10.21608/avmj.2025.372821.1651

Assiut University web-site: www.aun.edu.eg

A REVIEW ON URINARY TRACT DISORDERS IN CATS

MANAL MAMDOUH MOHAMED HAMZA ¹; ABD EL-KHALEK RAMADAN EL- SHEIKH ¹; NEHAL N. IBRAHIM ² AND ABDEL KAREEM MANSOUR MORSY ¹

Received: 9 April 2025; Accepted: 14 September 2025

ABSTRACT

Cats are considered one of the major pets in Egypt. Urinary tract disorders are common in cats, such as urolithiasis, feline idiopathic cystitis, bacterial urinary tract infections, urethral plugs, and neoplasia. Cats' urinary tract infections and other disorders can be complicated and serious, necessitating immediate medical attention. Therefore, the treatment for a cat's urinary symptoms will depend on the underlying cause. Some possible options include raising the amount of water. A change in food, antibiotics, or symptom treatment, and the passage of tiny stones out of the body via the urethra. Urinary acidifiers with fluid treatment. To eliminate urethral blockages in male cats, a urinary catheter or surgery may be necessary. In this review, the most common causes of urinary tract disorders in cats with the most appropriate approach for treatment are discussed.

Keywords: Cats, urinary tract disorders, treatment, FLUTD

INTRODUCTION

Feline lower urinary tract disease (FLUTD) encompasses conditions in cats characterized by clinical symptoms such as stranguria, pollakiuria, haematuria, and periuria. Research indicates that 55.0–69.0% of cats diagnosed with FLUTD are affected by feline idiopathic cystitis (FIC), while urolithiasis is present in 12.0–22.0% of these cases (Gerber *et al.*, 2006; Lew-Kojrys *et al.*, 2017). Additionally, bacterial urinary tract infections (UTIs) account for

Corresponding author: Manal Mamdouh Mohamed E-mail address: dr.manal.mamdouh@gmail.com
Present address: Department of Animal Medicine,
Faculty of Veterinary Medicine, Zagazig University,
44511, Zagazig, Sharkia, Egypt.

1.5–20.0% of FLUTD instances (Eggertsdóttir *et al.*, 2007).

Bladder wall neoplasia is identified in 0.3–3.6% of cases, while neurological disorders occur in 0.2–3.0% of instances (Dorsch *et al.*, 2014). Furthermore, feline lower urinary tract disease (FLUTD) may be exacerbated by urethral obstruction (UO) in male cats, which is observed in 15.0–57.1% of cats suffering from feline idiopathic cystitis (FIC) and in 20.0–66.7% of those with urolithiasis (Lulich *et al.*, 2010).

The course of FLUTD is complicated by recurrent episodes. Owners may elect to euthanize their cats or donate them to animal shelters as a result of inappropriate

¹ Department of Animal Medicine, Faculty of Veterinary Medicine, Zagazig University, 44511, Zagazig, Sharkia, Egypt.

² Department of Surgery, Anesthesiology, and Radiology, Faculty of Veterinary Medicine, Zagazig University, Egypt.

elimination (Patronek et al., 1996; Delille et al., 2016). 17.1-65.0% of cats with FIC have recurring episodes (Bradley and Lappin, 2014; Delille et al., 2016). In felines diagnosed with FIC, recurrent episodes occur in 17.1-65.0% of cases (Bradley and Lappin, 2014; Delille et al., 2016). As cats age, the frequency of recurrence tends to decrease (Kruger et al., 2003). For cats suffering from urolithiasis, recurrence rates vary from 5.5% to 38.5% (Albasan et al., 2009; Gerber et al., 2008). Multiple episodes are infrequent in cats with UTI, with a prevalence of 14.7% reported in one study (Davidson et al., 1992; Jody et al., 1996). In cases of UO attributed to FIC, recurrence rates have been documented at 17.0-58.0% (Zezza et al., 2012).

Despite FLUTD being a prevalent condition, there is limited information regarding the long-term outlook for cats diagnosed with it. A particular study indicated a cautious prognosis for cats experiencing urinary obstruction (UO), with 21.0% ultimately being euthanized due to recurring UO. Among these, 50% were diagnosed with feline idiopathic cystitis (FIC) (Gerber *et al.*, 2008).

Common causes of urinary tract diseases:

1. Feline idiopathic cystitis:

Feline Idiopathic Cystitis (FIC) is the predominant cause of Lower Urinary Tract Symptoms (LUTS) in cats (Buffington and Delgado, 2024). This condition shares characteristics with interstitial cystitis in humans, also known as bladder pain syndrome, particularly regarding bladder abnormalities, the presence of comorbidities, and the impact of stress (Westropp et al., 2024). It is essential to recognize FIC as a systemic disorder that may involve organs beyond the bladder, with affected felines often exhibiting concurrent health issues, such as sickness behaviors and 'Pandora' syndrome (Tony Buffington et al., 2014). In cats suffering from FIC, the symptoms can be interpreted as the

bladder's reaction to ongoing activation of the central threat response system, which is genetic, epigenetic, shaped by environmental influences (Buffington and 2024). Consequently, Delgado. assessment and treatment of cats with FIC should extend beyond the bladder itself (Buffington, 2011). FIC arises from a multitude of complicated and variable endocrine, and dysfunctions that impact not only the cat's bladder but also their behavior and the functioning of other organs, including the skin and gastrointestinal tract (Westropp et al., 2019).

The diagnosis of Feline Idiopathic Cystitis (FIC) relies on exclusion, considering the frequency and nature of episodes, the intensity of clinical symptoms (including any comorbid conditions), and the financial capabilities of the caregiver. Currently, there is no sensitive, specific, and clinically accessible diagnostic test available to definitively confirm FIC; therefore, the diagnosis is determined signalment, medical history, risk factors, the exclusion of alternative causes of lower urinary tract signs and the response to treatment (Buffington and Delgado, 2024).

