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ABSTRACT
Methotrexate (MTX) is a widely used chemotherapeutic and
immunosuppressive agent known to induce renal toxicity through
mechanisms involving oxidative stress, inflammation, and apoptosis. This
study aimed to evaluate the renoprotective effects of SIM against MTX-
induced nephrotoxicity in rats. Thirty-two male Sprague-Dawley rats were

Keywords: randomly divided into four groups: control, SIM, MTX, and MTX+SIM.
Methotrexate, MTX administration significantly elevated serum Cr and urea levels
nephrotoxicity, increased renal MDA, and suppressed antioxidant enzymes, including SOD,
simvastatin, CAT, and GPx. It also upregulated inflammatory markers such as NF-«B,
oxidative stress, TNF-a, IL-6, and IL-1p, and triggered apoptosis via increased expression of
inflammation. p53, cytochrome c, Bax, and caspase-3. Co-treatment with SIM significantly
mitigated these pathological changes, restoring renal function, enhancing
antioxidant defenses, suppressing inflammation, and downregulating
apoptotic proteins. These findings highlight the multi-targeted therapeutic
potential of SIM in mitigating MTX-induced renal injury and preserving
kidney integrity.
INTRODUCTION

Despite their frequent use in managing malignancies, chemotherapeutic drugs are
potentially hazardous, causing harmful side effects in various organs that necessitate careful
management (Chen et al., 2009; Minami et al., 2010). A key example is Methotrexate (MTX),
a potent antimetabolite and antifolate medication. It works by disrupting cellular metabolism
and inhibiting the synthesis of purines and pyrimidines, thereby preventing cellular growth.
Due to this mechanism, MTX is valuable as both an immunosuppressive agent and a
chemotherapeutic drug. It is often prescribed in combination with other agents to treat a wide
range of cancers, including acute lymphoblastic leukemia, osteosarcoma, breast cancer, brain
tumours, lymphomas, and various carcinomas (Crews et al., 2004; Khan et al., 2012; Wu et
al., 2017; Chen et al., 2020; Kozminski et al., 2020).

The antifolate mechanism of Methotrexate (MTX) involves interference with thymidine
and purine biosynthesis, which is essential for DNA replication, repair, and cellular
proliferation. Since the renal system is responsible for eliminating 90% of the drug,
nephrotoxicity represents one of the most significant side effects of MTX therapy (Sales &
Foresto, 2020; Jalili et al., 2020). High-dose regimens, in particular, may induce acute renal
failure in 2—12% of patients, primarily through the precipitation of the drug in the renal tubules
a pathology termed crystalline nephropathy (Sales & Foresto, 2020).
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Further toxicities associated with
MTX treatment encompass mucositis,
hepatitis, and gastrointestinal complications
(Ramsey et al., 2018).

MTX-induced renal damage is
driven by the intratubular accumulation of
both the drug and its 7-hydroxy metabolite,
which establishes a vicious cycle that
exacerbates toxicity (Hamed et al, 2022).
The pathogenic process is multifactorial,
involving oxidative injury, inflammatory
infiltration, and apoptotic cell death (Arab et
al., 2018; Wasfey et al., 2023). At amolecular
level, studies have demonstrated that this is
mediated by the activation of NADPH
oxidase, resulting in massive ROS generation
(Abraham et al., 2010), coupled with the
disruption of the cytoprotective Nrf2
signaling pathway (Hussein et al., 2020). The
resulting state of severe oxidative stress then
activates pro-inflammatory cascades, such as
those involving TNF-a, leading to further
renal tissue injury (Aladaileh et al., 2019).

