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Abstract: The present investigation is intended to demonstrate the effect of rotation on the thermoelastic medium. The governing 

equations are formulated in the context of the Lord-Shulman theory. We obtained the analytical solution using Lame’s potential 

method and Lthe normal mode technique with appropriate boundary conditions. The field quantities were calculated analytically 

and displayed graphically under the rotation with the effect of time with respect to space coordinates. The numerical values of the 

expressions are evaluated using MATHEMATICA. The graphical results are presented to shown the effect of time and rotation. 

Findings indicate that rotation and the included parameters notably amplify physical responses, especially under increased time and 

rotation. Results are validated against existing literature. Although theoretical in nature, this work offers insights relevant to 

geophysics, seismology, and earthquake engineering, particularly in applications such as mining tremors and crustal drilling. The 

results obtained are in agreement with the previous results obtained by others research when the new parameters vanish. 
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1. Introduction 

In recent years, the investigation of wave propagation and 

memory effects in thermoelastic media has garnered 

significant attention due to its vast applications in geophysics, 

biomechanics, aerospace engineering, and advanced material 

science. The classical coupled thermoelasticity theory 

proposed by Biot [1] with the introduction of the strain-rate 

term in the Fourier heat conduction equation leads to a 

parabolic-type heat conduction equation, called the diffusion 

equation. This theory predicts finite propagation speed for 

elastic waves but an infinite speed for thermal disturbance 

This is physically unrealistic. In the classical theory of 

thermoelasticity, Fourier’s heat conduction theory assumes 

that the thermal disturbances propagate at infinite speed, 

which is unrealistic from the physical point of view. Two 

different generalizations of the classical theory of 

thermoelasticity have been developed, which predict only the 

finite velocity of propagation of heat and displacement fields. 

The first one is given by Lord and Shulman [2]. The second 

developed a temperature rate dependent thermoelasticity by 

including temperature rate among the constitutive variables is 

given by Green and Lindsay [3] have introduced situations 

where very large thermal gradients or annular a high heating 

speed may exist on the boundaries [4]. The linear theory of 

elasticity is of paramount importance in the stress analysis of 

steel, which is the commonest engineering structural material. 

To a lesser extent, linear elasticity describes themechanical 

behavior of the other common solid materials, for example, 

concrete, wood, and coal. However, the theory does not apply 

to the behavior of many of the new synthetic materials of the 

clastomer and polymer type, for example, polymethyl-

methacrylate (Perspex), polyethylene, and polyvinyl chloride. 

The linear theory of micropolar elasticity is adequate to 

represent the behavior of such materials. For ultrasonic waves, 

that is, for the case of elastic vibrations characterized by high 

frequencies and small wavelengths, the influence of the body 

microstructure becomes significant; this influence of 

microstructure results in the development of new type of 

waves that are not in the classical theory of elasticity. Metals, 

polymers, composites, solids, rocks, and concrete are typical 

media with microstructures. More generally, most of the 

natural and manmade materials including engineering, 

geological, and biological media possess a microstructure 

Agarwal [5, 6]. Effects of rotation and relaxation times on 

plane waves in generalized thermo-elasticity are studied by 

Roychoudhuri [7]. The classical Fourier model, which leads to 

an infinite propagation speed of the thermal energy, is no 

longer valid [8]. Ahmad and khan [9] studied the effect of 

rotation on thermoelastic plane waves in an isotropic medium. 

Some problems in thermoelastic rotating media are due to, and 

Schoenberg and Censor [10], Puri [11], Singh and Kumar 

[12], Othman [13-16], Othman and Singh [17], Abd-Alla and 

Abo-Dahab [18]. Also normal mode analysis is used to solve a 

lot of problems in thermal flexibility, such as Lotfy and Abo-

Dahab [19] and Othman and Song [20].  

The main purpose of the present investigation is to 

demonstrate the effect of rotation on the thermoelastic 
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medium. The governing equations are formulated in the 

context of the Lord-Shulman theory in the presence of the body 

force, rotation and time. We obtained the analytical solution 

using the lame’s potential method and normal mode technique 

with appropriate boundary conditions. The field quantities 

were calculated analytically and displayed graphically under 

the rotation and time with respect to space coordinates. The 

graphical results are presented to shown the effect of magnetic 

field, time, angular frequency and wave number. Finally, these 

findings were contrasted with earlier findings in the same 

direction, and it was discovered that the approach taken to 

solve the aforementioned issue. Due to existence of realistic 

composition of this type of model in earth’s interior, it can be 

very useful in important structures such as body materials in 

the aerospace field, nuclear reactors, pressure vessels and pipes 

etc. In the end, the results of this study were compared in some 

way to the results of other studies that have been published. 

