — (L — 1)1~*. We

obtain an alternate formulation by adjusting equation
(3.16):

K—1
0. = s . BT —HEEY, (37)

here
By =L+ 1A -1

Equation (1.1) in its discretized form is written as: Page 12

k-1
SN B (Hf™F = Hf )
Stiu; (2 —2) LA j
L=0 ( )
e 1 a)]- D, b
= (1) + 5 ()" + 2,

(3.18)

This might be reduced to

1
thu; r2 - D(H)" + ;&ﬂuj re-aH)" - HE

= Ff(p)
(3.19)
where
K—1
F}K(p) = Z .BL (erc—L _ Hj}c—L—l) — -
L=0
= st rez— 2P
(3.20)
Theorem 3.1: Implementing the proposed Chebyshev

approximation (2.9) in solving equation (3.19) produces the
following discrete Chebyshev system.

4 2 K
thy; r2 -2 (— — ) ¥; " (p)D?(Q;)
Pj = Pj-1

1 N 4 . K
+pi Sthu; r(2—2) (p,- — pj—l) ¥;"(p) D (Q5)
— ;") (@) = EF(py)
(3.21)

The discrete Chebyshev system, based on Chebyshev
collocation nodes p;, is formulated in the following matrix
representation:

Wi (Q) =Fr, (3:22)
where
4 2
=6thu; r2-10)|———)| y;*p?
i ft )<P1—Pj—1> i
4
+Vstitu, r(2-2 (—) *D
ure=2 Py v;
— lp].* ,
(3.23)
and

[ o)) (o) (W17 (po) -
| @0 @i (o)

l@po*),- (w)  @19); (o)

WnM)j(po) 1
W), (o) |

W), (pN)J



— -
- 0 0 - 0
Py
. 1
F* (x) 0 — 0 0
e =|F" Fxl) V= ! 1
: 0 0 — - 0
LF* G P3 ,
1
O 0 0 . —
i Pyl

Each layer's discrete Chebyshev systems are subsequently
combined to form a global system as follows:

Wr (@)« =Fr, (324
where

[Wl" 0 o - 0 0]

0 W 0 - 0 0
o L
lo o o — wr, o]
lo o o - o wxrl

F, lf(Q*l)K1

el @@

Fn L")l

W* is a composite matrix, where each element is itself a
matrix, and the zeros present are zero matrices. The
boundary conditions are integrated into the global matrix
W* as follows:

€1 F" = O, (3.25)

€m Fn” = Oputs (3.26)

where
€1 = Qin (ﬁ) Y"1 (po) D+ bin Y™, (o),
4 * *
€m = Qout (m) Y (Pm) D + bin Wi (o).

Also, interface conditions are integrated in the global
matrix, and the matrix form of interface conditions is as
follows:

Tj FjK - Tj+1Fj+1K =0, (3.27)
Rj F] - R]‘+1F}‘+1,c =0, (3.28)
where

T =9; (pj)  Twr =¥jua(py) (329

4 *
b= (o) ¥i ), 2:30)

4 *

Ris1 = 01 | ———— | )1 (p)) D. (331

Pj+1 — Pj

To ascertain the composite cylinder's total Pafril
reactivity, the entire system is finally resolved.

IV. Investigation of stability and error limits

Next, we focus on the analysis of stability and error bounds,
commencing with the introduction of the relevant
functional spaces.

LZ(.Q]) = {H] fHJZ d.Q] < 00},

Q2;
HY(0)) = {(H;: Hy, H;' € Lp()}.

The subsequent representations illustrate the inner products
for L,(42;) and H,(12;) in the given order

(Hj, H;) =

L(2) fHJ' H; d'Qj'

U]

(H]' Hi)Hl(ﬂj) = j-(H] Hi + Hj, Hl:’) d-Q] )
2;
that outlines the definitions of norms.

2

”HJ'HLZ(QJ_) = (Hj' Hj)

Ly(ay)’

||Hj||12.11(_(2j) = (Hj'Hj)Hl(ﬂj) .