Beyond their primary role in
preventing hypercholesterolemia and
cardiovascular disease (Kapur & Musunuru,
2008), statins exhibit beneficial pleiotropic
effects. These lipid-lowering agents have
demonstrated the ability to mitigate OS and
inflammation in DM and its complications
(Al-Rasheed et al., 2018; Al-Rasheed et al.,
2017). Evidence suggests these positive
outcomes stem not only from cholesterol
regulation but also from cholesterol-
independent properties, including plaque
stabilization, and direct antioxidant and anti-
inflammatory actions (Verdoodt et al., 2018).
Consequently, statins have been shown to
inhibit inflammation and OS in experimental
models of kidney injury, such as renal
ischemia/reperfusion and gentamicin
nephrotoxicity (Ozbek et al., 2009; Teshima
et al., 2010). The objective of this work was
to evaluate the potential renoprotective
effects of simvastatin (SIM) in the context of
methotrexate (MTX) nephrotoxicity, with a
specific focus on mechanisms underlying its
amelioration of oxidative stress and
inflammatory pathways.
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MATERIALS AND METHODS
Experimental Animals:

The study utilized 32 adult male
Sprague-Dawley rats (180-200 g), which
were housed in groups of four under
controlled conditions (24 + 2°C, 55 £ 5%
humidity, 12-hour light/dark cycles) with
unrestricted access to food and water.
Following a one-week acclimatization period,
the rats were randomly allocated into four
equal groups of eight. The protocol received
prior approval from the Medical Research
Ethics Committee at Umm Al-Qura
University (Approval code: HAPO-02-K-
012-2025-10-2940).

Experimental Treatment Protocols:

Male rats (n = 8 per group) were
randomly allocated into four groups for a 10-
day experiment: a control group receiving
saline; a SIM group orally administered
simvastatin (40 mg/kg/day) for 10 days
(Nezi¢ et al., 2020); an MTX group injected
with a single dose of methotrexate (20 mg/kg,
i.p.) on day 4; and an MTX+SIM group
receiving  both  treatments at  the
aforementioned doses and schedule. The
MTX dosage was selected based on previous
studies (Armagan et al., 2015; Hafez et al.,
2015). On day 10, rats were euthanized via
cervical dislocation under diethyl -ether
anesthesia. Both kidneys were collected; the
right kidney was fixed for histological
examination, while the left kidney was
homogenized for biochemical analysis. Blood
samples were centrifuged, and the obtained
sera were stored at —80°C until further use.
Assessment of Renal Function and
Oxidative Stress Parameters:

Serum levels of urea and Cr, markers
of renal function, were measured using
commercial kits (Bio-Diagnostic, Egypt;
Urea: UR2110, Creatinine: CR1250) and
reported in mg/dl.

To assess oxidative stress, kidney
tissue homogenates were prepared. Briefly,
frozen renal cortex samples were thawed and
homogenized in a 10-fold volume (w/v) of
ice-cold Tris-HCI buffer (pH 7.4) containing
a 1% protease inhibitor cocktail. The
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homogenization was carried out at 4000 rpm,
and the resulting supernatant was collected
following centrifugation for subsequent
analysis. The supernatant was then used to
spectrophotometrically  determine  lipid
peroxidation and antioxidant enzyme
activities. The extent of lipid peroxidation
was assessed by quantifying MDA levels
according to the method of Wong et al
(1987), with results expressed in nanomoles
per gram of tissue (nmol/g). The activities of
key antioxidant enzymes were analyzed as
follows: SOD by the technique of Sun et al.
(1988) in units per gram of tissue (U/g), CAT
by the method of Aebi (1984) in micromoles
per milligram of tissue (umol/mg), GPx
according to Koracevic et al (2001) in
micrograms per milligram of tissue (ug/mg)
ELISA Analysis:

The concentrations of inflammatory
cytokines (NF-xB p65, TNF-a, IL-6, IL-18;
Cat# E-EL-R0674, E-EL-R2856, E-EL-
R0O015, MBS2023030) and apoptosis-related
proteins (p53, Cytochrome-C, Bax, caspase-
3; Cat# ERA47RB, MBS165286,
MBS2512405, MBS261814) were quantified
in kidney homogenates using specific ELISA
kits according to the manufacturers’
protocols.

