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The impact of rotation on wave propagation of thermoelastic medium
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Abstract: The present investigation is intended to demonstrate the effect of rotation on the thermoelastic medium. The governing
equations are formulated in the context of the Lord-Shulman theory. We obtained the analytical solution using Lame’s potential
method and Lthe normal mode technique with appropriate boundary conditions. The field quantities were calculated analytically
and displayed graphically under the rotation with the effect of time with respect to space coordinates. The numerical values of the
expressions are evaluated using MATHEMATICA. The graphical results are presented to shown the effect of time and rotation.
Findings indicate that rotation and the included parameters notably amplify physical responses, especially under increased time and
rotation. Results are validated against existing literature. Although theoretical in nature, this work offers insights relevant to
geophysics, seismology, and earthquake engineering, particularly in applications such as mining tremors and crustal drilling. The
results obtained are in agreement with the previous results obtained by others research when the new parameters vanish.
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1. Introduction

In recent years, the investigation of wave propagation and
memory effects in thermoelastic media has garnered
significant attention due to its vast applications in geophysics,
biomechanics, aerospace engineering, and advanced material
science. The classical coupled thermoelasticity theory
proposed by Biot [1] with the introduction of the strain-rate
term in the Fourier heat conduction equation leads to a
parabolic-type heat conduction equation, called the diffusion
equation. This theory predicts finite propagation speed for
elastic waves but an infinite speed for thermal disturbance
This is physically unrealistic. In the classical theory of
thermoelasticity, Fourier’s heat conduction theory assumes
that the thermal disturbances propagate at infinite speed,
which is unrealistic from the physical point of view. Two
different generalizations of the classical theory of
thermoelasticity have been developed, which predict only the
finite velocity of propagation of heat and displacement fields.
The first one is given by Lord and Shulman [2]. The second
developed a temperature rate dependent thermoelasticity by
including temperature rate among the constitutive variables is
given by Green and Lindsay [3] have introduced situations
where very large thermal gradients or annular a high heating
speed may exist on the boundaries [4]. The linear theory of
elasticity is of paramount importance in the stress analysis of
steel, which is the commonest engineering structural material.
To a lesser extent, linear elasticity describes themechanical
behavior of the other common solid materials, for example,
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concrete, wood, and coal. However, the theory does not apply
to the behavior of many of the new synthetic materials of the
clastomer and polymer type, for example, polymethyl-
methacrylate (Perspex), polyethylene, and polyvinyl chloride.
The linear theory of micropolar elasticity is adequate to
represent the behavior of such materials. For ultrasonic waves,
that is, for the case of elastic vibrations characterized by high
frequencies and small wavelengths, the influence of the body
microstructure becomes significant; this influence of
microstructure results in the development of new type of
waves that are not in the classical theory of elasticity. Metals,
polymers, composites, solids, rocks, and concrete are typical
media with microstructures. More generally, most of the
natural and manmade materials including engineering,
geological, and biological media possess a microstructure
Agarwal [5, 6]. Effects of rotation and relaxation times on
plane waves in generalized thermo-elasticity are studied by
Roychoudhuri [7]. The classical Fourier model, which leads to
an infinite propagation speed of the thermal energy, is no
longer valid [8]. Ahmad and khan [9] studied the effect of
rotation on thermoelastic plane waves in an isotropic medium.
Some problems in thermoelastic rotating media are due to, and
Schoenberg and Censor [10], Puri [11], Singh and Kumar
[12], Othman [13-16], Othman and Singh [17], Abd-Alla and
Abo-Dahab [18]. Also normal mode analysis is used to solve a
lot of problems in thermal flexibility, such as Lotfy and Abo-
Dahab [19] and Othman and Song [20].

The main purpose of the present investigation is to
demonstrate the effect of rotation on the thermoelastic
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medium. The governing equations are formulated in the
context of the Lord-Shulman theory in the presence of the body
force, rotation and time. We obtained the analytical solution
using the lame’s potential method and normal mode technique
with appropriate boundary conditions. The field quantities
were calculated analytically and displayed graphically under
the rotation and time with respect to space coordinates. The
graphical results are presented to shown the effect of magnetic
field, time, angular frequency and wave number. Finally, these
findings were contrasted with earlier findings in the same
direction, and it was discovered that the approach taken to
solve the aforementioned issue. Due to existence of realistic
composition of this type of model in earth’s interior, it can be
very useful in important structures such as body materials in
the aerospace field, nuclear reactors, pressure vessels and pipes
etc. In the end, the results of this study were compared in some
way to the results of other studies that have been published.
The variations of the considered variables are obtained and
illustrated graphically. The results obtained are in agreement
with the previous results obtained by others when the new
parameters vanish.

