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ABSTRACT In this paper, we propose a new spectral collocation method for the time-fractional heat 

equation in hollow composite cylinders. The model is based on a finite difference approximation for the 

time-fractional derivative, known for its computational efficiency, and a Chebyshev polynomial basis in 

space, which provides spectral accuracy. Its main originality consists of the rigorous a priori error estimates 

that demonstrate the theoretical convergence and stability of the method. The numerical simulations 

indicate that the scheme is an accurate and effective method for describing such complex composite 

systems. The results show that the present method is robust and widely applicable to advanced thermal 

analysis. 

INDEX TERMS Chebyshev polynomials, Heat transfer, Collocation method, Composite cylinders, 

Fractional partial differential equations. 

I. INTRODUCTION 

Composite geometries are crucial in many engineering 

applications, as they involve more than one material 

within a single structure, particularly for heat conduction 

problems. Such composites have extensive applications in 

different fields, including nuclear applications [1], heat 

exchangers [2], ground exchanger linings [3], antenna 

construction [4], and for improving magnetic materials 

[5]. Each of these applications requires an understanding 

of how different materials thermally interact, especially in 

a complex configuration such as the hollow composite 

cylinders shown in Figure 1. 

      Conventional heat conduction models of these 

cylinders are typically based on integer-order differential 

equations, according to Fourier's law, which assumes 

instantaneous and direct proportionality between heat 

transfer and the temperature gradient. While these models 

effectively present hollow composite cylinders as separate 

layers of material, they have difficulty in accurately 

predicting complex thermal phenomena at the interfaces. 

This restriction implies strong discontinuities in 

temperature and heat flux, contradicting the physical 

coherence of the model. The increasing use of advanced 

composites in advanced engineering systems requires a 

paradigm shift in these types of advanced simulation tools. 

      To solve these traditional models, various methods are 

employed, such as the line heat-source approach [6-7], the 

Laplace transform method [8-9], orthogonal and quasi-

orthogonal expansion techniques [10–12], the method of 

variable separation [13], finite integral transform approach 

[14], Green's function method [15-16] and meshless 

method [17].   

However, applying fractional mathematical models to 

describe heat transfer has received increasing attention in 

recent publications, as in works [18-32]. These papers are 

all part of an extensive research on heat transfer in various 

geometries. In the references [18-22], the fractional heat 

transfer in slabs and plates is considered, while [23-27] 

focus on the fractional heat transfer in layered spheres. 

The problems of fractional heat transfer in cavities are 

discussed in [28-32]. A set of accurate and approximate 

methods were applied to solve fractional heat diffusion 

equations such as the  Fourier transform [18,21], integral 

transform [19,21,28,30], Green's function approach[20], 

superposition method[22], variable separation [23,26], 

Laplace transform [25,29], implicit finite difference 

method [27], Fourier series [31, 32]. 

        The Caputo derivative is shown to be a promising 

option for simulating the fractional-heat conduction in 

such cylinders. It provides an insight into heat spreading 

and thermal coupling within layers, and it accounts for the 
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drawbacks of classical models. It provides valuable 

information about time-dependent thermal behavior, 

allowing for consideration of initial and boundary 

conditions of composite materials over an extensive range. 

Accordingly, with respect to energy system design, the 

Caputo formulation is a promising candidate for 

optimizing designs in, for example, insulation and energy 

storage systems, as well as the development of advanced 

heat exchangers, where a thorough understanding of the 

complex thermal behavior of layered materials is required.  

 

Figure 1. A hollow cylinder with an m-layer composite. 

 

In the present paper, we consider a composite medium 

consisting of an m-layer cylinder with a hollow depicted in 

Fig. 1. Let the radius range be 𝜌0 ≤ 𝜌 ≤ 𝜌𝑚, the interior 

and exterior faces of the cylinder are denoted by 𝜌0 and 𝜌𝑚, 

whereas both the inside and outside radii of the 𝑗𝑡ℎ layer are 

marked by 𝜌𝑗−1 and 𝜌𝑗. The following equation governs the 

heat conduction within the 𝑗𝑡ℎ   layer: 

 

1

𝜇𝑗

𝜕𝜆𝐻𝑗(𝜌, 𝑡)

𝜕𝑡𝜆
=

𝜕2𝐻𝑗(𝑝, 𝑡)

𝜕𝜌2 +
1

𝜌

𝜕𝐻𝑗(𝜌, 𝑡)

𝜕𝜌
  +

𝜔𝑗(𝜌, 𝑡)

𝜎𝑗
, 

        𝜌𝑗−1 ≤ 𝜌 ≤ 𝜌𝑗 , 1 ≤ 𝑗 ≤ 𝑚, 0 < 𝜆 ≤ 1      

(1.1) 

where 𝐻𝑗(𝜌, 𝑡), 𝜎𝑗 , 𝜇𝑗 represent the layer's temperature, 

thermal conductivity, and thermal diffusivity, respectively, 

and 𝜔𝑗(𝜌, 𝑡) Symbolizes the creation of heat inside the 

layer. The general form describes the boundary conditions 

for the cylinder's interior and exterior surfaces as follows: 

 

𝑎𝑖𝑛

𝜕𝐻1(𝜌0, 𝑡)

𝜕𝜌
+ 𝑏𝑖𝑛 𝐻1(𝜌0, 𝑡) = 𝑂𝑖𝑛 ,                  (1.2) 

𝑎𝑜𝑢𝑡

𝜕𝐻𝑛(𝜌𝑛, 𝑡)

𝜕𝜌
+ 𝑏𝑜𝑢𝑡 𝐻𝑛(𝜌𝑛, 𝑡) =  𝑂𝑜𝑢𝑡           (1.3) 