Histological Analysis:

For histopathological analysis, the
renal tissues were fixed in formalin and then
processed through a series of steps including
dehydration, clearing with xylene, and
paraffin embedding. The embedded tissues
were then sliced into thin sections (4—6 pm)
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and stained with hematoxylin and eosin
(H&E) for examination (Bancroft & Gamble,
2008).

Statistical Analysis:

All data are presented as mean =+
standard deviation (SD). Statistical analysis
was performed using a one-way analysis of
variance (ANOVA) followed by Tukey's post
hoc test in GraphPad Prism software (version
8.0.2). A p-value of less than 0.05 was
considered statistically significant.

RESULTS
Protective Effect of Simvastatin on MTX-
Induced Renal Impairment and
Histological Alterations:

A single intraperitoneal
administration of methotrexate (MTX) on the
fourth day of the study significantly elevated
serum levels of renal function markers
creatinine and urea (p < 0.05; Fig. 1A, B).
This biochemical impairment ~ was
corroborated by histological examination of
the renal cortex, which revealed marked
tubular degeneration, dilation, and cast
formation (Fig. 1E). In contrast, control rats
exhibited normal renal function levels and
preserved histological architecture, including
intact glomeruli and tubules (Fig. 1C, D).
Notably, coadministration of MTX with
simvastatin (SIM) resulted in a significant
improvement in renal function parameters
and a marked reduction in tubular
degeneration (Fig. 1F). These findings
demonstrate the renoprotective effect of SIM,
as evidenced by both biochemical and
histological evaluations.
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Fig.1: (A, B) Serum level of creatinine and urea in different groups. (C, D) Microscopic
pictures of HE stained kidneys of control rats and rats received SIM showing normal cortex.
(E) Rats received MTX showing severe tubular degeneration (black arrows), tubular dilation
& atrophy (blue arrows). (F) kidneys of rats received MTX+SIM showing decreased tubular
degeneration (black arrows) in cortex. Magnifications X200 bar50. *p< 0.05 indicates
significancy to control animals, "p< 0.05 documented significancy to MTX group.
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Oxidative Stress Modulation by
Simvastatin in MTX-Induced
Nephrotoxicity:

As shown in Figure 2, administration
of methotrexate (MTX) induced significant
oxidative stress in renal tissues, evidenced by
elevated levels of lipid peroxidation marker
malondialdehyde (MDA) and a marked
reduction in antioxidant enzymes superoxide
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dismutase (SOD), catalase (CAT), and
glutathione peroxidase (GPx) compared to
normal rats. Conversely, the MTX+SIM
group exhibited a notable reversal of these
changes, with decreased MDA levels and
restoration of antioxidant enzyme activities.
These findings wunderscore the potent
antioxidant properties of SIM in mitigating
MTX-induced nephrotoxicity.
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Fig. 2. Renal Homogenate level of (A) MDA, (B) SOD, (C) CAT, (D) GPx in different groups.
kp<0.05 vs normal rats, “p< 0.05 vs MTX treated rats.

Anti-Inflammatory Effect of Simvastatin
Against MTX-Induced Renal
Inflammation:

ELISA analysis revealed a significant

elevation in the inflammatory transcription
factor NF-xB and its associated cytokines,
TNF-a, IL-6, and IL-1B, in the MTX-treated
group compared to the control rats (Fig. 3A—
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D). In contrast, coadministration of
simvastatin (SIM) with MTX resulted in a
marked reduction in these inflammatory
markers relative to the MTX group. These
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findings  strongly support the anti-
inflammatory potential of SIM in mitigating
MTX-induced renal inflammation.
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Fig. 3. Protein level of (A-D) NF-xB, TNF-a, IL-6, IL-1B in different experimental groups.
kp< 0.05 means significance to normal group, “p< 0.05 means significance to MTX group.