2. Urolithiasis:

Urolithiasis is a significant contributor to lower urinary tract symptoms (LUTS) in felines, representing 10-23% of cases (Kopecny et al., 2021). It is also a notable cause of urinary obstruction (UO) (Jody and Cari, 1996). The clinical manifestations of urolithiasis can differ based on the stone's location and characteristics, with cystoliths sometimes being discovered incidentally, while in other instances, they may lead to hematuria and dysuria. The predominant types of uroliths are calcium oxalate and struvite (magnesium ammonium phosphgenerally sterile. ate). which are Collectively, these two types account for approximately 90% of feline uroliths (Osborne et al., 2009). The relative prevalence of these uroliths has evolved over time, likely influenced by changes in diet, with recent research indicating that struvite has become more prevalent than calcium oxalate (Kopecny *et al.*, 2021). Other, less frequently encountered types of uroliths include urate, cystine, calcium phosphate as well as compound and mixed forms (Houston *et al.*, 2016). Occasionally, solidified blood uroliths have been reported, typically located in the bladder and urethra (Westropp *et al.*, 2006). A recent case study documented the presence of uroliths made from the antiviral nucleoside analogue GS-441524, which is utilized in the treatment of feline infectious peritonitis, in two cats (Allinder *et al.*, 2024).

When uroliths are detected, it is advisable to conduct a complete blood count and biochemical analysis to identify potential contributing factors to their development, such as hypercalcemia, which is found in approximately 35% of cats with calcium oxalate uroliths, liver diseases portosystemic shunt (urate), or conditions linked to urinary tract infections (UTIs) including chronic kidney disease (CKD), hyperthyroidism, or diabetes mellitus (struvite) (Bartges, 2016). Additionally, urinalysis is essential in the assessment of urolithiasis, involving the measurement of urine specific gravity (USG) and pH, along with sediment analysis. Care must be taken when interpreting results, as the type of urolith does not always correspond with the type of crystals present, and uroliths may form in the absence of crystalluria. Furthermore, urine pH can be influenced by factors such as the stress of visiting the clinic, delays in sample analysis, dietary influences, and the timing of feeding (Reppas and Foster, 2016).

3. Urinary tract infections and subclinical bacteriuria:

Urinary tract infections (UTIs) are relatively rare as a cause of lower urinary tract symptoms (LUTS) in otherwise healthy adult cats, occurring in less than 3% of cases. However, the incidence is elevated in specific populations, such as cats with chronic kidney disease (CKD) and those

aged over 10 years, where infection should be considered a possible underlying factor (Dorsch *et al.*, 2014; Kruger *et al.*, 1991). The prevalence of subclinical bacteriuria tends to increase with age and the presence of comorbid conditions, with one study reporting a prevalence of 6.1% in cats older than 6 years (Moberg *et al.*, 2020).

The majority of urinary tract infections (UTIs) in felines are attributed to a single bacterial species, predominantly from the animal's own urogenital or fecal microflora, such as Escherichia coli, Streptococcus Enterococcus faecalis, species, Staphylococcus felis (Fonseca et al., 2021). In contrast, polymicrobial infections are more frequently observed in cats with indwelling urinary catheters or other underlying health issues (Dorsch et al., 2019). Enterococcus faecalis is more commonly found in cats exhibiting subclinical bacteriuria or as part of a polymicrobial infection (Seidel et al., 2022). Although Corynebacterium urealyticum is an uncommon cause of UTIs, it is more prevalent in cats that have undergone urethral catheterization or urological procedures (Maurey et al., 2019). Fungal UTIs, such as those caused by Candida species or Cryptococcus species, have been reported: affected cats often comorbidities like diabetes mellitus or chronic kidney disease (CKD), undergoing immunosuppressive treatments (such as corticosteroids), or have a recent history of antibacterial therapy (Jin and Lin, 2005).

4. Urethral obstruction:

The majority of urinary tract infections (UTIs) in felines are attributed to a single bacterial species, predominantly from the animal's own urogenital or fecal microflora, such as *Escherichia coli, Streptococcus species, Enterococcus faecalis*, and *Staphylococcus felis* (Fonseca *et al.*, 2021). In contrast, poly-microbial infections are more commonly observed in cats with indwelling urinary catheters or other underlying health issues (Dorsch *et al.*,

2019). Urethral obstruction (UO) poses a significant risk and can arise from any form of lower urinary tract (LUT) disease. Feline idiopathic cystitis (FIC) is the leading cause of such obstructions, although urolithiasis must also be ruled out (Gerber et al., 2008). Urethral plugs, which consist of a mixture of proteinaceous substances, inflammatory cells, and crystals, may develop as a result of underlying LUT conditions like FIC, and less frequently from UTIs or urolithiasis, or a combination thereof. Additional factors contributing to UO include anatomical irregularities (such as strictures, spasms, and congenital defects) and, on rare occasions, neoplasia (Cooper, 2015).

Complete urinary obstruction results in elevated intravesicular pressure, which can cause necrosis of the bladder wall and damage to the mucosa. The increased hydrostatic pressure due to downstream obstruction may also affect the ureters and kidneys; when renal pressure surpasses glomerular filtration pressure, both renal blood flow and glomerular filtration rate decline. This impairment subsequently affects the tubular concentrating ability, leading to reduced reabsorption of sodium and water, as well as hindered excretion of phosphorus, potassium, blood nitrogen, creatinine, and hydrogen ions (Segev et al., 2011). Severe metabolic disturbances, including hyperkalemia, metabolic acidosis, and hypocalcemia, may arise. Hyperkalemia is the most prevalent life-threatening complication, potentially resulting in bradycardia and cardiac arrhythmias, which can be worsened by hypocalcemia. Uremia typically manifests within 24 to 48 hours following complete and acute urinary obstruction. Additionally, ongoing gastrointestinal losses and reduced fluid intake (due to vomiting and anorexia) can lead to significant dehydration, and hypovolemia. If not azotemia. addressed, complete urinary obstruction may culminate in severe bradycardia, bladder rupture, uroabdomen, concurrent shock, and ultimately death (Segev et al., 2011).