 

where 𝑎𝑖𝑛 , 𝑏𝑖𝑛 ,  𝑎𝑜𝑢𝑡  ,𝑏𝑜𝑢𝑡 are constants chosen carefully 

to satisfy possible boundary conditions, and  𝑂𝑖𝑛  , 𝑂𝑜𝑢𝑡   
denote the outside influences (specified temperature or 

thermal flux) imposed on the interior and exterior faces of 

the cylinder, respectively. The following conditions, 

guaranteeing the continuity of thermal flux  and 

temperature at the interfaces between layers, are matched: 

 

𝐻𝑗 (𝜌𝑗 , 𝑡) = 𝐻𝑗+1 (𝜌𝑗 , 𝑡),                       (1.4) 

 

𝜎𝑗

𝜕𝐻𝑗(𝜌𝑗 , 𝑡)

𝜕𝜌
= 𝜎𝑗+1

𝜕𝐻𝑗+1(𝜌𝑗 , 𝑡)

𝜕𝜌
 ,                 (1.5) 

also, the initial conditions as follows 

 
𝐻𝑗(𝜌, 𝑡 = 0) = 𝜑𝑗(𝜌).                           (1.6) 

 

The temporal fractional derivative 
𝜕𝜆𝐻𝑗(𝜌,𝑡)

𝜕𝑡𝜆
, is computed 

using the Caputo fractional derivative with order (0 <
 𝜆 ≤  1) described as follows in [33]: 

 

𝜕𝜆𝐻(𝜌, 𝑡)

𝜕𝑡𝜆
=

1

𝛤(1 − 𝜆)
 ∫ (𝑡 − 𝑠)−𝜆  

𝜕𝐻(𝜌, 𝑠)

𝜕𝑠
 𝑑𝑠.

𝑡

0

  

      
  In this study, the temperature field is expanded in terms of 

Chebyshev polynomials, and by enforcing the governing 

heat equation at collocation points, the method achieves 

exponential convergence rates for smooth solutions, which 

is well beyond what traditional finite difference or finite 

element approaches can achieve [34]. This high accuracy is 

particularly beneficial in cylindrical coordinates, where a 

thin layer containing the radial temperature variation maps 

to the standard Chebyshev interval [-1, 1] for each layer, 

allowing for the computation of heat flux with great 

precision, even for wide samples, at a minimal grid 

resolution. In addition, the non-uniform organization of 

mesh points close to the domain definition and interfaces 

allows this method to automatically capture high variation 

near the inner and outer edges of a hollow cylinder 

(stemming from heat conduction), thereby alleviating 

computational costs while guaranteeing a reliable solution 

for both steady-state and transient conditions throughout. 

       The Chebyshev collocation method can easily handle 

the complex situation of unfavorable layered structures with 

multiple layers in a single simulation, and provides a 

framework based on modular and scalable basis functions 

that can be employed to treat non-homogeneous materials 

with different thermal properties. We provide a domain 

decomposition for each layer, and only need simple 

algebraic constraints on the continuity of temperature and 

heat flux to ensure independent solutions match across 

layers without having the complex interface meshing 

required by mesh-based methods. This flexibility enables us 
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in computational complexity, as the global system remains 

sparse and well-conditioned due to the orthogonality of 

Chebyshev bases. Moreover, the proposed method has been 

shown to significantly simplify parametric studies, where 

varying layer thicknesses or conductivities can be evaluated 

with minimal reformulation for use in engineering 

applications, such as thermal insulation design or composite 

material optimization, where quick, high-fidelity 

approximations are needed. 

       The Chebyshev Collocation Method has been used 

before to solve diffusion equations in composite regions by 

using normal integer-order derivatives and in a single 

region with fractional-order derivatives. Nevertheless, the 

originality of the current approach lies in merging their 

treatment and applying the Chebyshev Collocation Method 

to solve the fractional transient heat conduction equations in 

composite cylinders with hollow cores. The resulting 

composite method makes it possible to effectively treat 

complicated geometries as well as nonlocal fractional 

dynamics, with high accuracy and computational efficiency. 

The importance of this application can be appreciated in 

scientific fields such as engineering science, where studies 

on the design of thermal insulation and optimization of 

composite materials require rapid, high-accuracy parametric 

studies to find new solutions. 

        The Chebyshev collocation approach is highly 

beneficial for a wide range of equations, including both 

linear and non-linear ordinary differential equations [35-

37]. Partial differential equations [38-40], Troesch's 

problem [41], partial integro-differential equations [42], 

integro-differential equations [43-45], and eigenvalue 

problems [46]. This paper is structured in six parts, each of 

which is directed to a particular objective. The first section 

is a comprehensive summary of the study. Section 2 is 

devoted to introducing definitions and notation of 

Chebyshev polynomials. In Section 3, we propose a new 

approach to address the fractional transient heat transfer 

model in composite cylinders with hollow interiors (1.1)–

(1.6). An a priori error estimation of the solution is derived 

in Section 4. Section 5 presents an application of the 

method, accompanied by specific examples. Finally, the 

study's main findings are summarized in Section 6. 

 
II. Fundamental Relations 

Once shifted, the Chebyshev Polynomials of 𝑛𝑡ℎ degree can 

be correlated with 𝜌  within the [𝜌𝑗−1, 𝜌𝑗] range as stated 

below: 

 

𝜓𝑛
∗(𝜌) = cos (𝑛 𝑎𝑟𝑐𝑐𝑜𝑠 (

2𝜌−(𝜌𝑗+𝜌𝑗−1)

𝜌𝑗−𝜌𝑗−1
)).           (2.7) 

 

Throughout the range [𝜌𝑗−1, 𝜌𝑗], the polynomial 𝜓𝑛
∗(𝜌)  hits 

its maximum value  (𝑛 + 1) times, reversing its sign at 

each peak 

 

|𝜓𝑛|∞ = 1,               𝜓𝑛(𝜌𝑖) = (−1)𝑖 , 
 

where the norm ‖𝜓𝑛‖∞ is defined as the maximum norm, 

as it represents  the maximum value of |𝜓𝑛(𝜌)|. The 

Chebyshev collocation points, labeled 𝜌𝑖, are established 

by: 

 