Antiapoptotic Effect of Simvastatin in
MTX-Induced Renal Tubular Apoptosis:

Methotrexate (MTX) administration
led to a significant upregulation of apoptotic
markers, including p53, cytochrome-C, Bax,
and caspase-3, compared to the normal
control group. Interestingly, co-treatment

with simvastatin (SIM) markedly attenuated
the expression of these apoptotic proteins
(Fig. 4A-D). These results highlight the anti-
apoptotic efficacy of SIM in protecting
against MTX-induced renal tubular cell
apoptosis.
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Fig. 4. ELISA analysis of apoptotic markers in renal tissues across experimental groups: (A)
p53, (B) cytochrome-C, (C) Bax, and (D) caspase-3. Data are presented as mean + SD.
¥ <0.05 indicates significance compared to the control group; “p <0.05 indicates significance

compared to the MTX-treated group.

DISCUSSION
Although Methotrexate (MTX) is a
widely used immunosuppressive and

anticancer drug (Pannu, 2019; Howard ef al.,
2016; Weinblatt, 2018), its benefits are often
limited by serious side effects and toxicity
(Jalili et al, 2020), particularly kidney
damage (nephrotoxicity). This renal injury,
which targets the tubules, is driven by
inflammation and oxidative stress (Pannu,
2019; Abd El-Twab et al., 2016; Mahmoud et
al., 2018). Consequently, finding agents that
can protect against this nephrotoxicity is a
critical medical goal.

Urea and creatinine are primary
markers of renal function and play a critical
role in diagnosing renal injury and assessing
kidney health (Tirk er al, 2022). These
biomarkers are standard indices of glomerular
function (Amini et al., 2019), and elevated
levels in the bloodstream typically indicate
impaired kidney function (Salazar, 2014). In
our study, the MTX-treated group exhibited a
significant deterioration in renal function
compared to the control group, consistent
with findings from previous research (EI-
Saed et al., 2025; Mahmoud et al, 2025).
Conversely, co-treatment with simvastatin
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(SIM) and methotrexate (MTX) resulted in
normalization of renal function, accompanied
by notable improvements in renal
morphology and a reduction in tubular
degeneration. These findings align with those
reported by Hasan et al (2024), who
demonstrated the protective effects of
simvastatin in a diabetic nephropathy model,
showing reductions in urinary
microalbuminuria, serum BUN, and
creatinine levels, along with histological
improvements. Similarly, the study by Iseri et
al. (2007) corroborated the nephroprotective
role of simvastatin in cisplatin-induced
nephrotoxicity.

Accumulating data underscores the
detrimental role of reactive oxygen species
(ROS) in kidney health, where they contribute
to nephron damage and disrupt the
architecture and function of renal tubules and
glomeruli (Devrim ef al., 2005). Methotrexate
(MTX), in particular, has been identified as a
potent inducer of ROS generation (Al-Otaibi
et al, 2012). Our findings, consistent with
previous reports, revealed that MTX
administration significantly elevated renal
tissue levels of MDA, a marker of lipid
peroxidation, while concurrently reducing
antioxidant enzyme levels. However,
combined treatment with SIM and MTX
resulted in a marked decrease in lipid
peroxidation and a significant elevation in
antioxidant enzymes such as GPx and SOD,
compared to the MTX-only group. These
results are supported by the work of Goodarzi
et al. (2017), who demonstrated the
antioxidant effect of simvastatin against
chromium-induced renal damage through
suppression of MDA and elevation of GSH.
Similarly, (Al-Otaibi ef al., 2012) reported a
lack of protective effect of simvastatin against
contrast-induced  oxidative stress. The
antioxidant properties of simvastatin can be
attributed to its multi-faceted mechanisms:
(1) Reduction of lipid peroxidation
simvastatin significantly lowers MDA levels,
indicating reduced oxidative damage to renal
tissues Mhaidat et al., 2016; (2) Enhancement
of antioxidant enzymes it boosts the activity
of key enzymes such as GST, SOD, and
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catalase, which help neutralize ROS (Al-
Otaibi et al., 2012); (3) Improved nitric oxide
bioavailability simvastatin enhances
endothelial function by increasing nitric oxide
levels, thereby reducing oxidative stress and
improving renal perfusion (Mhaidat et al.,
2016); and (4) Upregulation of the Nrf2/HO-
1 signaling pathway, which plays a critical
role in cellular antioxidant defense (Zhang et
al., 2017).