Error limitation analysis
An estimation of the error in layer j is derived, and this
approach is consistent across the other layers. The
subsequent formula, found in [47], is satisfied by the finite
difference method discretization of the fractional partial
time derivative in (1.1).

D{ Hi(p,t) = DE Hi(p,t) + 0((60)*7%),  (432)

Therefore, the precise solution of equation (1.1) can be
clarified through the following:

Hi(p, t) = HE (p, t,) + ((56)*°H)
= ou Hip t) + 61 (p,6) + 0((60)*H),

(4.33)
In terms of the exact solution for (3.19), it is denoted by
H{(p,t,). The order N Lagrange polynomial that serves as
an interpolant for H;(p, t,.) across the Chebyshev collocation
points X; is represented as <pfv(" H;(p,t,). Additionally, the
interpolation error, symbolized by g:,(" (p, t,), is discussed
in detail in [39], as shown below.

X X
sv’ (0.t = @ Hi(p, t,) — Hf (p, t,0)
_ Hj(N+1)(§r te) o

ST WE v+1 (P

(4.34)



here, ¢ lies within the interval [p;_;,p;], and the
Xj

polynomials 9, ,

(p) possess the following composition:

Xj

Ok (0) =TT (o = ps)-

It is possible to consider (p;,(jHj(p, t,) as a solution to the
following problem by using the Lagrange formalism on
H;(p, t,) in equation (4.33).

S&3 P2 2 gy M) WEBHEDIR EFIL + 0((86)2 7.

1 NN :
S8t 1@ =2 (0 H)) (.t — ¢y Hy(p, )

= FF(p) + AFF(p) + 0((66)*7%),

(4.35)
where
BEF(p) = 6 (.t — 8P 12 =) (s))) (bt
1 X'
= 8thy 2= 2) (/) (.to

The quantity (p;,(jHj(p, t,) is expressible in Chebyshev
series form as (p,)\,(jH,-(p. t) = wj*(Q;f')K, which
subsequently gives rise to the discrete Chebyshev series
specified to equation (4.35).

W ()" = Ff +aFf + 0((80)* ™).
Deducting (3.22) from (4.35) yields

[ (@)% = (@)*] S W IITH 1A FFIl + 0((At)*H).
(4.37)
Theorem 4.1. Let's consider H;(p,t.) as the precise
solution to (1.1) and (Hj)N(p, t,) as the result obtained
from the Chebyshev series applied to (3.19). In light of the

effective smoothness of H;(p, t,), we proceed.
| Hy (o te) = (H)), (o, )

sl o]+ v
+ 0((6t)%7H).

(4.36)

W™

la £

(4.38)

Proof. Using (4.36), we have determined the error's upper
bound as follows:

| Hy(p,t) = (Hy),, (o, t)
<| H(p,t) - o3’ (0.t
+1(ox’ (o, t)—(Hy) , (o, £

(4.34), and the Chebyshev series expansion
on’ (p,t) and (H)) (b, t,) we get

’

from of

<Jow’ o, ] + s (o) (B3
¥ (0) (€))"| + 086>,

Hj(pr tk) - (Hj)N(pr tx)

+0((6t))** +
@) - @)

<oy’ (o,
[l ;"

from (4.37) we get

<

| Hj(p' tK) - (Hj)N(p' tK)

Stability

Theorem 4.2. According to equation (3.19), the discretized
time numerical scheme is stable without any conditions

Proof. The following relation is obtained by assuming
w;j(p,t,) = 0 and multiplying equation (3.19) by H;* and
integrating it over the domain.

(1-1!c H¥

£, 1)) = 8thu; 1@ = ()" HY)

1 K
-8ty r@ - D((H) HE)
= (1)
_ Z B ((HjK—L’HjK )
L=0
— (HE+1 HE )) .
(4.39)
Through the application of the Cauchy-Schwarz inequality,

we conclude that

_ 1 ) 2
(=) < 5 [l + el |
(4.40)

Equation (4.39), in conjunction with the Cauchy-Schwarz
inequality, produces.

(1-2o rc -0 ) I,
+ ot 12— (1-2) )T
<3 [l + ol
K—
VA (e
L=0

+ ||H]’-‘||iz] (4.41).