5. Lower urinary tract neoplasia:

Tumors located anywhere within the urinary tract may manifest clinical symptoms such as hematuria, stranguria, and dysuria, with the bladder being the most commonly affected site. Additional clinical manifestations of lower urinary tract neoplasia may include lethargy, abdominal discomfort, and vomiting (Griffin et al., 2020). In general, bladder tumors are uncommon in felines, with the most prevalent type being invasive urothelial carcinoma (formerly known as transitional cell carcinoma) (Meuten and Meuten, 2016). Mesenchymal tumors, lymphoma, and other neoplasms are diagnosed less frequently, either as primary tumors or as components of a multicentric disease process (Fulkerson and Knapp, 2020).

6. Lower urinary tract trauma:

Injury to the urinary tract can result from external trauma, primarily due to road traffic accidents, but may also occur iatrogenically during the placement of urinary catheters (Robakiewicz Halfacree, 2023). Symptoms may include hematuria and stranguria, and additional injuries might be present. The ability to palpate the urinary bladder does not exclude the possibility of urinary tract trauma (Meeson and Corr, 2011). Furthermore, abdominal effusions may not be readily apparent in cases of intrapelvic urethral rupture, as urine can accumulate in the subcutaneous tissue (Addison et al., 2014). Common serum biochemical changes include azotemia and hyperkalemia, and the analysis of any abdominal effusion may show a creatinine ratio of abdominal fluid to peripheral blood of >2:1, which is indicative of uroabdomen (Stafford, J.R. and Bartges, J.W., 2013).

7. Congenital lower urinary tract diseases

Congenital anomalies of the urinary tract are uncommon in felines, yet they can arise in any part of the urinary system. Typically, these conditions present during early life, accompanied by lower urinary tract symptoms (LUTS) and incontinence. Such anomalies may involve the bladder (agenesis, hypoplasia, herniation), urethra ureters, (ectopic aplasia, hypoplasia, duplication, prolapse), as well as the urachus and genitalia (fistulas, hypospadias) (Bartges and Callens, 2015; King and Johnson, 2000). Diagnostic imaging techniques, including contrast radiography and advanced imaging, can be beneficial, while the treatment and prognosis are contingent upon the specific abnormality (Bartges and Callens, 2015).

The incidence of FLUTD in Egypt:

Elkewahy et al. (2023) reported that urolithiasis was the most common condition in cats, accounting for 34.00% of cases, followed by chronic cystitis at 30.70%. Other conditions, such as renal mass, renal abscess, and urinary bladder mass, were less common, each representing 1.09% of cases during the period from 2021 to 2023 in Qalubia, Egypt. Furthermore, Ayoub et al. (2024) identified urolithiasis as the leading diagnosis of feline lower urinary tract disease (FLUTD) in Egypt, with a prevalence of 37.5%, followed by feline idiopathic cystitis (FIC) at 33.9%, bacterial urinary tract infection (UTI) at 14.2%, urethral plugs at 10.7%, and neoplasia at 3.5% and urethral obstruction was notably more prevalent in cats diagnosed with urolithiasis, urethral plugs, and FIC, occurring in 42.8% of cases. Additionally, Abdel-Saeed et al. (2021) documented an 82% occurrence of obstructive FLUTD in tomcats across Egypt. The incidence of urolithiasis has markedly risen, from 1.5%-8% between 1998 and 2003 (Houston et al., 2003) to 15%-20% from 1998 to 2014 (Houston et al., 2016).

The incidence of FLUTD worldwide:

Feline lower urinary tract disease (FLUTD) encompasses disorders of the urethra and/or bladder (Saevik *et al.*, 2011). Its prevalence has been documented at 1.5% in the United States (Lund *et al.*, 1999), 4.4% in Britain (O'Neill *et al.*, 2014), 2.67% in Korea (Kim *et al.*, 2018), and 2.2% in Thailand

(Piyarungsri et al., 2020). According to Sparkes (2018), FLUTD is a common condition, representing approximately 1.5-4.5% of the total feline cases seen in veterinary practices. The prevalence of cats diagnosed with feline idiopathic cystitis (FIC) among those with FLUTD was reported to be 55% in 1991 (Kruger et al., 1991) and 63% in 2001 in the United States (Lekcharoensuk et al., 2001). 'XC Further estimates indicate a prevalence of 57% in Switzerland (Gerber et al., 2005), 55% in Germany (Dorsch et al., 2014), 55.5% in Norway (Sævik et al., 2011), 60.7% in Poland (Lew-Kojrys et al., 2017), 66.4% in Korea (Kim et al., 2018), 57.7% in Thailand (Piyarungsri et al., 2020), and 56% in Indonesia (Nururrozi et al., Consequently, it can be inferred that the prevalence of FIC among cats suffering from FLUTD ranges from 55% to approximately 67%, establishing FIC as the predominant cause of FLUTD (He et al., 2022).

The prevalence of feline lower urinary tract disease (FLUTD) was reported to be between 3% and 8% in Canadian veterinary practices (Lund et al., 2012) and between 2% and 13% in the United States (Lekcharoensuk et al., 2001). In Thailand, the primary causes of FLUTD included feline idiopathic cystitis (FIC), accounting for 55% to 57%, and urolithiasis, which comprised 12% to 23% (Hunprasit et al., 2019). Additionally, urethral obstruction was observed in 18% to 58% of Norwegian cats (Sævik et al., 2011). Other identified causes of FLUTD included urinary calculi, urethral plugs, and urinary tract infections (UTIs). Neoplasia was noted as a less frequent cause of FLUTD, while UTIs were reported to account for 8% to 20% in European countries, a figure that is significantly higher than the 1% to 3% reported in the United States (Nururrozi et al., 2020).