𝜌𝑖 =
𝜌𝑗 − 𝜌𝑗−1

2
[(

𝜌𝑗 + 𝜌𝑗−1

𝜌𝑗 − 𝜌𝑗−1
) + 𝑐𝑜𝑠 (

𝑖𝜋

𝑛
)],                                 

 

  𝑖 = 0,1,2,… , 𝑛.                     (2.8)     
                                      

By employing the shifted first-type Chebyshev function 

𝜓𝑛
∗(𝜌)  within the interval [𝜌𝑗−1, 𝜌𝑗], the estimation of  

𝐻(𝜌) is achieved using a truncated shifted Chebyshev 

sequence, outlined as: 

 
𝐻(𝜌) = ∑  𝑞𝑠

∗ 𝜓𝑠
∗(𝜌),𝑁

𝑠=0  𝜌𝑗−1 ≤ 𝜌 ≤ 𝜌𝑗 .         (2.9) 

 

The integer order derivatives are formulated similarly as 

follows:  

 

𝐻(𝑟)(𝜌) = ∑ 𝑞𝑠
∗(𝑟)

𝑁

𝑠=0
𝜓∗(𝜌),   𝜌𝑗−1 ≤ 𝜌 ≤ 𝜌𝑗 .      (2.10) 

 
The function 𝐻(𝜌) and its derivatives are represented in a 

matrix form as follows: 

 
𝐻(𝜌) = 𝜓∗(𝜌)  𝑄∗ ,                              (2.11) 

 

𝐻(𝑟)(𝜌) = 𝜓∗(𝜌) 𝑄∗(𝑟),                        (2.12) 

 

where 
𝜓∗(𝜌) = [𝜓0

∗(𝜌)    𝜓1
∗(𝜌)   𝜓2

∗(𝜌)⋯ 𝜓𝑛
∗(𝜌)], 

 

𝑄∗ = [
1

2
𝑞0

∗  𝑞1
∗  ⋯ 𝑞𝑛

∗ ]𝜏 .  

 

 Lemma 2.1. [37] The derivation of the vector 𝑄∗ (𝑟) from 

vector 𝑄∗  is accomplished through the formula: 

 

𝑄∗(𝑟) = (
4

𝜌𝑗 − 𝜌𝑗−1

)

𝜆

 𝐷𝑟  𝑄∗,            (2.13) 

where 

 

𝐷 =

[
 
 
 
 
 
 
 0

1

2
0

3

2
0

5

2
… 𝑑1

0 0 2 0 4 0 … 𝑑2

0 0 0 3 0 5 … 𝑑3

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 0 0 0 … 𝑛
0 0 0 0 0 0 … 0

]
 
 
 
 
 
 
 

 

where 𝑑1 =
𝑛

2
,  𝑑2 = 0,  𝑑3 = 𝑛 , for odd 𝑛, 
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This leads to the explanation of 𝐻(𝑟)(𝜌) as follows: 

 

𝐻(𝑟)(𝜌) = (
4

𝜌𝑗 − 𝜌𝑗−1

)

𝑟

 𝜓∗(𝜌) 𝐷𝑟  𝑄∗         (2.14) 

 
III. Methodology explanation 

For the inner 𝑗𝑡ℎ layer of 𝑚 layer hollow composite 

cylinder, the Chebyshev collocation approach is 

systematically introduced with discretized governing 

equations at Chebyshev collocation points within the 

interval  [𝜌𝑗−1, 𝜌𝑗]  to establish an associated discrete 

Chebyshev system. The related methodology is also 

elaborated with the other layers of the composite cylinder, 

with equations and boundary conditions considering their 

material properties and geometrical layouts. The discrete 

Chebyshev systems for each layer are then assembled into a 

global system while maintaining continuity across the layer 

interfaces. Such integration is essential, as these 

dependencies in the thermal behavior among all layers 

establish a complete knowledge of the composite structure 

for modeling purposes. Finally, this complete system is 

solved to obtain the overall thermal response of the 

composite cylinder and understand its transient heat transfer 

behavior. 

        We commence by segmenting time into a lattice with 

 𝑡𝜅 =  𝜅 𝛿𝑡, where 𝛿𝑡 is the prescribed time step. The 

Caputo fractional derivative of 𝐻𝑗(𝜌, 𝑡) at the coordinates 

(𝜌, 𝑡𝜅) is formulated as: 

 

𝜕𝜆 𝐻𝑗(𝜌, 𝑡𝜅)

𝜕𝑡𝜆
  = 

1

𝛤(1−𝜆)
∑ ∫ (𝑡 − 𝑢)−𝜆 𝜕 𝐻𝑗(𝜌,𝑢)

𝜕𝑢
𝑑𝑡.

𝑡𝐿+1

𝑡𝐿

𝜅−1

𝐿=0

      (3.15) 

 

Using the Traditional first-order finite difference method 

results in the following formulation : 

 

𝜕𝜆 𝐻𝑗

𝜕𝑡𝜆
(𝜌, 𝑡𝜅) ≈ 𝐷𝜅

𝜆 𝐻𝑗(𝜌, 𝑡𝜅) 

=
1

𝛤(1−𝜆)
∑

𝐻𝑗
𝐿+1−𝐻𝑗

𝐿

𝛿𝑡
∫ (𝑡 − 𝑢)−𝜆 𝑑𝑢

𝑡𝐿+1

𝑡𝐿

𝜅−1

𝐿=0
 =

       
1

𝛿𝑡𝜆𝛤(2−𝜆)
∑  
𝐿=0

𝜅−1

 𝛼𝜅−𝐿(𝐻𝑗
𝐿+1 − 𝐻𝑗

𝐿),           (3.16)                                 

 

here 𝐻𝑗
𝐿  stands for 𝐻𝑗(𝜌, 𝑡𝐿), and 𝛼𝐿 = 𝐿1−𝜆 − (𝐿 − 1)1−𝜆. We 

obtain an alternate formulation by adjusting equation 

(3.16): 

 
𝜕𝜆𝐻𝑗

𝜕𝑡𝜆
(𝜌, 𝑡𝜅) =

1

𝛿𝑡𝜆𝛤(2−𝜆)
∑ 𝛽𝐿 (𝐻𝑗

𝜅−𝐿 − 𝐻𝑗
𝜅−𝐿−1),

𝜅−1

𝐿=0
       (3.17) 

here  

𝛽𝐿 = (𝐿 + 1)1−𝜆 − 𝐿1−𝜆. 
 