Through induction, we establish the stability of equation
(3.19). When k = 1, we find

11 2 1 o2
<§_ a2 - a)) 51, <5 1871, (442)



this results in

2 2
1#51, = 71 (443)

There is a positive real number ¢ such that D < € C

(D > €C), as indicated by the expression D <C
(D = C). A step of induction is in place.
_1)|? 2112 2
(e R v SRR ] B
(4.44)
We obtain from (4.41) and (4.44).
1 1 12
(E Lot ra- /1)) el
1 2
<5 I,
k-1
1 2 2
5 08, [l + [l .
L=0
(4.45)
Kk—1
as seen in [48] B, <1, which leads to
L=0
2 2
sl = el
(4.46)

V. Numerical experiments

Example 1: Examine a two-layer cylinder defined by these
parameters:

The cylinder maintains fixed temperatures at the inner and
outer surfaces: Hy, =4, H, = 0. The initial temperature
distribution is zero, and there is no heat generation
throughout the cylinder. This design is referenced in [12].
The temperature distributions of the cylinder at ¢t = 1 for
fractional order derivatives 4 = 0.5, 0.7are elegantly
illustrated in Figure 2. The results at A = 1 align well with
those reported in Reference [12].

Figure 2. Distribution of the two-layer cylinder's
temperature in example 1 for different values of the
fractional-order derivative (A) at t = 1.

1 15 2 25 3 35 4

Example 2: Investigate a four-layer cylinder represented by
the following parameters

po =0.15, p, =0.154, p, = 0.164,

ps = 0214, p, =0.216

uw, = 1.5821e -5, u, =1.6071e -7,
Us =29787e — 7, u, = 8.7232e -5
0, =58, 0, =0.27, 03 =0.056, g, =209
ap, = =58, aygye = 209, by, = 4,byyr = 25

=72,

Oin
Oput = 16500(1 — 0.678e 7032t — 0.313¢738%) 4 450

The structure's temperature at the initial time is 18°C. Table
1 shows the temperature distribution of example 2 at
different distance coordinates (p) for both the Chebyshev
collocation method and the Fourier method [49]. The
obtained results demonstrate that the two approaches yield
close temperature values within the distance range,
although some differences exist. The two approaches reveal
good consistency in predicting temperature distribution.

Table 1. Temperature Distribution Results from Chebyshev
Collocation and Fourier Methods for example 2 at t = 600

sec,A=1
p Chebyshev collocation Fourier method
method [49]
0.15 19.15 19.1
0.154 20.8 21
0.164 47.65 47.7
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Figure 3 shows the temperature profile over the radial
direction of a composite cylinder in example 2 for various
numerical values of A. The classical curve (A = 1) exhibits a
linear temperature decrease, representing the predicted
temperature profile from the conventional Fourier's law. On
the other hand, the small values for the fractional indexes, A
= 0.5 and A = 0.2, yield a stronger nonlinearity for the
temperature profile, indicating how fractional calculus
models could smoothly include anomalous diffusion and
memory in concrete systems. This deviation from the
classic behavior describes the model's ability to explain
more complex heat conduction phenomena.

— =1 —
— =05 !
=02 ll|'

300} J
20} /
200} /
150} /

100 1 /

50+

0.2

D 1 1 1 1 1 ]
0.15 0.16 017 0.18 0.19 0.21 0.22

Fiqure 3. Temperature distribution across the four layers of
a composite cvlinder in example 2 for different values of
the fractional-order derivative (A) at t = 180 sec

Example 3: Let's analyze a two-layer cylinder defined by
these parameters:

Po = 051 P11 = 1' P2 = 2'

/11:1' /12=2'

0-1=2, 02=1.

w1 (p, t) and w,(p, t) are chosen so the exact solution of
(1.1) is given by

L_error

We have selected parameters that may not correspond to a
physical situation; however, since the primary objective in
this example is to verify the accuracy of our numerical
approach, we will use the analytical results and the traces to
compare both exact and numerical solutions. Table 2
illustrates the spectral accuracy of the Chebyshev
collocation method for example 3 at A = 0.5. The main
finding, we have is that a remarkably low error of order
1079 can be achieved with very few collocation points.
This swift convergence demonstrates the high efficiency of
the method without the necessity of large computational
grids. Then the error saturates for N > 11. It is this
property that makes the Chebyshev method so effective in
obtaining very accurate solutions with a small number of
computations.