Treatment approach for urinary diseases in cats:

FIC:

In most instances, LUTS typically resolve within 2 to 7 days, regardless of treatment; recurrence however. is frequent. Implementing appropriate multimodal environmental modification (MEMO) has proven effective in minimizing recurrence of all disease signs in cats suffering from FIC, and it has become the standard practice in veterinary medicine for managing this condition (Buffington and Although Delgado, 2024). medications have been utilized to treat FIC, few have undergone thorough investigation or comparison with MEMO regarding their effectiveness. The stress associated with administering oral medications to cats should be taken into account when prescribing, as it may complicate the evaluation treatment response. of Prednisolone, pentosan polysulfate sodium, glycosaminoglycans demonstrated significant benefits in cats with FIC, although improvements have been noted in both placebo and treatment groups, potentially due to the administration of medication in treats, which may alleviate perceived threats and foster positive emotions (Osborne et al., 1996; Wallius and Tidholm, 2009; Bradley and Lappin, 2014). Amitriptyline may be an option for cases that do not respond to other treatments, while fluoxetine has been found to reduce urine spraying (Chew et al., 1998; Hart et al., 2005). However, urinary retention has been associated with fluoxetine use (DiCiccio and McClosky, 2022).

Urolithiasis:

The management approach will be influenced by factors such as the location, suspected composition, size, and quantity of uroliths, in addition to the characteristics of both the caregiver and the cat. Possible treatment options encompass medical dissolution, surgical extraction through cystotomy, voiding urohydropropulsion, or more advanced methods, including cystolithotomy, lithotripsy, cystoscopy, or basket retrieval.

Type of urolith:

1. Struvite (magnesium ammonium phosphate):

The medical management involves a diet low in phosphorus and magnesium to encourage acidic urine, with dissolution potentially requiring 2 to 3 weeks, which can be monitored through imaging every 2 to 3 weeks (Lulich *et al.*, 2013). Following surgical removal or non-

Following surgical removal or non-invasive techniques, it is essential to implement preventive measures such as dietary adjustments, increased water consumption, and urinary acidification (Cruciani *et al.*, 2020).

2. Calcium oxalate:

It cannot be dissolved through medical means and must be excised either surgically or through non-invasive methods (Cruciani *et al.*, 2020).

3. Urate:

The removal can be achieved through surgical or non-invasive methods; medical dissolution has been documented using allopurinol and dietary adjustments (Osborne *et al.*, 1996).

Urinary tract infections and subclinical bacteriuria:

The use of antimicrobial therapy for subclinical bacteriuria is typically discouraged, and the mere presence of a multidrug-resistant bacterial species does not warrant treatment (Weese et al., 2021). In cases involving cats with diabetes mellitus, treatment may be considered if the bacteriuria is believed to adversely affect diabetic management, or in instances of suspected pyelonephritis, or when the cat is scheduled for urinary tract surgery or endoscopy (Weese et al., 2021). For cats exhibiting clinical signs of urinary tract infection (UTI), treatment should be guided by bacterial culture and sensitivity testing, and analgesics should be administered as necessary (for example, a non-steroidal anti-inflammatory drug, provided there are no contraindications, an opioid). or inherently Enterococcus species are resistant to beta-lactams, cephalosporins,

trimethoprim-sulfonamide, and fluoroquinolones (Hollenbeck and Rice, 2012). If treatment is required while awaiting results, a first-line antimicrobial such as amoxicillin or trimethoprim-sulfonamide (noting that the latter may be challenging to administer to cats) should be chosen (Weese et al., 2021). A treatment duration of 3 to 5 days may suffice for uncomplicated UTIs (i.e., in an otherwise healthy individual), although such cases are rare in cats. A lack of response should trigger further investigation, and empirical alterations to antibiotic therapy should be avoided. Cats are more likely to experience complicated UTIs (i.e., with comorbidities), treatment should be informed by culture and sensitivity findings, with a suggested treatment duration of 3 to 5 days for a first infection or reinfection, and 7 to 14 days for persistent or relapsing infections (Weese et al., 2021).

Thirdfourth-generation and cephalosporins, such as cefovecin, are utilized for cats exhibiting lower urinary tract symptoms (LUTS) (Hardefeldt et al., 2020). However, in conjunction with fluoroquinolones, these antibiotics should be reserved for instances where clinical signs of urinary tract infections (UTIs), pyelonephritis, or bacterial strains resistant to first-line antibiotics are present. Longacting cefovecin injections should not be administered empirically without prior urine culture, and critically important antibiotics for human use, such as carbapenems, should not be employed in the treatment of feline patients (Weese et al., 2021)...

URETHRAL OBSTRUCTION

Fluid therapy

Intravenous (IV) fluid therapy is essential for treating dehydration and hypovolemia, restoring renal perfusion, and correcting hyperkalemia. The initiation of fluid therapy should not be postponed until a urinary catheter is inserted, as it aids in restoring renal perfusion and lowering serum potassium levels. Crystalloid fluid

options include 0.9% saline or balanced isotonic fluids containing 4-5 mmol/l potassium. Research indicates that balanced isotonic crystalloids may be more effective in rapidly correcting acidosis, although the type of fluid (0.9% saline or balanced isotonic) does not significantly affect the normalization of serum potassium levels (Cunha et al., 2010). It is crucial to closely monitor cats using point-of-care ultrasound for signs of volume overload. Factors that increase the risk of fluid overload include the administration of fluid boluses or the emergence of a heart murmur or gallop rhythm (Ostroski et al., 2017). Volume overload during treatment for urinary obstruction (UO) is linked to higher costs and extended hospital stays (Ostroski et al., 2017). Post-obstructive diuresis is a frequent complication associated with UO (Fröhlich et al., 2016).