Nomenclatures

A, u Lameé constants

t time

p Mass density

Q Rotation

T Absolute temperature

To  Under the natural state, the temperature of the

.. |T-T
medium is | T 91«1

0
&;j Strain tensor

0;; Stress tensor components

Ciji, Elastic stiffness tensor

u; component of displacement vector
e dilation

7o Time of thermal relaxation

2. Formulation of the Problem

An infinite homogeneous thermoelastic half-space with
external heat source is considered. The thermoelastic half-
space is initially at uniform reference temperature 7. The

origin of coordinate system lies on the middle surface of the
half-space. The x) plane coincides with the middle surface

and ) axis is normal to the half-space. Let us consider that the

thermoelastic medium is a half-space, subjected to rotation (1 .
The fundamental equations of the problem as follows:
The heat conduction equation is as Youssef [15]:

82T i
kVET = pC, (at + 7o Btz) +BTo ai 1
where
_6u+6v
€= 0x dy

The equation of motion in the form'

( Qzu—zgv)_(;\+2) St ) Pu

P at2 H B 6x6y p'6y2
T

YTo .- 2
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2 ?v_

p( Qv+29u)—(7\+2u) aay TS

aT
Vo3, 3)
The constitutive equation as

_ U v
w = A+2w 0X+7\6y yT. 4)

a ]
ny=(7\+2u)a—;+?\a—z—yT (%)
ou | @

Ty = WG, 30 (©6)

The displacements for two-dimensional half-space have the
following form

u, =u(x,y,0) - u, =v(x, .0
The non- dlmenswnal variables for 51mp11fy1ng are glven as
X = CoNX,J = CoNMY, U = CoNU,V = CyNy, t= Co nt
T Q

(7

T \
b=rF,1=c——-,0=—
To 2u+A w*
2 9
* __ PCeC2 o= 1 S
w = K ’ 1] 7\+2Ll’ TO w TO (8)
PC, 2 2P+
Where 77 = e,czzﬁ, and cZ2 ==

p

By dropping the dashed for convenience and substituting from
Eq (1), Egs (2) and (3) in the non-dimensional form take the

following:
%6 | 22%0 d du  dv
o T2 = 61_+626t2+63 (— 5) 9)
%u i)u °u a6
gz 05U~ %5 ot ox 8050 axay 5+ %8552 ~ %95y (10)
3%v 9%v a0
atz =610V + 511 5 = 012 ay o+ 83— axay T 01452 %155
an
2 .2
here ¢ = and f=an’c,
PCy

By using Lame potentional

_ e 0w
U=ty 0V T T (12)
From equations (9-11) and 12 we get
P02 5,245,206, 46 + 2o
ax2 " ayz "l " 22 (CE ac T Y4 6t2)(6x2 ay2
(13)
92 92 92 92
a_;f_55¢=ﬁ+57a—;§+58$_599 (14)

oY 2%y 2%y
atz L8109 = ~6u, oy T35 ~ 0y (15)

3. The solution of the proplam

In this section, normal mode analysis (NMA) is used to obtain
the analytical expressions for displacement components, stress
components and temperature. The assumed solution of physical
variables is decomposed into normal modes to obtain the
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analytical solutions of the physical quantities. It is assumed
that all the functions are sufficiently smooth such that the
NMA of these functions exist. The solution of the equations(
13-15 ) can be decomposed in terms of the normal mode
technique in the form

[V, 9,0,0;](x,y,t) =

[¥"(x), 9" (x), 67 (x), 0 (x)] exp(w t + iby) ~ (16)
where i =+/—1, b is a wave number, @ is the time
constant, and u# (x),@ (x),6" (x) and O'; (x) are the
amplitudes of the physical field quantities.

Using Egs. (16), into Egs. (13) and (14)-(15), we obtain

(DZ - bZ - 61(1) - 62(1)2)9*(96) - (B4D2 - 63a)b2 -

8,0?b*) " (x) (17

(w? — 85 — D% + §,b2 + §gb2)p*(x) + 550 (x) (18)

[D? — Ky Y™ = 05 s s . 19)
=® %10 %124, %132 ==

where K= 52 5is Bus ib ™ b, D ™

Solving Egs. (17) and (18) and by eliminating 6*(x), *(x),
and (0* (x), we obtain the partial differential equation satisfied

by 6" (x)
(D* — D3(b% — Bs + B4Sq + 81w + 8,w?) — (b?Bs +
B8 w — b2838qw + BsSw? —
b?8,8,w%) (9" (x),*(x), 0" (x)) = 0 (20)
where

Bs = w? — 85 + 8,b% + 83b%, ¥, = b? — Bs + Py8g + S0 +
8,w?,y, = b?Bs + BsS;w — b?838,w + PBsS,w? —
b%8,84w?