Table 2. L, error of solution for example 2 at A = 0.5, 6t =
0.001

N | Chebyshev collocation method

L, error
8.05e-04
7 5.81e-05
6.23e-09
11 1.52e-09
21 1.52e-09
31 1.52e-09

Figure 4 plots the convergence behavior of the Chebyshev
collocation approach for example 3 at 4 = 0.5, showing
how the error in the result decreases as computational effort

w©

DOF
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(measured in Degrees of Freedom (DOF)) increases

Figure 4. L, error of solution for example 2 versus DOF at
A1 =0.5,6t =0.001

VI. CONCLUSION

The present study reports an application of the Chebyshev
collocation technique for solving the fractional temporal
heat transfer model in hollow composite cylinders. We
discretize terms associated with derivatives with respect to
time and space using the first-order finite difference scheme
and Chebyshev collocation method, respectively. An a
priori error estimate of the proposed method was obtained.
In addition, we conducted numerical tests for a two-layer
cylinder, and our simulation results were more in agreement
with those obtained and described in other literature. There
are limitations for the Chebyshev collocation method. In
particular, its computational efficiency can be impacted by
the dense matrices generated for complex problems, and its
accuracy is extremely sensitive to solution smoothness,
which may not be met at material interfaces in the
composite. In future work, we plan to address these issues
by considering domain decomposition to treat material
interfaces and by investigating efficient iterative solvers for
the generated dense problems.

VII. Declarations
Funding

The author did not receive any funds to help with the
preparation of this manuscript.

Data availability

No datasets were generated or analyzed during the current
study

Conflicts of interest
The authors declare that they have no competing interests.

REFERENCES

1. S. Singh and P. K. Jain, Analytical solution of time-dependent
multilayer heat conduction problems for nuclear applications, 2010 1st
International Nuclear & Renewable Energy Conference (INREC),
IEEE, 2010, pp. 1-6.

2. F. J. Pena and M. J. de Lemos, Numerical investigation of an
innovative through-tubing solution to thermal plug and abandonment
of oil wells with thermite reactions, Applied Thermal Engineering 254
(2024), 123874.

3. G. Zhang, C. Xia, M. Sun, Y. Zou, S. Xiao, A new model and
analytical solution for the heat conduction of tunnel lining ground heat
exchangers, Cold Reg. Sci. Technol. 88 (2013) 59-66..

4. L.B.Kong, Z. Li, L. Liu, R. Huang, M. Abshinova, Z. Yarigage Thfg,
P. Tan, C. Deng and S. Matitsine, Recent progress in some composite
materials and structures for specific electromagnetic applications,
International Materials Reviews 58 (2013), no. 4, 203-259.

5. L. Dobrzanski, M. Drak and B. Zigbowicz, New possibilities of
composite materials application—materials of specific magnetic
properties, Journal of Materials Processing Technology 191 (2007),
no. 1-3, 352-355.

6. J.C. Jaeger, Some problems involving line sources in conduction of
heat, London Edinburgh Dub. Phil. Mag. J. Sci. 242 (1944) 169-179

7. M. Li, AC.K. Lai, Analytical model for short-time responses of
borehole ground heat exchangers: model development and validation,
Appl. Energy 104 (2013) 510-516.

8. X. Lu, P. Tervola, M. Viljanen, A new analytical method to solve heat
equation for multi-dimensional composite slab, J. Phys. A: Math. Gen.
38 (2005) 2873-2890.

9. X. Lu, P. Tervola, M. Viljanen, Transient analytical solution to heat
conduction in multi-dimensional composite cylinder slab, Int. J. Heat
Mass Transfer 49 (2006) 1107-1114.