In cases where bolus fluid therapy is required, such as in patients experiencing shock, it is essential to adopt a goal-oriented strategy. This may involve the administration of a customized intravenous isotonic crystalloid bolus of 10 ml/kg over a period of 10 minutes, followed by a reassessment of the patient's mentation, heart rate, pulse quality, mucous membrane color, capillary refill time, blood pressure, and point-offindings ultrasound until care resuscitation endpoints are met. It is important note that previously to recommended high fluid 'shock rates' are no longer advised due to the potential risk of fluid overload (Pardo et al., 2024).

CONCLUSION

This review summarizes the most common urinary tract disorders in cats with highlighting the most appropriate treatment approaches. According to the findings, only a small percentage of the management strategies that were discussed had sufficient evidence to back up their implementation (or, more accurately, sufficient evidence to suggest that they should not be implemented). It is currently the case that

multimodal environmental management to reduce stress and conflict, as well as therapeutic urinary foods (especially when combined with an increase in the amount of moisture content in the diet), have the best evidence for use and should be considered the primary treatment method. Other modalities, particularly oral medicines like anti-inflammatory nonsteroidal (NSAIDs), antidepressants, glycosaminoglycans, and sprays containing pheromones, do not have sufficient evidence to support their use. However, larger-scale studies are still required to better characterize the benefits of these modalities and to determine whether there are subpopulations of cats with urinary tract disorders that may benefit from their use. Even for treatments that are widely used, such as specialized urinary diets, there is a general lack of high-quality demonstrations of effective treatments. This highlights the necessity for clinicians to be critical in their evaluation of the published literature on urinary tract disorders management and to ensure that they are up-to-date with the most recent research on these perplexing and difficult-to-manage conditions.

Conflict of interest: None

REFERENCE

Abdel-Saeed, H.; Reem, R.T. and Farag, H.S. (2021): Diagnostic and epidemiological studies on obstructive feline lower urinary tract disease (FLUTD) with special reference to anatomical findings in Egyptian tomcats. Bulgarian Journal of Veterinary Medicine, 24(3).

Addison, E.S.; Halfacree, Z.; Moore, A.H., Demetriou, J.; Parsons, K. and Tivers, M. (2014): A retrospective analysis of urethral rupture in 63 cats. Journal of Feline Medicine and Surgery, 16(4), pp.300-307.

Albasan, H.; Osborne, C.A.; Lulich, J.P.; Lekcharoensuk, C.; Koehler, L.A.; Ulrich, L.K. and Swanson, L.L. (2009): Rate and frequency of recurrence of uroliths after an initial ammonium urate, calcium oxalate, or struvite urolith in cats. *Journal of the American Veterinary Medical Association*, 235(12), pp.1450-1455.

Allinder, M.; Tynan, B.; Martin, C.; Furbish, A.; Austin, G.; Bartges, J. and Lourenço, B.N. (2024): Uroliths composed of antiviral compound GS-441524 in 2 cats undergoing treatment for feline infectious peritonitis. *Journal* of Veterinary Internal Medicine, 38(1), pp.370-374.

Ayoub, S.M.; Mostafa, M.B. and Abdelgalil, A.I. (2024): Studies on Feline lower Urinary Tract Disease in Egypt Cat Population. Journal of Applied Veterinary Sciences, 9(1), pp.61-72.

Bartges, J.W. and Callens, A.J. (2015):
Congenital diseases of the lower urinary tract. Veterinary Clinics:
Small Animal Practice, 45(4), pp.703-719.

Bartges, J.W. (2016): Feline calcium oxalate urolithiasis: risk factors and rational treatment approaches.

Journal of Feline medicine and Surgery, 18(9), pp.712-722.

Bradley, A.M. and Lappin, M.R. (2014): Intravesical glycosaminoglycans for obstructive feline idiopathic cystitis: a pilot study. Journal of Feline Medicine and Surgery, 16(6), pp.504-506.

Buffington, C.T. (2011): Idiopathic cystitis in domestic cats—beyond the lower urinary tract. Journal of veterinary internal medicine, 25(4), pp.784-796.

Buffington, T. and Delgado, M.M. (2024):
Pandora syndrome (feline interstitia cystitis). Ettinger's Textbook of Veterinary Internal Medicine.
Philadelphia: Elsevier, pp.2171-8.

Chew, D.J.; Buffington, C.T.; Kendall, M.S.; DiBartola, S.P. and Woodworth, B.E. (1998):

Amitriptyline treatment for severe recurrent idiopathic cystitis in cats. Journal of the American

- Veterinary Medical Association, 213(9), pp.1282-1286.
- Cooper, E.S. (2015): Controversies in the management of feline urethral obstruction. Journal of Veterinary Emergency and Critical Care, 25(1), pp.130-137.
- Cruciani, B.; Vachon, C. and Dunn, M., (2020): Removal of lower urinary tract stones by percutaneous cystolithotomy: 68 cases (2012–2017). Veterinary Surgery, 49, pp. O138-O147.
- Cunha, M.G.; Freitas, G.C.; Carregaro, A.B.; Gomes, K.; Cunha, J.P.M.; Beckmann, D.V. and Pippi, N.L. (2010): Renal and cardiorespiratory effects of treatment with lactated Ringer's solution or physiologic saline (0.9% NaCl) solution in cats with experimentally induced urethral obstruction. American journal of veterinary research, 71(7), pp.840-846.
- Davidson, A.P.; Ling, G.V.; Stevens, F.; Franti, C.E.; Johnson, D.L. and Lang, S.S, (1992): Urinary tract infection in cats: a retrospective study 1977-1989.
- Delille, M.; Fröhlich, L.; Müller, R.S.; Hartmann, K. and Dorsch, R. (2016): Efficacy of intravesical pentosan polysulfate sodium in cats with obstructive feline idiopathic cystitis. Journal of feline medicine and surgery, 18(6), pp.492-500.
- DiCiccio, V.K. and McClosky, M.E., (2022): Fluoxetine-induced urinary retention in a cat. Journal of Feline Medicine and Surgery Open Reports, 8(2), p. 2055116922111 2065.
- Dorsch, R., Remer, C., Sauter-Louis, C. and Hartmann, K. (2014). Feline lower urinary tract disease in a German cat population. Tieraerztliche Praxis Ausgabe K: Kleintiere/Heimtiere, 42(04), pp.231-239.
- Dorsch, R., Teichmann-Knorrn, S. and Sjetne Lund, H., (2019). Urinary tract infection and subclinical bacteriuria in cats: a clinical update. Journal of