Equation (1.1) in its discretized form is written as: 

 

1

 𝛿𝑡𝜆𝜇𝑗 𝛤(2 − 𝜆)
∑𝛽𝐿 (𝐻𝑗

𝜅−𝐿 − 𝐻𝑗
𝜅−𝐿−1)

𝜅−1

𝐿=0

= (𝐻𝑗
″)

𝜅
+

1

𝜌
(𝐻𝑗

′)
𝜅
  +

𝜔𝑗(𝜌, 𝑡𝜅)

𝜎𝑗
,   

            (3.18) 
 

This might be reduced to 

 

𝛿𝑡𝜆𝜇𝑗  𝛤(2 − 𝜆)(𝐻𝑗
″)

𝜅
+

1

𝜌
𝛿𝑡𝜆𝜇𝑗 𝛤(2 − 𝜆)(𝐻𝑗

′)
𝜅

− 𝐻𝑗
𝜅

= 𝐹𝑗
𝜅(𝜌)              

(3.19) 
where 

𝐹𝑗
𝜅(𝜌) =    ∑ 𝛽𝐿 (𝐻𝑗

𝜅−𝐿 − 𝐻𝑗
𝜅−𝐿−1)

𝜅−1

𝐿=0

 −  𝐻𝑗
𝜅−1

−  𝛿𝑡𝜆𝜇𝑗 𝛤(2 − 𝜆)
𝜔𝑗(𝜌, 𝑡𝜅)

𝜎𝑗
 .     

                     (3.20) 
 

Theorem 3.1: Implementing the proposed Chebyshev 

approximation (2.9) in solving equation (3.19) produces the 

following discrete Chebyshev system. 

 

𝛿𝑡𝜆𝜇𝑗 𝛤(2 − 𝜆)(
4

𝜌𝑗 − 𝜌𝑗−1
)

2

𝜓𝑗 
∗(𝜌𝑖)𝐷

2(𝑄𝑗
∗)

𝜅
  

+
1

𝜌𝑖
𝛿𝑡𝜆𝜇𝑗  𝛤(2 − 𝜆) (

4

𝜌𝑗 − 𝜌𝑗−1
)𝜓𝑗 

∗(𝜌𝑖) 𝐷 (𝑄𝑗
∗)

𝜅
     

−  𝜓𝑗 
∗(𝜌𝑖)  (𝑄𝑗

∗)
𝜅

= 𝐹𝑗
𝜅(𝜌𝑖) 

(3.21) 
 

The discrete Chebyshev system, based on Chebyshev 

collocation nodes 𝜌𝑖, is formulated in the following matrix 

representation: 

 

                           𝑊𝑗
𝜅 (𝑄

𝑗
∗)

𝜅
= 𝐹𝑗

𝜅 ,                               (3.22) 

where 

𝑊𝑗
𝜅 = 𝛿𝑡𝜆 𝜇𝑗 𝛤(2 − 𝜆) (

4

𝜌𝑗 − 𝜌𝑗−1
)

2

𝜓𝑗 
∗𝐷2  

+ 𝑉 𝛿𝑡𝜆 𝜇𝑗 𝛤(2 − 𝜆) (
4

𝜌𝑗 − 𝜌𝑗−1
)𝜓𝑗 

∗ 𝐷

−  𝜓𝑗 
∗  , 

(3.23) 
and 

𝜓𝑗 
∗ =

[
 
 
 
 
(𝜓0

∗)𝑗  (𝜌0)      (𝜓1
∗)𝑗  (𝜌0)    ⋯   (𝜓𝑁

∗)𝑗(𝜌0) 

(𝜓0
∗)𝑗 (𝜌1)      (𝜓1

∗)𝑗 (𝜌1)    ⋯   (𝜓𝑁
∗)𝑗  (𝜌1)

⋮                       ⋮              ⋱               ⋮
(𝜓0

∗)𝑗  (𝜌𝑁)      (𝜓1
∗)𝑗 (𝜌𝑁)    ⋯   (𝜓𝑁

∗)𝑗 (𝜌𝑁)]
 
 
 
 

 , 
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𝐹𝑗
𝜅 =

[
 
 
 
 
𝐹𝑗

𝜅  (𝑥0)

𝐹𝑗
𝜅 (𝑥1)

⋮
𝐹𝑗

𝜅 (𝑥𝑁)]
 
 
 
 

, 𝑉 =

[
 
 
 
 
 
 
 
 
 
 
1

𝜌0

0 0 ⋯ 0

0
1

𝜌1

0 ⋯ 0

0 0
1

𝜌3

⋯ 0

⋮ ⋮ ⋮ ⋱ ⋮

0 0 0 ⋯
1

𝜌𝑁]
 
 
 
 
 
 
 
 
 
 

 

. 
Each layer's discrete Chebyshev systems are subsequently 

combined to form a global system as follows: 

 

                           𝑊𝜅 (𝑄∗)𝜅 = 𝐹𝜅 ,                          (3.24) 

where 

 

𝑊𝜅 =

[
 
 
 
 
 
𝑊1

𝜅 0 0 ⋯ 0 0

0 𝑊2
𝜅 0 ⋯ 0 0

0 0 𝑊3
𝜅 ⋯ 0 0

⋮ ⋮ ⋮ ⋱ ⋮ ⋮
0 0 0 ⋯ 𝑊𝑚−1

𝜅 0

0 0 0 ⋯ 0 𝑊𝑚
𝜅]
 
 
 
 
 

, 

 

𝐹𝜅 = [

𝐹1
𝜅  

𝐹2
𝜅 
⋮

𝐹𝑚
𝜅  

] , (𝑄∗
)
𝜅

=

[
 
 
 
 (𝑄

∗
1)

𝜅

(𝑄∗
2)

𝜅

⋮

(𝑄∗
𝑚)

𝜅
]
 
 
 
 

. 