10. M.D. Mikhailov, M.N. Ozisik, Transient conduction in a three-
dimensional composite slab, Int. J. Heat Mass Transfer 29 (1986) 340—
342.

11. C.W. Tittle, Boundary value problems in composite media:
quasiorthogonal functions, J. Appl. Phys. 36 (4) (1965) 1486-1488.

12.  M.D. Mikhailov, M.N. Ozisik, N.L. Vulchanov, diffusion in
composite layers with automatic solution of the eigenvalue problem,
Int. J. Heat Mass Transfer 26 (1983) 1131-1141.11.

13. P.E. Bulavin, V.M. Kashcheev, Solution of nonhomogenous heat-
conduction equation for multilayer bodies, Int. Chem. Eng. 5 (1)
(1965) 112-115.

14. Y. Yener, M.N. Ozisik, On the solution of unsteady heat conduction in
multiregion finite media with time-dependent heat transfer coffecient,
Proceeding of the Fifth International Heat Transfer Conference, vol. 1,
JSME, Tokyo, 1974, pp. 188-192.

15. Kevin D. Cole, A. Haji-Sheikh, James V. Beck, Bahman Litkouhi,
Heat Conduction Using Green's Function, Taylor and Francis Group,
LLC, 2011.

16. Haji-Sheikh, J.V. Beck, Temperature solution in multidimensional
multi-layer bodies, Int. J. Heat Mass Transfer 45 (2002) 1865-1877.

17. 1. Ahmadi, M.M. Aghdam, Heat transfer in composite materials using
a new truly local meshless method. International Journal of Numerical
Methods for Heat & Fluid Flow. 21 (3) (2011) 293-3009.

18. Y. Povstenko, J. Klekot, Time-fractional heat conduction in two joint
half-planes, Symmetry. 11(6) (2019) 800.

19. Y. Povstenko, Time-fractional heat conduction in a two-layer
composite slab. Fractional Calculus and Applied Analysis. 19(4)
(2016) 940-953.

20. J. Ma,, Y. Sun, J. Yang,. Analytical solution of dual-phase-lag heat
conduction in a finite medium subjected to a moving heat source.
International Journal of Thermal Sciences. 125 (2018) 34-43.

21. G. Xu, J. Wang, Analytical solution of time fractional Cattaneo heat
equation for finite slab under pulse heat flux. Applied Mathematics
and Mechanics. 39(10) (2018) 1465-1476.

22. X.-Y. Zhang, X.-F. Li, Transient response of a functionally graded
thermoelastic plate with a crack via fractional heat conduction.
Theoretical and Applied Fracture Mechanics, 104 (2019) 102318.

23. S. Kukla, U. Siedlecka, An analytical solution to the problem of time-
fractional heat conduction in a composite sphere. Bulletin of the Polish
Academy of Sciences: Technical Sciences. 65(2) (2017) 179-186.

24. S. Kukla,U. Siedlecka, Fractional heat conduction in a sphere under
mathematical and physical Robin conditions. Journal of Theoretical
and Applied Mechanics. 56(2) (2018) 339-349.

25. B. Datsko, I. Podlubny, Y. Povstenko, Time-fractional diffusion-wave
equation with mass absorption in a sphere under harmonic impact.
Mathematics. 7(5) (2019) 433.

26. T.-H. Ning, X.-Y. Jiang, Analytical solution for the time-fractional
heat conduction equation in spherical coordinate system by the method
of variable separation. Acta Mechanica Sinica. 27 (2011) 994-1000.

27.  B. Yu, X. Jiang, Temperature prediction by a fractional heat
conduction model for the bi-layered spherical tissue in the



DJERFT., Vol. (1) (II): (P 9 — P18 ) (2025) DOI: 10.21608/djerft.2025.416180.1010

28.

29.

30.

3L

32.

33.

34,

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

hyperthermia experiment. International Journal of Thermal Sciences.
145 (2019) 105990.

X. Jiang, M. Xu, The time fractional heat conduction equation in the
general orthogonal curvilinear coordinate and the cylindrical
coordinate systems, Physica A. 389 (2010) 3368-3374.