- feline medicine and surgery, 21(11), pp.1023-1038.
- Eggertsdóttir, A.V.; Lund, H.S.; Krontveit, R. and Sørum, H. (2007): Bacteriuria in cats with feline lower urinary tract disease: a clinical study of 134 cases in Norway. Journal of feline medicine and surgery, 9(6), pp.458-465.
- Elkewahy, A.I.; El-Maghrapy, H.; Badway, A. and Farghaly, S. (2023): Ultrasonography of the Urinary Tract in Dogs and Cats: Clinical Investigations & Prevalence. Benha Veterinary Medical Journal, 45(1), pp.54-59.
- Fonseca, J.D.; Mavrides, D.E.; Graham, P.A. and McHugh, T.D. (2021). Results of urinary bacterial cultures and antibiotic susceptibility testing of dogs and cats in the UK. Journal of Small Animal Practice, 62(12), pp.1085-1091.
- Fröhlich, L., Hartmann, K., Sautter-Louis, C. and Dorsch, R., (2016). Postobstructive diuresis in cats with naturally occurring lower urinary tract obstruction: incidence, severity and association with laboratory parameters on admission. Journal of Feline Medicine and Surgery, 18(10), pp.809-817.
- Fulkerson, C.M. and Knapp, D.W. (2020): Tumors of the urinary tract. in: Vail DM, Thamm DH and Liptak JM (eds). Withrow and MacEwen's small animal clinical oncology. 6th ed. St Louis, Mo: Elsevier, 2020, pp 645–655.
- Gerber, B.; Boretti, F.S.; Kley, S.; Laluha, P.; Müller, C.; Sieber, N.; Unterer, S., Wenger, M.; Flückiger, M.; Glaus, T. and Reusch, C.E. (2005): Evaluation of clinical signs and causes of lower urinary tract disease in European cats. Journal of Small Animal Practice, 46(12), pp.571-577.
- Gerber, B.; Boretti, F.S.; Kley, S., Laluha, P.; Müller, C.; Sieber, N.; Unterer, S.; Wenger, M.; Flückiger, M.; Glaus, T. and Reusch, C.E., (2005): Evaluation of clinical signs and

- causes of lower urinary tract disease in European cats. *Journal of Small Animal Practice*, 46(12), pp.571-577.
- Gerber, B.; Eichenberger, S. and Reusch, C.E. (2008): Guarded long-term prognosis in male cats with urethral obstruction. Journal of feline Medicine and Surgery, 10(1), pp.16-23.
- Griffin, M.A.; Culp, W.T.; Giuffrida, M.A.; Ellis, P.; Tuohy, J.; Perry, J.A.; Gedney, A.; Lux, C.N.; Milovancev, M.; Wallace, M.L. and Hash, J. (2020): Lower urinary tract transitional cell carcinoma in cats: Clinical findings, treatments, and outcomes in 118 cases. Journal of veterinary internal medicine, 34(1), pp.274-282.
- Hardefeldt, L.; Hur, B.; Verspoor, K.; Baldwin, T.; Bailey, K.E.; Scarborough, R., Richards, S.; Billman-Jacobe, H.; Browning, G.F. and Gilkerson, J. (2020): Use of cefovecin in dogs and cats attending first-opinion veterinary practices in Australia. Veterinary Record, 187(11), pp.e95-e95.
- Hart, B.L.; Cliff, K.D.; Tynes, V.V. and Bergman, L. (2005): Control of urine marking by use of long-term treatment with fluoxetine or clomipramine in cats. Journal of the American Veterinary Medical Association, 226(3), pp.378-382.
- He, C.; Fan, K.; Hao, Z.; Tang, N.; Li, G. and Wang, S., (2022). Prevalence, risk factors, pathophysiology, potential biomarkers and management of feline idiopathic cystitis: an update review. Frontiers in veterinary science, 9, p.900847.
- Hollenbeck, B.L. and Rice, L.B. (2012). Intrinsic and acquired resistance mechanisms in enterococcus. Virulence, 3(5), pp.421-569.
- Houston, D.M.; Moore A.E.P.; Favrin, M.G. and Hoff B. (2003). Feline urethral plugs and bladder uroliths: A

- review of 5484 submissions 1998-2003. Can. Vet. J., 44(12): 974-977
- Houston, D.M., Vanstone, N.P., Moore, A.E., Weese, H.E. and Weese, J.S., (2016). Evaluation of 21 426 feline bladder urolith submissions to the Canadian Veterinary Urolith Centre (1998–2014). The Canadian Veterinary Journal, 57(2), p.196.
- Hunprasit, V.; Pusoonthornthum, P., Koehler, L. and Lulich, J.P. (2019). Epidemiologic evaluation of feline urolithiasis in Thailand from 2010 to 2017. The Thai Journal of Veterinary Medicine, 49(1), pp.101-105.
- Jin, Y. and Lin, D. (2005): Fungal urinary tract infections in the dog and cat: a retrospective study (2001–2004). Journal of the American Animal Hospital Association, 41(6), pp.373-381.
- Jody, P.L. and Cari, A.O. (1996): Overview of diagnosis of feline lower urinary tract disorders. Veterinary Clinics: Small Animal Practice, 26(2), pp.339-352.
- Jody, P.L.; Cari, A.O. and John, M.K. (1996): Biologic behavior of feline lower urinary tract diseases. Veterinary Clinics: Small Animal Practice, 26(2), pp.207-215.
- Kim YounJung, K.Y.; Kim HyungJoon, K.H.; Pfeiffer, D. and Brodbelt, D. (2018): Epidemiological study of feline idiopathic cystitis in Seoul, South Korea.
- King, G.J. and Johnson, E.H. (2000): Hypospadias in a Himalayan cat. Journal of Small Animal Practice, 41(11), pp.508-510.
- Kopecny, L.; Palm, C.A.; Segev, G. and Westropp, J.L. (2021). Urolithiasis in dogs: Evaluation of trends in urolith composition and risk factors (2006-2018). Journal of veterinary internal medicine, 35(3), pp.1406-1415.
- Kruger, J.M.; Conway, T.S.; Kaneene, J.B.; Perry, R.L.; Hagenlocker, E.; Golombek, A. and Stuhler, J. (2003): Randomized controlled trial of the efficacy of short-term amitriptyline