which can be factorized to
(D* = y1D* = y,) (9" (%),6*(x)) = 0 @21

where k” (n=1,2) are the roots of the characteristic

equation.
K~y k2 4y, =0 (22)
as X — o0, the solution of Eq. (21) is given by
0" (x) = Xi=1 An exp(—ky,x) (23)
Similarly,

* 2 ©
") = X, _, Anexp(—knx) (24)

From equation (17), (18), (23) and (24) ,we get
@"(x) = Hy1A; exp(—=241%) + HipA; exp(—1;x) (25)
The solution of equation (19) take the form

yi(x) = M e7Hx (26)
From equations (25),(26) , (12) and (16)
dp | @ .
ux) = (52 + %)exp(wt + iby) 27)
dp .
Vo) = (50~ exp(wt + iby) (28)
u(x)=[-Hy;1 41 A1exp(—241x) — Hiz4,4; exp(—2;x) +
iszexp(,/ —Kux) lexp (wt + iby) (29)

v(x)=[ibH; A exp(—A;x) + ibH,,A, exp(—1,x) +

BZ\/IEeXp(,/—Knx ) lexp (wt + iby) (30)

Substituting Egs. (29) and (30) into Egs. (5)-(7), we obtain
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Oxx = [H1145—b?*B1H,1 — By]A exp(—A;x) +
[H12A5—b?B1H,, — B;]A; exp(—A,x) +

Bzexp(—,/Kllx) lexp (wt + iby) (31)

Oyy = [—b*H,1+25B,Hy, — By]Ajexp(—A;x) +
[_b2H12+/1%B1H12 — B;]A; exp(—4;x) + [ibyKy; —
Byib\[Ky; 1Byexp(—/Ki1x) Jexp (wt + iby) (32)
Tyy = [—2ibH; 121 f3]A exp(—A;x) +

[—2ibH,;A,3—ib]A; exp(—2A,x) + [_ﬁ3b2 -
ﬁSKll]BZEXp(_\/ Kix ) |exp (wt + iby) (33)

4. Applications

The problem under study is related to thermoelastic half-space
with rotation at the boundary surface are:

1) The boundary conditions for the thermal at the surface under

the thermal shock

o=2, (34)
2) The boundary condition for the mechanical at the surface
under the initial stress

0xx(0,y,t) =0,7,,(0,y,t) = 0 (35)
Substituting into the above boundary conditions in the physical
quantities, we obtain

A+ 4, = ? (36)
[Hi1 A3 — b?B1Hi1 — Bo]A1 + [Hip A5 — b*BiHyy — B,]A, +
[_ib\/ Kiy + B1iby/ Ky1]1B, =0 (37)
[—2ibHyq A1 B3]A; + [—2ibHy,A,85]A; + [—Bsb* —
psK11]B, =0 (33)

In the context of the boundary conditions in Eqgs. (36)-(38) at
the surface X =0, we get a system of three Algebraic
equations. We apply the inverse matrix method and get the
three constants A, A, and B, .After that, we substitute into the
main expressions to obtain the displacements, temperature, and
other physical quantities.

Appling the Kramer ‘s on the Algebraic equations on Egs.
(36)-(38),we obtain the arbitrary A;,A, and B, ,which it
defined in appendix 1.

S. Numerical results and discussions

In this section, we delve into the intriguing aspects of wave
propagation in a thermoelastic medium. Our approach involves
numerical simulations to analyze crucial fields, including
displacement components, temperature and stress components.
Furthermore, Mathematica software has been used in order to
evaluate the numerical values of the field quantities. To
illustrate the analytical variable obtained earlier, we consider a
numerical example and consider the copper material. The
results display the variation of temperature, and stress
components in the context of the LS theory.

A=159%x10° N/m* 1 =3.86x10" kg /ms®

>

C, =383.1 J/(kgk)’ £=0.0168
a=-128x10° N/m*> p="7800kg/m’

>
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K =386
a=1 T,=293K wo=0,+i 0,=2 £=1
_ 2

n =8886.73m/s 00 = 0.5

We take the constantsy =—1,

N/Ks,7,=0.02,a, =178 x 1075 N/m?,

b =0.25H=10%P =

10,8 =0.1,7 = 0.1 for all computations, and we use for
the real part of the displacement u, v, strain e and the stresses

(o, ,0

20,50, ), thermal temperature @ , and conductive

temperature ¢. All field quantities do not depend only on

space x and time, ¢, but they also depend on the relaxation
time 7 and take the dimensionless form:

The output is plotted in Figs. 1-6. The variations of all the
quantities are shown in Figures 1-6 to show the effect of

different time [ , and rotation Q.. Figure 1: shows the

variations of the temperature 6 with respect to x-axis for
different values time t .It is observed that the temperature
increases with increasing of time t ,while it decreases with
increasing of axial x. It is noticed that the due to the time
effect, the elastic waves (described by temperature @) on the
surface are generated with a positive amplitude, which starts
increasing when moving away from the source. After that, the
elastic waves start showing periodic nature. This result is in a
good agreement with the results obtained by [20].