Oxidative stress serves as the primary
trigger for MTX-induced inflammation,
leading to the activation of NF-xB, a central
regulator of the redox response (Ahmad et al.,
2021). This activation initiates the
transcription of inflammatory markers such as
TNF-a, whose upregulation intensifies the
inflammatory cascade by promoting immune
cell infiltration and inducing cell death,
thereby exacerbating renal pathology Fahmy
et al. (2025). In our study, rats treated with
MTX showed a marked increase in NF-kB
expression and inflammatory cytokines
compared to the control group. These findings
align with previous work by Fahmy et al
(2025), who highlighted the role of
inflammation in MTX-induced nephron-
toxicity in a rat model. Interestingly, co-
treatment with SIM and MTX demonstrated
anti-inflammatory effects by reversing the
elevated protein levels of inflammatory
indicators. This observation is supported by
Hasan et al. (2024), who reported that SIM
exerted anti-inflammatory effects in a
diabetic = nephropathy = model through
inhibition of NF-«kB and associated cytokines.
The anti-inflammatory mechanism of SIM is
attributed to its ability to prevent NF-«xB
activation by stabilizing its inhibitor, IkBa,
thereby blocking its phosphorylation and
degradation. This inhibition prevents the
translocation of the NF-kB p65 subunit into
the nucleus, effectively suppressing the
transcription of inflammatory genes (Lee et
al., 2007).

The overproduction of ROS and pro-
inflammatory cytokines is a key trigger for
the mitochondrial apoptotic pathway (Heidari
et al., 2018). Our study demonstrated that
MTX induces renal apoptosis by increasing
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the protein levels of cytochrome-c, p53, Bax,
and caspase-3, indicating activation of the
intrinsic apoptotic pathway. In contrast, the
SIM+MTX treatment group showed a notable
reduction in renal apoptosis, as evidenced by
decreased levels of apoptotic markers. These
findings are consistent with previous work by
Hasan et al. (2024), who reported that SIM
mitigates apoptosis in a diabetic nephropathy
model by downregulating the mRNA and
protein  expression of caspase-3 and
upregulating the gene expression of Bcl-2.
Additionally, Mahmood et al. (2008)
documented the anti-apoptotic properties of
SIM in a traumatic brain injury model,
highlighting its ability to suppress caspase-3

expression.
CONCLUSIONS

Simvastatin demonstrated a
multifaceted  protective  role  against

methotrexate-induced kidney damage. It
improved renal performance, preserved tissue

architecture, and counteracted oxidative
imbalance. Additionally, simvastatin
suppressed inflammatory mediators and

reduced cellular death signals, confirming its
therapeutic potential in maintaining renal
integrity under toxic stress.

List of Abbreviations:

NF-kB — Nuclear Factor kappa-light-chain-
enhancer of activated B cells

MTX — Methotrexate

SIM - Simvastatin

AKI — Acute Kidney Injury

ROS — Reactive Oxygen Species

OS- Oxidative stress

DM - diabetes mellitus

GSH — Glutathione

MDA — Malondialdehyde

SOD — Superoxide Dismutase

CAT - Catalase

Cr — Creatinine

BUN - blood urea nitrogen

ELISA - Enzyme-Linked Immunosorbent
Assay

IL-1p — Interleukin-1 beta

IL-6 — Interleukin-6

TNF-a — Tumor Necrosis Factor-alpha
H&E — Hematoxylin and Eosin

GST - glutathione S-transferase
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