 
𝑊𝜅 is a composite matrix, where each element is itself a 

matrix, and the zeros present are zero matrices. The 

boundary conditions are integrated into the global matrix 

𝑊𝜅 as follows:  
                                    𝜖1 𝐹1

𝜅 = 𝑂𝑖𝑛,                          (3.25) 
 

                                     𝜖𝑚 𝐹𝑚
𝜅 = 𝑂𝑜𝑢𝑡,                         (3.26) 

where 

𝜖1 = 𝑎𝑖𝑛 (
4

𝜌1−𝜌0
)  𝜓∗

1
(𝜌0) 𝐷 + 𝑏𝑖𝑛 𝜓∗

1
(𝜌0), 

 

𝜖𝑚 = 𝑎𝑜𝑢𝑡 (
4

𝜌𝑚−𝜌𝑚−1
)𝜓𝑚

∗ (𝜌𝑚) 𝐷 + 𝑏𝑖𝑛 𝜓𝑚
∗ (𝜌𝑚). 

 

Also, interface conditions are integrated in the global 

matrix, and the matrix form of interface conditions is as 

follows:  
                          𝑇𝑗 𝐹𝑗

𝜅 − 𝑇𝑗+1𝐹𝑗+1
𝜅 = 0,                     (3.27) 

 
                             𝑅𝑗 𝐹𝑗

𝜅 − 𝑅𝑗+1𝐹𝑗+1
𝜅 = 0,                    (3.28) 

where 
 

 𝑇𝑗  = 𝜓𝑗
∗ (𝜌𝑗),        𝑇𝑗+1  = 𝜓𝑗+1

∗  (𝜌𝑗),         (3.29) 

 

𝑅𝑗 = 𝜎𝑗 (
4

𝜌𝑗−𝜌𝑗−1
)𝜓𝑗

∗ (𝜌𝑗) 𝐷,                             (3.30) 

 

𝑅𝑗+1 = 𝜎𝑗+1 (
4

𝜌𝑗+1 − 𝜌𝑗
)𝜓𝑗+1

∗  (𝜌𝑗) 𝐷.                 (3.31) 

 

To ascertain the composite cylinder's total thermal 

reactivity, the entire system is finally resolved. 

 
IV. Investigation of stability and error limits      
Next, we focus on the analysis of stability and error bounds, 

commencing with the introduction of the relevant 

functional spaces. 

𝐿2(𝛺𝑗) = {𝐻𝑗: ∫ 𝐻𝑗
2 𝑑

𝛺𝑗

𝛺𝑗 < ∞}, 

 

𝐻1(𝛺𝑗) = {𝐻𝑗: 𝐻𝑗 , 𝐻𝑗
′ ∈   𝐿2(𝛺𝑗)}. 

 

The subsequent representations illustrate the inner products 

for 𝐿2(𝛺𝑗) and 𝐻1(𝛺𝑗) in the given order 

(𝐻𝑗 , 𝐻𝑖)𝐿2(𝛺𝑗)
= ∫ 𝐻𝑗 𝐻𝑖  𝑑

𝛺𝑗

𝛺𝑗,   

(𝐻𝑗 , 𝐻𝑖)𝐻1(𝛺𝑗)
= ∫(𝐻𝑗 𝐻𝑖 + 𝐻𝑗

′ 𝐻𝑖
′) 𝑑

𝛺𝑗

𝛺𝑗 , 

that outlines the definitions of norms. 

 

‖𝐻𝑗‖𝐿2(𝛺𝑗)

2
= (𝐻𝑗 , 𝐻𝑗)𝐿2(𝛺𝑗)

,   

 

‖𝐻𝑗‖𝐻1(𝛺𝑗)

2
 = (𝐻𝑗 , 𝐻𝑗)𝐻1(𝛺𝑗)

 .  

 
 
Error limitation analysis 

An estimation of the error in layer 𝑗 is derived, and this 

approach is consistent across the other layers.  The 

subsequent formula, found in [47], is satisfied by the finite 

difference method discretization of the fractional partial 

time derivative in (1.1). 

 
𝐷𝑡

𝜆 𝐻𝑗(𝜌, 𝑡𝜅) = 𝐷𝜅
𝜆 𝐻𝑗(𝜌, 𝑡𝜅) + 𝑂((𝛿𝑡)2−𝜆),            (4.32) 

Therefore, the precise solution of equation (1.1) can be 
clarified through the following: 

 

𝐻𝑗(𝜌, 𝑡𝜅) = 𝐻𝑗
𝐾(𝜌, 𝑡𝜅) + ((𝛿𝑡)2−𝜆)

= 𝜑𝑁

𝑋𝑗  𝐻𝑗(𝜌, 𝑡𝜅) + 𝜍𝑁

𝑋𝑗  (𝜌, 𝑡𝜅) +  𝑂((𝛿𝑡)2−𝜆), 

                                  
(4.33) 

In terms of the exact solution for (3.19), it is denoted by 

𝐻𝑗
𝐾(𝜌, 𝑡𝜅). The order N Lagrange polynomial that serves as 

an interpolant for 𝐻𝑗(𝜌, 𝑡𝜅) across the Chebyshev collocation 

points 𝑋𝑗 is represented as 𝜑𝑁

𝑋𝑗  𝐻𝑗(𝜌, 𝑡𝜅). Additionally, the 

interpolation error, symbolized by 𝜍𝑁

𝑋𝑗  (𝜌, 𝑡𝜅),  is discussed 

in detail in [39], as shown below. 