The variations of the considered variables are obtained and 

illustrated graphically. The results obtained are in agreement 

with the previous results obtained by others when the new 

parameters vanish.                         

Nomenclatures 

𝜆, 𝜇  Lamè constants 

𝑡  time 

𝜌 Mass density  

Ω Rotation  

T   Absolute temperature 

T0   Under the natural state, the temperature of the 

medium is |
𝑇−T0

T0
|<1 

𝜀𝑖𝑗  Strain tensor 

𝜎𝑖𝑗   Stress tensor components 

𝐶𝑖𝑗𝑘𝑙  Elastic stiffness tensor  

𝑢𝑖 component of displacement vector  

𝑒 dilation 

𝜏0  Time of thermal relaxation 

 

2. Formulation of the Problem 

An infinite homogeneous thermoelastic half-space with 

external heat source is considered. The thermoelastic half-

space is initially at uniform reference temperature . The 

origin of coordinate system lies on the middle surface of the 

half-space. The xy  plane coincides with the middle surface 

and  axis is normal to the half-space. Let us consider that the 

thermoelastic medium is a half-space, subjected to rotation Ω . 

The fundamental equations of the problem as follows: 

The heat conduction equation is as Youssef [15]:  

k∇2T = ρCe (
∂T

∂t
+ τO 

∂2T

∂t2 ) + βτO 
∂e

∂t
                               (1)                                                                  

where 

e =
∂u

∂x
+

∂v

∂y
 

The equation of motion in the form: 

ρ (
∂2u

∂t2 − Ω2u − 2Ωv̇) = (λ + 2μ)
∂2u

∂x2 + (λ + μ)
∂2v

∂x ∂y
+ μ

∂2u

∂y2 −

γT0
∂T

∂x
.                                                                   (2) 

ρ (
∂2v

∂x2 − Ω2v + 2Ωu̇) = (λ + 2μ)
∂2v

∂y2 + (λ + μ)
∂2u

∂x ∂y
+ μ

∂2v

∂x2 −

γT0
∂T

∂y
.                                                                    (3) 

The constitutive equation as 

σxx = (λ + 2μ)
∂u

∂x
+ λ

∂v

∂y
− γT.                                (4) 

σyy = (λ + 2μ)
∂v

∂y
+ λ

∂u

∂x
− γT                                 (5) 

τxy = μ(
∂u

∂y
+

∂v

∂x
)                                                        (6) 

The displacements for two-dimensional half-space have the 

following form 

),,( tyxuux = ,     
),,(v tyxu y =  and                              (7) 

The non-dimensional variables for simplifying are given as  

x̀ = coηx , ỳ = coηy,   ù = coηu, v̀ = coηv,  t̀ = co
2ηt,              

θ =
T

TO

, τ̀ =
τ

2μ + λ
, Ὼ =

Ω

ω∗
 

ω∗ =
ρcec2

2

K
, ∂̀ij =

∂ij

λ+2μ
,   τò = ω∗τo                           (8) 

 Where 
2

2,ec
c

K

 



= =  ,   and    c0

2 =
2μ+λ

ρ
 

By dropping the dashed for convenience and substituting from 

Eq (1), Eqs (2) and (3) in the non-dimensional form take the 

following: 

 
𝜕2𝜃

𝜕𝑥2 +
𝜕2𝜃

𝜕𝑦2  =   𝛿1
𝜕𝜃

𝜕𝑡
+ 𝛿2

𝜕2𝜃

𝜕𝑡2 + 𝛿3
𝜕

𝜕𝑡
(

𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
)                  (9) 

𝜕2𝑢

𝜕𝑡2 −𝛿5𝑢 − 𝛿6
𝜕𝑣

𝜕𝑡
 =   

𝜕𝑢

𝜕𝑥
+ 𝛿7

𝜕2𝑣

𝜕𝑥𝜕𝑦
+ 𝛿8

𝜕2𝑢

𝜕𝑦2 − 𝛿9
𝜕𝜃

𝜕𝑥
            (10) 

                   