Figure 2: displays the variations of the shear stress 7,, with

respect to x -axis for different values time t .It is observed that
the temperature increases with increasing of time t ,while it
oscillation in the whole range of x-axis, as well the shear
stress satisfies the boundary connotation . It is clearly
observed that the mechanical waves are highly sensitive

towards the characteristic rotation {2 .This result is in a good
agreement with the results obtained by [15].

Figure 3: displays the variations of the normal stress O,

with respect to x-axis for different values time t .It is observed
that the temperature increases with increasing of time t ,while
it decrees with increasing of axial x. When comparing the
magnitude of the physical quantities for three different values

of Q, we found the fact that the effect of rotation
corresponds to the term signifying positive forces that tend to
accelerate the metal particles. This result is in a good
agreement with the results obtained by [20].

Figure 4: Figure demonstrated the wvariations of the
temperature 0 with respect to x-axis for different values of
rotation € .It is observed that the temperature increases with
increasing of rotation Q ,while it decreases with increasing of
axial X . It is also observed that as value of X increases, the
magnitude of 6 decreases rapidly and beyond a certain point in
the region which agrees with the Lord-Shulman theory of
thermoelasticity. This result is in a good agreement with the
results obtained by [15]. Figure 5: displays the variations of
the shear stress Txy with respect to x-axis for different values of
rotation € .It is observed that the shear stress increases with
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increasing of of rotation Q,while it oscillation in the whole
range of x-axis, as well the shear stress satisfies the boundary
connotation . Due to the rotation effect, the elastic waves on
the surface are generated with positive amplitude, which starts
increasing when moving away from the source. After that, the
elastic waves start showing periodic nature. Both the physical
quantity viz. Ty, shows similar sensitivity towards 2. Starting
from a positive value, then showing an oscillatory nature with
increasing amplitude as X keeps increasing. Thus, it can be
said that for higher values of X, we can find the same values
of <€2. which can keep the amplitude in a controlled range.
Varying €2- in a system can significantly influence its
behavior and performance, making sensitivity analysis a
crucial tool for understanding the underlying dynamics. This
result is in a good agreement with the results obtained by [15].

Figure 6: displays the variations of the normal stress o,

with respect to X -axis for different values of rotation Q .It is
observed that the normal stress decreases with increasing of
rotation Q ,while it oscillation in whole rang x -axis .
Understanding the relationship between parameters and outputs
is essential for optimization, control, and decision-making
processes, as it provides insight into which electric permittivity
most significantly impact the system’s behavior. Additionally,
recognizing points of high sensitivity can guide the design of
more robust systems that perform consistently across a range
of operating conditions, which frequently aligns [17].

t=01|—
t=03
t=0.2 |-

Figure 1: Variations of the temperature 6 with respect to x-axis
for different value of time t.
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t=01|—

t=03|__

t=05]...

..........

1 2

for different value of time t.

Figure 2: Variations of shear stress Ty with respect to x-axis

t=01

t=03

t=0.5]...

1

Figure 3: Variations of normal stress ,, with respect to x-axis

for different value of time t.

4
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Figure 4: Variations of the temperature 8 with respect to x-axis
for different value of rotation Q.

XY

Pkt Q=0.01]—

S,

1 L 1
1 3

Figure 5: Variations of shear stress Try with respect to x-
axis for different value of rotation Q.

: g

: - L x

Figure 6: Variations of normal stress 5, with respect to x-axis
for different value of rotation Q.

6. Conclusions

From the results obtained analytically and from the graphs, the
effect of the rotation and time on plane waves thermoelasticity
generalization and these conclusions is presented in the

following points.

1. All the physical quantities satisfy the boundary conditions
and obtain nonzero values only in the bounded region of
space which supports the notion of Lord-Shulman theory

of thermoelasticity.

2. Numerical results and analysis show that there is a
significant effect of time and rotation on the distribution of
various enhances the temperature, displacement
components and stress components.
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3.The normal mode analysis of the problem of thermoelastic
in solid has been applied and developed.

4.The generalized thermoelasticity with rotation can be
described by characteristics by the fourth-order equation.
5.The role of rotation and time is shown strongly in the
physical quantities depending on the nature of the
medium, as well as the horizontal and the vertical
distances x and y, respectively.

6.The temperature converge to zero with increasing the
distance X.

7.The nature of the force applied as well as the type of
boundary conditions deformation are illustrated.

Finally, it is concluded that all the external parameters affect

strongly the physical quantities of the phenomenon, which has

more applications, especially in engineering, geophysics,

astronomy, acoustics, industry, structure, and other related

topics.
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