 

𝜍𝑁

𝑋𝑗(𝜌, 𝑡𝜅) = 𝜑𝑁

𝑋𝑗𝐻𝑗(𝜌, 𝑡𝜅) − 𝐻𝑗
𝐾(𝜌, 𝑡𝜅)     

=
𝐻𝑗

(𝑁+1)(𝜉, 𝑡𝜅)

(𝑁 + 1)!
 𝜗𝑁+1

𝑋𝑗 (𝜌), 

(4.34) 
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Page  14 here, 𝜉 lies within the interval [𝜌𝑗−1, 𝜌𝑗], and the 

polynomials 𝜗𝑁+1

𝑋𝑗
(𝜌) possess the following composition: 

 

𝜗𝑁+1

𝑋𝑗 (𝜌) = ∏ (𝜌 − 𝜌𝑠).
𝑁

𝑠=0
  

 

It is possible to consider 𝜑𝑁

𝑋𝑗
𝐻𝑗(𝜌, 𝑡𝜅) as a solution to the 

following problem by using the Lagrange formalism on 

𝐻𝑗(𝜌, 𝑡𝜅) in equation (4.33). 

𝛿𝑡𝜆𝜇𝑗 𝛤(2 − 𝜆) (𝜑
𝑁

𝑋𝑗𝐻𝑗)
″

(𝜌, 𝑡𝜅) + 

1

𝜌
𝛿𝑡𝜆𝜇𝑗  𝛤(2 − 𝜆) (𝜑

𝑁

𝑋𝑗𝐻𝑗)
′

(𝜌, 𝑡𝜅)   −  𝜑
𝑁

𝑋𝑗𝐻𝑗(𝜌, 𝑡𝜅)

= 𝐹𝑗
𝜅(𝜌) + ∆𝐹𝑗

𝜅(𝜌) + 𝑂((𝛿𝑡)2−𝜆), 

 (4.35) 

where 

∆𝐹𝑗
𝜅(𝜌) = 𝜍

𝑁

𝑋𝑗(𝜌, 𝑡𝜅)  − 𝛿𝑡𝜆𝜇𝑗  𝛤(2 − 𝜆) (𝜍
𝑁

𝑋𝑗
)
″

(𝜌, 𝑡𝜅)

−
1

𝜌
𝛿𝑡𝜆𝜇𝑗  𝛤(2 − 𝜆) (𝜍

𝑁

𝑋𝑗
)
′

(𝜌, 𝑡𝜅) 

                        

The quantity 𝜑𝑁

𝑋𝑗
𝐻𝑗(𝜌, 𝑡𝜅) is expressible in Chebyshev 

series form as 𝜑𝑁

𝑋𝑗
𝐻𝑗(𝜌, 𝑡𝜅) =  𝜓

𝑗 
∗ (𝑄

𝑗
∗′)

𝜅

, which 

subsequently gives rise to the discrete Chebyshev series 

specified to equation (4.35). 
 

        𝑊𝑗
𝜅 (𝑄

𝑗
∗′)

𝜅
= 𝐹𝑗

𝜅  + ∆𝐹𝑗
𝜅 + 𝑂((𝛿𝑡)2−𝜆).                (4.36) 

Deducting (3.22) from (4.35) yields 

| (𝑄𝑠
∗′)𝜅 − (𝑄𝑠

∗)𝜅| ≲ ‖𝑊𝑗
𝜅‖−1 ‖𝛥 𝐹𝑗

𝜅‖ + 𝑂((𝛥𝑡)2−𝜆). 

(4.37) 

Theorem 4.1. Let's consider 𝐻𝑗(𝜌, 𝑡𝜅) as the precise 

solution to (1.1) and (𝐻𝑗)𝑁
(𝜌, 𝑡𝜅) as the result obtained 

from the Chebyshev series applied to (3.19). In light of the 

effective smoothness of 𝐻𝑗(𝜌, 𝑡𝜅), we proceed. 

| 𝐻𝑗(𝜌, 𝑡𝜅) − (𝐻𝑗)𝑁
(𝜌, 𝑡𝜅)|

≲ |𝜍𝑁

𝑋𝐽(𝜌, 𝑡𝜅)| +    ‖ 𝜓𝑗 
∗‖ |𝑊𝑗

𝜅|
−1

‖𝛥 𝐹𝑗
𝜅‖

+   𝑂((𝛿𝑡)2−𝜆). 
(4.38) 

Proof. Using (4.36), we have determined the error's upper 

bound as follows: 

 

| 𝐻𝑗(𝜌, 𝑡𝜅) − (𝐻𝑗)𝑁
(𝜌, 𝑡𝜅)|

≤ | 𝐻𝑗(𝜌, 𝑡𝜅) − 𝜑𝑁

𝑋𝑗(𝜌, 𝑡𝜅)|

+ | (𝜑𝑁

𝑋𝑗(𝜌, 𝑡𝜅)−(𝐻𝑗)𝑁
(𝜌, 𝑡𝜅)|,        

from  (4.34), and the Chebyshev series expansion  of 

𝜑𝑁

𝑋𝑗(𝜌, 𝑡𝜅)  and (𝐻𝑗)𝑁
(𝜌, 𝑡𝜅)  we get  

 

| 𝐻𝑗(𝜌, 𝑡𝜅) − (𝐻𝑗)𝑁
(𝜌, 𝑡𝜅)| ≤ |𝜍𝑁

𝑋𝑗(𝜌, 𝑡𝜅)| + |𝜓𝑗
∗(𝜌) (𝑄𝑗

∗′
)
𝜅

−

                                                             𝜓𝑗
∗(𝜌) (𝑄𝑗

∗)
𝜅
| + 𝑂((𝛿𝑡))2−𝜆, 

 

                                           ≤ |𝜍𝑁

𝑋𝑗(𝜌, 𝑡𝜅)| + 𝑂((𝛿𝑡))2−𝜆 +

                                                       ‖ 𝜓𝑗 
∗‖ | (𝑄𝑗

∗′
)
𝜅

− (𝑄𝑗
∗)

𝜅
|, 

from (4.37) we get 

 

| 𝐻𝑗(𝜌, 𝑡𝜅) − (𝐻𝑗)𝑁
(𝜌, 𝑡𝜅)| ≤                               

                          |𝜍𝑁

𝑋𝑗(𝜌, 𝑡𝜅)| + ‖ 𝜓𝑗 
∗‖ ‖𝑊𝑗

𝜅‖−1 ‖𝛥 𝐹𝑗
𝜅‖ + 𝑂((𝛿𝑡))2−𝜆.