𝜕2𝑣

𝜕𝑡2 −𝛿10𝑣 + 𝛿11
𝜕𝑢

𝜕𝑡
 = 𝛿12   

𝜕𝑣

𝜕𝑦
+ 𝛿13

𝜕2𝑣

𝜕𝑥𝜕𝑦
+ 𝛿14

𝜕2𝑣

𝜕𝑥2 − 𝛿15
𝜕𝜃

𝜕𝑦
                                                  

(11) 

here 

EC


 =  and  

2

0

2ca =  

By using Lame potentional  

𝑢 =
𝜕𝜑

𝜕𝑥
+

𝜕𝜓

𝜕𝑦
    , 𝑣 =

𝜕𝜑

𝜕𝑦
−

𝜕𝜓

𝜕𝑥
                                    (12) 

From equations (9-11) and 12 we get  

𝜕2𝜃

𝜕𝑥2 +
𝜕2𝜃

𝜕𝑦2  =   𝛿1
𝜕𝜃

𝜕𝑡
+ 𝛿2

𝜕2𝜃

𝜕𝑡2 + (𝛿3
𝜕

𝜕𝑡
+ 𝛿4

𝜕2

𝜕𝑡2)(
𝜕2𝜑

𝜕𝑥2 +
𝜕2𝜑

𝜕𝑦2)                                                  

(13) 

𝜕2𝜑

𝜕𝑡2 −𝛿5𝜑 =
𝜕2𝜑

𝜕𝑥2 + 𝛿7
𝜕2𝜑

𝜕𝑦2 + 𝛿8
𝜕2𝜑

𝜕𝑦2 − 𝛿9𝜃                           (14) 

−
𝜕2𝜓

𝜕𝑡2 +𝛿10𝜓 = −𝛿12   
𝜕𝜓

𝜕𝑦
+ 𝛿13

𝜕2𝜓

𝜕𝑦2 − 𝛿14
𝜕2𝜓

𝜕𝑥2                     (15) 

3. The solution of the proplam 
In this section, normal mode analysis (NMA) is used to obtain 

the analytical expressions for displacement components, stress 

components and temperature. The assumed solution of physical 

variables is decomposed into normal modes to obtain the 

0T

y
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analytical solutions of the physical quantities. It is assumed 

that all the functions are sufficiently smooth such that the 

NMA of these functions exist.  The solution of the equations( 

13-15 ) can be decomposed in terms of the normal mode 

technique in the form 

  

 

[𝜓, 𝜑, 𝜃, 𝜎𝑖𝑗](𝑥, 𝑦, 𝑡) =

[𝜓∗(𝑥), 𝜑∗(𝑥), 𝜃∗(𝑥), 𝜎𝑖𝑗
∗ (𝑥)] exp(𝜔 𝑡 + 𝑖𝑏𝑦)         (16)     

where 1−=i , b  is a wave number,   is the time 

constant, and )(),(),( *** xxxu   and )(* xij  are the 

amplitudes of the physical field quantities.  

Using  Eqs. (16), into Eqs. (13) and (14)-(15), we obtain 

                               

(𝐷2 − 𝑏2 − 𝛿1𝜔 − 𝛿2𝜔2)𝜃∗(𝑥) − (𝐵4𝐷2 − 𝛿3𝜔𝑏2 −
𝛿4𝜔2𝑏2)𝜑∗(𝑥)                                                                  (17)   

(𝜔2 − 𝛿5 − 𝐷2 + 𝛿7𝑏2 + 𝛿8𝑏2)𝜑∗(𝑥) + 𝛿9𝜃∗(𝑥)           (18)     

[𝐷2 −  K11]𝜓∗ = 0                                                           (19) 

where     K11=
ω

δ14
- 

δ10

δ14
- 

δ12

δ14
ib- 

δ13

δ14
𝑏2 ,      𝐷 =

𝑑

𝑑𝑥
             

Solving Eqs. (17) and (18) and by eliminating  𝜃∗(𝑥), 𝜓∗(𝑥) , 

and )(* x , we obtain the partial differential equation satisfied 

by )(* x  

(𝐷4 − 𝐷2(𝑏2 − β5 + β4δ9 + δ1𝜔 + δ2𝜔2) − (𝑏2β5 +
β5δ1𝜔 − 𝑏2δ3δ9𝜔 + β5δ2𝜔2 −
  𝑏2δ4δ9𝜔2)(𝜑∗(𝑥), 𝜓∗(𝑥), 𝜃∗(𝑥)) = 0                          (20) 

where 

 β5 = 𝜔2 − δ5 + δ7𝑏2 + δ8𝑏2, 𝛾1 = 𝑏2 − β5 + β4δ9 + δ1𝜔 +
δ2𝜔2 , 𝛾2 = 𝑏2β5 + β5δ1𝜔 − 𝑏2δ3δ9𝜔 + β5δ2𝜔2 −
𝑏2δ4δ9𝜔2 