- administration for treatment of acute, nonobstructive, idiopathic lower urinary tract disease in cats. *Journal of the American Veterinary Medical Association*, 222(6), pp.749-758.
- Kruger, J.M.; Osborne, C.A.; Goyal, S.M.; Wickstrom, S.L.; Johnston, G.R.; Fletcher, T.F. and Brown, P.A. (1991): Clinical evaluation of cats with lower urinary tract disease. Journal of the American Veterinary Medical Association, 199(2), pp.211-216.
- Lekcharoensuk, C.; Osborne, C.A. and Lulich, J.P. (2001): Epidemiologic study of risk factors for lower urinary tract diseases in cats. Journal of the American Veterinary Medical Association, 218(9), pp.1429-1435.
- Lew-Kojrys, S.; Mikulska-Skupien, E.; Snarska, A. and Krystkiewicz, W. (2017): Evaluation of clinical signs and causes of lower urinary tract disease in Polish cats. Veterinární medicína, 62(7).
- Lulich, J.; Osborne, C. and Kruger, J. (2010). What constitutes a diagnosis of feline idiopathic cystitis. In Proc ACVIM Forum (pp. 630-1).
- Lulich, J.P.; Kruger, J.M.; MacLeay, J.M.; Merrills, J.M.; Paetau-Robinson, I.; Albasan, H. and Osborne, C.A. (2013): Efficacy of two commercially available, low-magnesium, urineacidifying drv foods for the dissolution of struvite uroliths in cats. Journal of the American Veterinary Medical Association, 243(8), pp.1147-1153.
- Lund, E.M.; Armstrong, P.J.; Kirk, C.A.; Kolar, L.M. and Klausner, J.S.; (1999): Health status and population characteristics of dogs and cats examined at private veterinary practices in the United States. Journal of the American veterinary medical association, 214(9), pp.1336-1341.
- Lund, H.S.; Rimstad, E. and Eggertsdóttir, A.V. (2012): Prevalence of viral infections in Norwegian cats with and without feline lower urinary tract

- disease. Journal of feline medicine and surgery, 14(12), pp.895-899.
- Maurey, C.; Boulouis, H.J.; Canonne-Guibert, M. and Benchekroun, G., (2019): Clinical description of Corynebacterium urealyticum urinary tract infections in 11 dogs and 10 cats. Journal of Small Animal Practice, 60(4), pp.239-246.
- Meeson, R. and Corr, S. (2011):
 Management of pelvic trauma:
 neurological damage, urinary tract
 disruption and pelvic
 fractures. Journal of feline medicine
 and surgery, 13(5), pp.347-361.
- Meuten, D.J. and Meuten, T.L. (2016): Tumors of the urinary system. Tumors in domestic animals, pp.632-688.
- Moberg, F.S.; Langhorn, R.; Bertelsen, P.V.; Pilegaard, L.M.; Sørensen, T.M.; Bjørnvad, C.R.; Damborg, P.; Kieler, I.N. and Jessen, L.R. (2020): Subclinical bacteriuria in a mixed population of 179 middle-aged and elderly cats: a prospective cross-sectional study. Journal of Feline Medicine and Surgery, 22(8), pp.678-684.
- Nururrozi, A.; Yanuartono, Y.; Sivananthan, P. and Indarjulianto, S. (2020): Evaluation of lower urinary tract disease in the Yogyakarta cat population, Indonesia. Veterinary world, 13(6), p.1182.
- O'neill, D.G.; Church, D.B.; McGreevy, P.D.; Thomson, P.C. and Brodbelt, D.C., (2014). Prevalence of disorders recorded in cats attending primary-care veterinary practices in England. The Veterinary Journal, 202(2), pp.286-291.
- Osborne CA.; Lulich JP. and Thumchai R. (1996): Diagnosis, medical treatment, and prognosis of feline urolithiasis. Vet Clin North Am Small Anim Pract 26: 589–627.
- Osborne, C.A.; Kruger, J.M.; Lulich, J.P.; Johnston, G.R.; Polzin, D.J.; Ulrich, L.K. and Sanna, J. (1996): Prednisolone therapy of idiopathic

- feline lower urinary tract disease: a double-blind clinical study. *Veterinary Clinics: Small Animal Practice*, 26(3), pp.563-569.
- Osborne, C.A.; Lulich, J.P.; Kruger, J.M.; Ulrich, L.K. and Koehler, L.A. (2009): Analysis of 451,891 canine uroliths, feline uroliths, and feline urethral plugs from 1981 to 2007: perspectives from the Minnesota Urolith Center. Veterinary Clinics of North America: Small Animal Practice, 39(1), pp.183-197.
- Ostroski, C.J.; Drobatz, K.J. and Reineke, E.L. (2017): Retrospective evaluation of and risk factor analysis for presumed fluid overload in cats with urethral obstruction: 11 cases (2002–2012). Journal of Veterinary Emergency and Critical Care, 27(5), pp.561-568.
- Pardo, M.; Spencer, E.; Odunayo, A.; Ramirez, M.L.; Rudloff, E.; Shafford, H.; Weil, A. and Wolff, E. (2024): AAHA fluid therapy guidelines for dogs and cats. Journal of the American Animal Hospital Association, 60(4), pp.131-163.
- Patronek, G.J.; Glickman, L.T.; Beck, A.M.; McCabe, G.P. and Ecker, C. (1996):
 Risk factors for relinquishment of cats to an animal shelter. Journal of the American Veterinary Medical Association, 209(3), pp.582-588.
- Piyarungsri, K.; Tangtrongsup, S.; Thitaram, N.; Lekklar, P. and Kittinuntasilp, A. (2020): Prevalence and risk factors of feline lower urinary tract disease in Chiang Mai, Thailand. Scientific Reports, 10(1), p.196.
- Reppas, G. and Foster, S.F. (2016).