 

Stability 

 

Theorem 4.2. According to equation (3.19), the discretized 

time numerical scheme is stable without any conditions  

 

Proof. The following relation is obtained by assuming 

𝜔𝑗(𝜌, 𝑡𝜅) = 0   and multiplying equation (3.19) by 𝐻𝑗
𝜅  and 

integrating it over the domain. 
 

(𝐻𝑗
𝜅 , 𝐻𝑗

𝜅 ) − 𝛿𝑡𝜆𝜇𝑗 𝛤(2 − 𝜆)((𝐻𝑗
″)

𝜅
, 𝐻𝑗

𝜅)

−
1

𝜌
𝛿𝑡𝜆𝜇𝑗 𝛤(2 − 𝜆)((𝐻𝑗

′)
𝜅
, 𝐻𝑗

𝜅 )

= (𝐻𝑗
𝜅−1, 𝐻𝑗

𝜅)

−  ∑ 𝛽𝐿 ((𝐻𝑗
𝜅−𝐿, 𝐻𝑗

𝜅 )

𝜅−1

𝐿=0

− (𝐻𝑗
𝜅−𝐿−1, 𝐻𝑗

𝜅 )) .           

(4.39) 
Through the application of the Cauchy-Schwarz inequality, 

we conclude that 

 

(𝐻𝑗
𝜅−1, 𝐻𝑗

𝜅) ≤
1

2
[‖𝐻𝑗

𝜅−1‖
𝐿2

2
+ ‖𝐻𝑗

𝜅‖
𝐿2

2
] 

(4.40) 

Equation (4.39), in conjunction with the Cauchy-Schwarz 

inequality, produces. 

(1 −
1

𝜌
𝛿𝑡𝜆𝜇

𝑗
 𝛤(2 − 𝜆)) ‖𝐻𝑗

𝜅‖
𝐿2

2

+ 𝛿𝑡𝜆𝜇
𝑗
 𝛤(2 − 𝜆) (1 −

1

𝜌
) ‖(𝐻𝑗

′)
𝜅
‖

𝐿2

2

≤
1

2
 [‖𝐻𝑗

𝜅−1‖
𝐿2

2
+ ‖𝐻𝑗

𝜅‖
𝐿2

2
]

+
1

2
 ∑ 𝛽

𝐿 
[‖𝐻𝑗

𝜅−𝐿 − 𝐻𝑗
𝜅−𝐿‖

𝐿2

2
𝜅−1

𝐿=0

+ ‖𝐻𝑗
𝜅‖

𝐿2

2
]                                        (4.41). 

Through induction, we establish the stability of equation 

(3.19). When 𝜅 = 1, we find 

(
1

2
−

1

𝜌
𝛿𝑡𝜆𝜇

𝑗
 𝛤(2 − 𝜆)) ‖𝐻𝑗

1‖
𝐿2

2
≤

1

2
 ‖𝐻𝑗

0‖
𝐿2

2
,   (4.42) 
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‖𝐻𝑗
1‖

𝐿2

2
≲ ‖𝐻𝑗

0‖
𝐿2

2
.                  (4.43) 

 

There is a positive real number 𝜖 such that 𝐷 <  𝜖 𝐶 

(𝐷 >  𝜖 𝐶), as indicated by the expression    𝐷 ≲ 𝐶 

(𝐷 ≳ 𝐶). A step of induction is in place. 

 

‖𝐻𝑗
𝜅−1‖

𝐿2

2
≲ ‖𝐻𝑗

𝜅−2‖
𝐿2

2
≲ ⋯ ≲ ‖𝐻𝑗

0‖
𝐿2

2
. 

(4.44) 
We obtain from (4.41) and (4.44). 

 

(
1

2
−

1

𝜌
𝛿𝑡𝜆𝜇

𝑗
 𝛤(2 − 𝜆)) ‖𝐻𝑗

𝜅‖
𝐿2

2

≤
1

2
 ‖𝐻𝑗

0‖
𝐿2

2

+
1

2
 ∑ 𝛽

𝐿 
[‖𝐻𝑗

0‖
𝐿2

2
+ ‖𝐻𝑗

𝜅‖
𝐿2

2
] ,

𝜅−1

𝐿=0

 

(4.45) 

as seen in [48]  ∑ 𝛽
𝐿 

< 1,
𝜅−1

𝐿=0

  which leads to 

 

 

 

‖𝐻𝑗
𝜅‖

𝐿2

2
≲ ‖𝐻𝑗

0‖
𝐿2

2
. 

(4.46) 

 
V.  Numerical experiments 
 

Example 1: Examine a two-layer cylinder defined by these 

parameters: 

 

𝜌0 = 1,     𝜌1 = 2,    𝜌2 = 4,    
 

𝜇1 = 4,   𝜇2 = 1,   

 

𝜎1 = 4,   𝜎2 = 1.  

 

The cylinder maintains fixed temperatures at the inner and 

outer surfaces: 𝐻0 = 4, 𝐻2 = 0. The initial temperature 

distribution is zero, and there is no heat generation 

throughout the cylinder. This design is referenced in [12]. 

The temperature distributions of the cylinder at 𝑡 = 1 for 

fractional order derivatives 𝜆 = 0.5, 0.7are elegantly 

illustrated in Figure 2. The results at 𝜆 = 1 align well with 

those reported in Reference [12]. 

 

                      

Figure 2. Distribution of the two-layer cylinder's 

temperature in example 1 for different values of the 

fractional-order derivative (λ) at 𝑡 = 1. 
 