                

which can be factorized  to 

(𝐷4 − 𝛾1𝐷2 − 𝛾2)(𝜑∗(𝑥), 𝜃∗(𝑥)) = 0                           (21) 

 

 where )2,1(2 =nkn  are the roots of the characteristic 

equation.  

𝑘4 − 𝛾1𝑘2 + 𝛾2 = 0                                                         (22) 

as →x , the solution of Eq. (21) is given by 

 𝜃∗(𝑥) = ∑ 𝐴𝑛
2
𝑛=1 exp(−𝑘𝑛𝑥)                                         (23) 

Similarly, 

𝜙∗(𝑥) = ∑ 𝐴𝑛
̀2

𝑛=1
exp(−𝑘𝑛𝑥)                                        (24) 

From equation (17), (18), (23) and (24) ,we get  

   𝜙∗(𝑥) = 𝐻11𝐴1 exp(−𝜆1𝑥) + 𝐻12𝐴2 exp(−𝜆2𝑥)        (25) 

The solution of equation (19) take the form  

ψ*(x) = M3 e−𝐾11  x                                                            (26)       

From equations (25),(26) , (12) and (16)  

u(x) = (
𝜕𝜑

𝜕𝑥
+

𝜕𝜓

𝜕𝑦
)exp(𝜔𝑡 + 𝑖𝑏𝑦)                                     (27) 

v(x) = (
𝜕𝜑

𝜕𝑦
−

𝜕𝜓

𝜕𝑥
)exp(𝜔𝑡 + 𝑖𝑏𝑦)                                     (28) 

u(x)=[-𝐻11𝜆1𝐴1exp(−𝜆1𝑥) − 𝐻12𝜆2𝐴2 exp(−𝜆2𝑥)  +

ib𝐵2exp(√−𝐾11𝑥) ]exp (𝜔𝑡 + 𝑖𝑏𝑦)                               (29) 

v(x)=[ib𝐻11𝐴1exp(−𝜆1𝑥) + 𝑖𝑏𝐻12𝐴2 exp(−𝜆2𝑥) +

𝐵2√𝐾11exp(√−𝐾11𝑥  ) ]exp (𝜔𝑡 + 𝑖𝑏𝑦)                      (30) 

Substituting Eqs. (29) and (30) into Eqs. (5)-(7), we obtain 

σ𝑥𝑥 = [𝐻11𝜆1
2−𝑏2𝐵1𝐻11 − 𝐵2]𝐴1exp(−𝜆1𝑥) +

[𝐻12𝜆2
2−𝑏2𝐵1𝐻12 − 𝐵2]𝐴2 exp(−𝜆2𝑥)  +

𝐵2exp(−√𝐾11𝑥) ]exp (𝜔𝑡 + 𝑖𝑏𝑦)    (31) 

σ𝑦𝑦 = [−𝑏2𝐻11+𝜆1
2𝐵1𝐻11 − 𝐵2]𝐴1exp(−𝜆1𝑥) +

[−𝑏2𝐻12+𝜆2
2𝐵1𝐻12 − 𝐵2]𝐴2 exp(−𝜆2𝑥)  + [𝑖𝑏√𝐾11 −

 𝐵1𝑖𝑏√𝐾11 ]𝐵2exp(−√𝐾11𝑥) ]exp (𝜔𝑡 + 𝑖𝑏𝑦)                  (32) 

τ𝑥𝑦 = [−2𝑖𝑏𝐻11𝜆1𝛽3]𝐴1exp(−𝜆1𝑥) +

[−2𝑖𝑏𝐻12𝜆2𝛽3−𝑖𝑏]𝐴2 exp(−𝜆2𝑥)  + [−𝛽3𝑏2 −

𝛽3𝐾11]𝐵2exp(−√𝐾11𝑥 ) ]exp (𝜔𝑡 + 𝑖𝑏𝑦)                          (33) 