Y. Povstenko, Time-fractional radial heat conduction in a cylinder and
associated thermal stresses. Archive of Applied Mechanics. 82 (2012)
345-362.

Y. Povstenko, Axisymmetric solution to time-fractional heat

conduction equation in an infinite cylinder under local heating and
associated thermal stresses, International Journal of Mechanics. 8(1)
(2014) 383-390.
M. A. Ezzat, A. A. El-Bary, Effects of variable thermal conductivity
and fractional order of heat transfer on a perfect conducting infinitely
long hollow cylinder. International Journal of Thermal Sciences. 108
(2016) 62-69.

S. Blasiak, Time-fractional Fourier law in a finite hollow cylinder
under Gaussian-distributed heat flux, EPJ Web of Conferences. 180
(2018) 02008.

E. Adel, I. L. El-Kalla, A. Elsaid, M. Sameeh, An Adaptive Finite
Element Scheme for Solving Space-time Riesz-Caputo Fractional
Partial Differential Equations, Iran. J. Sci. 49 (2025) 1061-1073.

M. El-Borhamy, Numerical study of the stationary generalized
viscoplastic fluid flows, Alexandria Engineering Journal.57(3) (2018)
2007-2018.

M. Sezer, M. Kaynak., Chebyshev polynomial solutions of linear
differential equations. Internat J Math Ed Sci Tech.27 (1996) 607—611.
A. Akyliz, M. Sezer. Chebyshev polynomial solutions of systems of
high-order linear differential equations with variable coefficients. J
Comput Appl Math. 144 (2003) 237-247.

A. Akyliz-Yaslan, H. Cerdk-yaslan. The solution of high-order non-
linear ordinary differential equations by Chebyshev series. Jc omput
Appl Math.127 (2011) 5658-5666.

C. Kesan, Chebyshev polynomial solutions of second-order linear
partial differential equations. Appl Math Comput. 134 (2003) 109-
124,

G. Yuksel, O. Rasil, M. Sezar. Error analysis of the Chebyshev
collocation method for linear second-order partial differential
equations. Int J Comput Math. 92 (2015) 2121-2138.

MP. Mkhatshwa, M. Khumalo, PG. Dlamini. Multi-domain
multivariate spectral ollocation method for (2+1) dimensional non-
linear partial differential equations. Partial Differential Equations Appl
Math. 6 (2022) 100440.

M. El-Gamel, M. Sameeh. A Chebyshev collocation method for
solving Troesch's problem. Int J Math Comput Appl Res. 2013;3:23—
32.

M. Sameeh, A. Elsaid. Chebyshev collocation method for parabolic
partial integro differential equation. J Adv Math Phys. 2016:7854806.
A. Akylz, M.Sezer. A Chebyshev collocation method for the solution
of linear integro differential equations. J Comput Math. 72 (1999)
491-507.

JK. Mohammed, AR. Khudair. Integro-differential equations:
Numerical solution by a new operational matrix based on fourth-order
hat functions. Partial Differential Equations Appl Math. 8 (2023)
100529.

H. Cerdk-yaslan, A. Akyliz-Yaslan. Chebyshev polynomial solution of
non-linear fredholm-Volterra integro-differential equations. J Arts Sci.
6 (2006) 89-101.

M. El-Gamel, M. Sameeh. An efficient technique for finding the
eigenvalues of fourth-order Sturm-Liouville problems. Appl Math. 3
(2012) 920-925.

M. Stynes, E. O'riordan, J.L. Gracia, Error analysis of a finite
difference method on graded meshes for a time-fractional diffusion
equation, SIAM J. Numer. Anal. 55 (2017) 1057-1079.

B. Sagar, S.S. Ray, Numerical soliton solutions of fractional Newell-
Whitehead—Segel equation in binary fluid mixtures, Comput. Appl.
Math. 40 (2021) 290.

R. M. Tatsii, O.Y Pazen, Direct (Classical) Method of Calculation of
the Temperature Field in a Hollow Multilayer Cylinder, J Eng Phys
Thermophy. 91 (2018) 1373-1384.

Page 18