 

Example 2: Investigate a four-layer cylinder represented by 
the following parameters 

 

𝜌0 = 0.15,     𝜌1 = 0.154,    𝜌2 = 0.164,   
 

𝜌3 = 0.214,   𝜌4 = 0.216   
 

𝜇1 = 1.5821𝑒 − 5,   𝜇2 = 1.6071𝑒 − 7,   

 

𝜇3 = 2.9787𝑒 − 7 ,   𝜇4 =  8.7232𝑒 − 5  

 

𝜎1 = 58,   𝜎2 = 0.27,   𝜎3 = 0.056,   𝜎4 = 209  

 

𝑎𝑖𝑛 = −58,  𝑎𝑜𝑢𝑡 = 209,  𝑏𝑖𝑛 = 4, 𝑏𝑜𝑢𝑡 = 25 

 

𝑜𝑖𝑛 = 72,   

 

𝑜𝑜𝑢𝑡 = 16500(1 − 0.678𝑒−0.32𝑡 − 0.313𝑒−3.8𝑡) + 450 

 

The structure's temperature at the initial time is 18°C. Table 

1 shows the temperature distribution of example 2 at 

different distance coordinates (𝜌) for both the Chebyshev 

collocation method and the Fourier method [49]. The 

obtained results demonstrate that the two approaches yield 

close temperature values within the distance range, 

although some differences exist. The two approaches reveal 

good consistency in predicting temperature distribution. 
 

Table 1. Temperature Distribution Results from Chebyshev 
Collocation and Fourier Methods for example 2 at 𝑡 = 600 

sec, 𝜆 = 1 

𝝆 Chebyshev collocation 
method 

Fourier method 
[49] 

𝟎. 𝟏𝟓 19.15 19.1 

𝟎. 𝟏𝟓𝟒 20.8 21 

𝟎. 𝟏𝟔𝟒 47.65 47.7 
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𝟎. 𝟐 195.05 195 

𝟎. 𝟐𝟏𝟒 340.02 340 

𝟎. 𝟐𝟏𝟔 618 618 

 

Figure 3 shows the temperature profile over the radial 

direction of a composite cylinder in example 2 for various 

numerical values of λ. The classical curve (λ = 1) exhibits a 

linear temperature decrease, representing the predicted 

temperature profile from the conventional Fourier's law. On 

the other hand, the small values for the fractional indexes, λ 

= 0.5 and λ = 0.2, yield a stronger nonlinearity for the 

temperature profile, indicating how fractional calculus 

models could smoothly include anomalous diffusion and 

memory in concrete systems. This deviation from the 

classic behavior describes the model's ability to explain 

more complex heat conduction phenomena. 

 

 
 

Figure 3. Temperature distribution across the four layers of 
a composite cylinder  in example 2 for different values of 

the fractional-order derivative (λ) at 𝑡 = 180 𝑠𝑒𝑐 

 

Example 3: Let's analyze a two-layer cylinder defined by 
these parameters: 

𝜌0 = 0.5,     𝜌1 = 1,    𝜌2 = 2,    
 

𝜇1 = 1,   𝜇2 = 2,   

 

𝜎1 = 2,   𝜎2 = 1.  

𝜔1(𝜌, 𝑡) and 𝜔2(𝜌, 𝑡) are chosen so the exact solution of 
(1.1) is given by 

𝐻(𝜌, 𝑡) = {

1

600
(𝑡 + 𝑡2)𝜌4                     𝜌 ∈ (0.5,1)

1

600
(𝑡 + 𝑡2)(2𝜌4 − 1)          𝜌 ∈ (1,2)

 

 

We have selected parameters that may not correspond to a 

physical situation; however, since the primary objective in 

this example is to verify the accuracy of our numerical 

approach, we will use the analytical results and the traces to 

compare both exact and numerical solutions. Table 2 

illustrates the spectral accuracy of the Chebyshev 

collocation method for example 3 at 𝜆 = 0.5. The main 

finding, we have is that a remarkably low error of order 

10−9 can be achieved with very few collocation points. 

This swift convergence demonstrates the high efficiency of 

the method without the necessity of large computational 

grids. Then the error saturates for 𝑁 ≥ 11. It is this 

property that makes the Chebyshev method so effective in 

obtaining very accurate solutions with a small number of 

computations.        

 

 

 

Table 2. 𝐿∞ error of solution for example 2 at 𝜆 = 0.5, 𝛿𝑡 =
0.001 

 

𝑵 Chebyshev collocation method 

𝑳∞ error 

5 8.05e-04 

7 5.81e-05 

9 6.23e-09 

11 1.52e-09 

21 1.52e-09 

31 1.52e-09 

 

Figure 4 plots the convergence behavior of the Chebyshev 

collocation approach for example 3 at 𝜆 = 0.5, showing 

how the error in the result decreases as computational effort 
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Page  17 (measured in Degrees of Freedom (DOF)) increases 

Figure 4. 𝐿∞ error of solution for example 2 versus DOF at 

𝜆 = 0.5, 𝛿𝑡 = 0.001 

 
VI.  CONCLUSION 

The present study reports an application of the Chebyshev 

collocation technique for solving the fractional temporal 

heat transfer model in hollow composite cylinders. We 

discretize terms associated with derivatives with respect to 

time and space using the first-order finite difference scheme 

and Chebyshev collocation method, respectively. An a 

priori error estimate of the proposed method was obtained. 

In addition, we conducted numerical tests for a two-layer 

cylinder, and our simulation results were more in agreement 

with those obtained and described in other literature. There 

are limitations for the Chebyshev collocation method. In 

particular, its computational efficiency can be impacted by 

the dense matrices generated for complex problems, and its 

accuracy is extremely sensitive to solution smoothness, 

which may not be met at material interfaces in the 

composite. In future work, we plan to address these issues 

by considering domain decomposition to treat material 

interfaces and by investigating efficient iterative solvers for 

the generated dense problems. 
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