 

4. Applications 
The problem under study is related to thermoelastic half-space 

with rotation at the boundary surface are: 

1) The boundary conditions for the thermal at the surface under 

the thermal shock 

 𝜃 =
𝑄0 

𝑇𝑜
  ,                                                                           (34)          

2) The boundary condition for the mechanical at the surface 

under the initial stress 

𝜎𝑥𝑥(0, 𝑦, 𝑡)  = 0 , 𝜏𝑥𝑦(0, 𝑦, 𝑡) =   0                                  (35)     

Substituting into the above boundary conditions in the physical 

quantities, we obtain  

𝐴1 + 𝐴2 =
𝜑0

𝑇𝑜
                                                                     (36)        

[𝐻11 𝜆1
2 − 𝑏2𝛽1𝐻11 − 𝛽2]𝐴1 + [𝐻12 𝜆2

2 − 𝑏2𝛽1𝐻12 − 𝛽2]𝐴2 +

[−𝑖𝑏√𝐾11 + 𝛽1𝑖𝑏√𝐾11]𝐵2 = 0                                            (37)                                                                                                                                                                  

[−2𝑖𝑏𝐻11 𝜆1𝛽3]𝐴1 + [−2𝑖𝑏𝐻12𝜆2𝛽3]𝐴2 + [−𝛽3𝑏2 −
𝛽3𝐾11]𝐵2 = 0                                                                        (38) 

In the context of the boundary conditions in Eqs. (36)-(38) at 

the surface x 0= , we get a system of three Algebraic 

equations. We apply the inverse matrix method and get the 

three constants A1, A2 and B2 .After that, we substitute into the 

main expressions to obtain the displacements, temperature, and 

other physical quantities. 

Appling the Kramer ‘s on the Algebraic equations on Eqs. 

(36)-(38),we obtain the arbitrary  A1, A2 and B2 ,which it 

defined in appendix I. 

 

5. Numerical results and discussions 

In this section, we delve into the intriguing aspects of wave 

propagation in a thermoelastic medium. Our approach involves 

numerical simulations to analyze crucial fields, including 

displacement components, temperature and stress components.  

Furthermore, Mathematica software has been used in order to 

evaluate the numerical values of the field quantities. To 

illustrate the analytical variable obtained earlier, we consider a 

numerical example and consider the copper material. The 

results display the variation of temperature, and stress  

components in the context of the LS theory.   

29 /10x59.7 mN=
,          

210 /1086.3 mskg=

,   
)/(1.383 kgkJCE =

, 0168.0=  

  
29 /10x28.1 mN−=

,   
2/7800 mkg=

,    
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386 /K N Ks= , 0 0.02 = , 𝛼𝑡 = 1.78  x 10−5 𝑁/𝑚2,   

1=a ,   
K2930 =T

, 
 i+= 0 , 

20 =
, 

1=
,

2/73.8886 sm=
  , 𝑄0  =  0.5 

We take the constants 1−=y , 𝑏 = 0.25, 𝐻 = 105, 𝑃 =

1010, 𝛽 = 0.1, 𝜏 = 0.1   for all computations, and we use for 

the real part of the displacement , vu , strain e and the stresses         

( , ,xx yy xy   ), thermal temperature   , and conductive 

temperature  . All field quantities do not depend only on 

space x and time, t , but they also depend on the relaxation 

time   and take the dimensionless form:  

The output is plotted in Figs. 1-6.  The variations of all the 

quantities are shown in Figures 1-6 to show the effect of 

different time ,t  and rotation . . Figure 1: shows the 

variations of the temperature θ with respect to x-axis for 

different values time t .It is observed that the temperature 

increases with increasing of time t ,while it decreases with 

increasing of  axial .x  It is noticed that the due to the time 

effect, the elastic waves (described by temperature  ) on the 

surface are generated with a positive amplitude, which starts 

increasing when moving away from the source. After that, the 

elastic waves start showing periodic nature. This result is in a 

good agreement with the results obtained by [20]. 

Figure 2: displays  the variations of the shear stress xy  with 

respect to x -axis for different values time t .It is observed that 

the temperature increases with increasing of time t ,while it 

oscillation in the whole range of x-axis, as well the shear 

stress satisfies the boundary connotation . It is clearly 

observed that the mechanical waves are highly sensitive 

towards the characteristic rotation   .This result is in a good 

agreement with the results obtained by [15].  