 Practical urinalysis in the cat: 1: Urine macroscopic examination 'tips and traps'. Journal of Feline Medicine and Surgery, 18(3), pp.190-202.
- Robakiewicz, P. and Halfacree, Z. (2023):
 Urinary tract trauma in cats:
 stabilisation, diagnosis and
 management. Journal of Feline

- *Medicine and Surgery*, 25(3), p.1098612X231159073.
- Sævik, B.K.; Trangerud, C.; Ottesen, N.; Sørum, H. and Eggertsdóttir, A.V. (2011): Causes of lower urinary tract disease in Norwegian cats. Journal of Feline Medicine and Surgery, 13(6), pp.410-417.
- Segev, G.; Livne, H.; Ranen, E. and Lavy, E. (2011): Urethral obstruction in cats: predisposing factors, clinical, clinicopathological characteristics and prognosis. Journal of feline medicine and surgery, 13(2), pp.101-108.
- Seidel, E.J.; Hess, R.S.; Cole, S.J. and McClosky, M.E. (2022): Clinical differences in enterococcal bacteriuria compared with other bacteriuria in cats. Journal of Feline Medicine and Surgery, 24(12), pp.e546-e550.
- Sparkes, A. (2018): Understanding feline idiopathic cystitis. *In Practice*, 40(3), pp.95-101.
- Stafford, J.R. and Bartges, J.W. (2013): A clinical review of pathophysiology, diagnosis, and treatment of uroabdomen in the dog and cat. Journal of Veterinary Emergency and Critical Care, 23(2), pp.216-229.
- Tony Buffington, C.A.; Westropp, J.L. and Chew, D.J. (2014): From FUS to Pandora syndrome: where are we, how did we get here, and where to now?. Journal of feline medicine and surgery, 16(5), pp.385-394.
- Wallius, B.M. and Tidholm, A.E. (2009). Use of pentosan polysulphate in cats with idiopathic, non-obstructive lower urinary tract disease: a double-blind, randomised, placebo-controlled trial. Journal of feline medicine and surgery, 11(6), pp.409-412.
- Weese, J.S.; Blondeau, J.; Boothe, D.; Guardabassi, L.G.; Gumleyg, N.; Papichh, M.; Jesseni, L.R.; Lappinj, M.; Rankin, S.; Westropp, J.L. and Sykes, J. (2021): International Society for Companion Animal Infectious

Diseases (ISCAID) guidelines for the diagnosis and management of bacterial urinary tract infections in dogs and cats. *Journal of Japanese Association of Veterinary Nephrology and Urology*, 13(1), pp.46-63.

Westropp, J.L.;Delgado, M. Buffington, C.T. (2019): Chronic lower urinary tract signs in cats: understanding current of pathophysiology and management. Veterinary Clinics: Animal Small Practice, 49(2), pp.187-209.

Westropp, J.L.; Ruby, A.L.; Bailiff, N.L.; Kyles, A.E. and Ling, G.V. (2006):

Dried solidified blood calculi in the urinary tract of cats. *Journal of veterinary internal medicine*, 20(4), pp.828-834.

Westropp, J.L.; Stella, J.L. and Buffington, C.T. (2024): Interstitial cystitis—an imbalance of risk and protective factors? Frontiers in Pain Research, 5, p.1405488.

Zezza, L.; Reusch, C.E. and Gerber, B. (2012): Intravesical application of lidocaine and sodium bicarbonate in the treatment of obstructive idiopathic lower urinary tract disease in cats. Journal of veterinary internal medicine, 26(3), pp.526-531

مقالة مرجعية حول اضطرابات المسالك البولية في القطط

منال ممدوح محمد حمزة ، عبد الخالق رمضان الشيخ، نهال نبيل إبراهيم ، عبد الكريم منصور مرسى

Email: dr.manal.mamdouh@gmail.com Assiut University web-site: www.aun.edu.eg

تُعتبر القطط واحدة من الحيوانات الأليفة الرئيسية في مصر وحول العالم. ومع ذلك، فإن القطط عرضة بشكل كبير لاضطرابات المسالك البولية. تشمل هذه الاضطرابات حصوات المسالك البولية، التهاب المثانة الخلالي مجهول السبب في القطط، التهابات المسالك البولية البكتيرية، انسدادات الإحليل، والأورام. تشمل أمراض الجهاز البولي السفلي لدى القطط (FLUTD) الاضطرابات التي تؤثر على كل من الإحليل والمثانة. يمكن أن تكون التهابات المسالك البولية لدى القطط وغيرها من الاضطرابات معقدة وخطيرة، مما يستدعي اهتمامًا طبيًا فوريًا. لذلك، يعتمد علاج الأعراض البولية لدى القطط على السبب الأساسي. في هذا الاستعراض، سنسلط الضوء على الأسباب الأكثر شيوعًا لاضطرابات المسالك البولية في القطط مع النهج الأكثر ملاءمة للعلاج.

الكلمات المفتاحية: القطط ، اضطرابات المسالك البولية، العلاج ، FLUTD