Figure 3: displays  the variations of the normal stress yy  
 

with respect to x-axis for different values time t .It is observed 

that the temperature increases with increasing of time t ,while 

it decrees with increasing of axial .x  When comparing the 

magnitude of the physical quantities for three different values 

of  , we found the fact that the effect of  rotation 

corresponds to the term signifying positive forces that tend to 

accelerate the metal particles. This result is in a good 

agreement with the results obtained by [20]. 

 Figure 4: Figure demonstrated  the variations of the 

temperature  θ with respect to x-axis for different values of 

rotation Ω .It is observed that the  temperature increases with 

increasing of rotation  Ω ,while it decreases with increasing of  

axial  x . It is also observed that as value of x  increases, the 

magnitude of θ decreases rapidly and beyond a certain point in 

the region which agrees with the Lord-Shulman theory of 

thermoelasticity. This result is in a good agreement with the 

results obtained by [15]. Figure 5: displays  the variations of 

the shear stress xy with respect to x-axis for different values of 

rotation Ω .It is observed that the  shear stress  increases with 

increasing of of rotation Ω,while it oscillation in the whole 

range of x-axis, as well the shear stress satisfies the boundary 

connotation .  Due to the rotation effect, the elastic waves on 

the surface are generated with positive amplitude, which starts 

increasing when moving away from the source. After that, the 

elastic waves start showing periodic nature. Both the physical 

quantity viz. xy shows similar sensitivity towards .  Starting 

from a positive value, then showing an oscillatory nature with 

increasing amplitude as x  keeps increasing. Thus, it can be 

said that for higher values of  x , we can find the same values 

of  . , which can keep the amplitude in a controlled range. 

Varying .  in a system can significantly influence its 

behavior and performance, making sensitivity analysis a 

crucial tool for understanding the underlying dynamics. This 

result is in a good agreement with the results obtained by [15].                                                                

Figure 6: displays  the variations of the normal stress  yy  

with respect to x -axis for different values of rotation Ω .It is 

observed that the normal stress  decreases  with increasing of 

rotation Ω ,while it oscillation in whole rang x -axis . 

Understanding the relationship between parameters and outputs 

is essential for optimization, control, and decision-making 

processes, as it provides insight into which electric permittivity 

most significantly impact the system’s behavior. Additionally, 

recognizing points of high sensitivity can guide the design of 

more robust systems that perform consistently across a range 

of operating conditions, which frequently aligns [17]. 

 

 
 

Figure 1: Variations of the temperature θ with respect to x-axis 

for different value of time t. 
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Figure 2: Variations of shear stress τxy

 with respect to x-axis 

for different value of time t. 
 

 
Figure 3: Variations of normal stress σyy

 with respect to x-axis 

for different value of time t. 

 

 

Figure 4: Variations of the temperature θ with respect to x-axis 

for different value of rotation Ω. 

 

 

 
Figure 5: Variations of shear stress τxy

 with respect to x-

axis for different value of rotation Ω. 

 

 
Figure 6: Variations of normal stress σyy

 with respect to x-axis 

for different value of rotation Ω. 

 

6. Conclusions 
From the results obtained analytically and from the graphs, the 

effect of the rotation and time on plane waves thermoelasticity 

generalization and these conclusions is presented in the 

following points.          

 1. All the physical quantities satisfy the boundary conditions 

and obtain nonzero values only in the bounded region of 

space which supports the notion of Lord-Shulman theory 

of thermoelasticity.                     

2. Numerical results and analysis show that there is a 

significant effect of time and rotation on the distribution of 

various enhances the temperature, displacement 

components and stress components.          
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 3.The normal mode analysis of the problem of thermoelastic 

in solid has been applied and developed.  

4.The generalized thermoelasticity with rotation can be 

described by characteristics by the fourth-order equation.                                            

5.The role of rotation and time is shown strongly in the 

physical quantities depending on the nature of the 

medium, as well as the horizontal and the vertical 

distances x and y, respectively. 

6.The temperature converge to zero with increasing the 

distance  x . 

7.The nature of the force applied as well as the type of  

boundary conditions deformation are illustrated.  

Finally, it is concluded that all the external parameters affect 

strongly the physical quantities of the phenomenon, which has 

more applications, especially in engineering, geophysics, 

astronomy, acoustics, industry, structure, and other related 

topics.   
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