# Retrospective Examination of Postoperative Delirium in General Surgery: Incidence, Risk Factors and Clinical Objectives

Original Article

Reda Jamjoom

Department of Surgery, Faculty of Medicine, King Abdulaziz University, Saudi Arabia.

## **ABSTRACT**

**Introduction:** Postoperative delirium (POD) is a serious side effect of general surgery, associated with increased morbidity, mortality, and healthcare costs. This retrospective study investigates the incidence, risk factors, and objectives of POD in patients undergoing general surgery. The primary objective of this research is to determine the risk factors of POD, while the secondary objectives include assessing its incidence, 1-year mortality rates, 30-day readmission rates, and length of hospital stays among these patients.

**Methods:** 511 individuals who underwent general surgery in 2022 had their medical data examined. The Confusion Assessment Method was used to diagnose POD. To find POD determinants, demographic, clinical, and surgical parameters were assessed. Results including 30-day readmission, 1-year mortality, and length of hospital stay were compared between patients with and without POD.

**Results:** The incidence of POD was 12.8%, and the main independent risk factors were advanced age (1.05, 95% CI 1.03-1.07 per year), cognitive impairment (2.87, 95% CI 2.01-4.09), multiple comorbidities (1.21, 95% CI 1.08-1.35), emergency surgery (1.92, 95% CI 1.33-2.77), and prolonged operation time (1.01, 95% CI 1.00-1.02 per minute). POD patients had significantly higher 1-year mortality (7.7% vs. 1.5%, p < 0.001), longer hospitalizations (14.2 vs. 8.5 days), and higher 30-day readmission rates (22.7% vs. 11.5%, p < 0.001).

**Conclusion:** POD is a prevalent and severe complication following general surgery. Recognizing patients at high risk and applying multicomponent preventive strategies may help decrease POD's impact and enhance postoperative results.

**Key Words:** General surgery, objectives, postoperative delirium, risk factors.

Received: 03 March 2025, Accepted: 24 March 2025, Published: 1 October 2025

Corresponding Author: Reda Jamjoom, MD, FRCSC, Department of Surgery, Faculty of Medicine, King Abdulaziz

University, Jeddah, Saudi Arabia. Tel.: +966 50 469 4661, E-mail: rjamjoom@kau.edu.sa

ISSN: 1110-1121, October 2025, Vol. 44, No. 4: 1233-1237, © The Egyptian Journal of Surgery

#### INTRODUCTION

Postoperative delirium (POD) is a sudden neuropsychiatric disorder manifesting as disturbances in attention, cognition, and consciousness following surgery<sup>[1-9]</sup>. It is prevalent, affecting 10-50% of surgical patients, with a particularly high incidence among elderly patients undergoing major surgical procedures<sup>[10,11]</sup>. POD is linked to various negative objectives, including longer hospital stays, increased healthcare expenses, a higher likelihood of needing institutional care, and elevated mortality rates<sup>[12-18]</sup>.

POD has several different causes, including surgical, anesthetic, and postoperative care aspects, as well as patient-related factors such as advanced age and cognitive deterioration<sup>[19-25]</sup>. Preventing and treating POD is still difficult despite increased awareness and research efforts, underscoring the need for a deeper comprehension of its risk factors and impact on patient objectives.

The goal of this retrospective study is to investigate in detail the prevalence, risk factors, and consequences of POD in a sizable group of patients undergoing general surgery. Based on the established associations between patient characteristics and POD, we propose the following hypothesis: Patients undergoing general surgery who are of advanced age, have pre-existing cognitive impairment, and multiple comorbidities, undergo emergency surgery, or experience prolonged operation times are more likely to develop postoperative delirium, which in turn increases their risk of 1-year mortality, 30-day readmission, and longer hospital stays. The primary objective of this research is to determine the risk factors of POD, while the secondary objectives include assessing its incidence, 1-year mortality rates, 30-day readmission rates, and length of hospital stays among these patients. The knowledge acquired may be crucial in developing focused preventative plans and improving perioperative treatment for the susceptible population.

DOI: 10.21608/EJSUR.2025.365110.1418

#### MATERIALS AND METHODS

#### **Study Design and Population:**

This research employed a single-center, retrospective cohort design, conducted at an academic hospital. The study involved reviewing medical records of patients who underwent general surgery from January 2022 to December 2022. To be included, patients had to be 18 years or older and have a documented postoperative course lasting a minimum of 48 hours. Exclusion criteria included any preexisting diagnosis of delirium or other neuropsychiatric disorders. Patients who stayed in the hospital for less than 48 hours were excluded from the study, which removed the majority of minor routine general surgery cases. Although the majority of patients were 50 and older, any patient above the age of 18 was included in the study, given documented cases of POD in patients as young as 34.

#### **Data Collection:**

Electronic medical records were used to gather demographic and clinical information, such as age, sex, comorbidities, cognitive level, and preoperative functional status. Additionally, surgical characteristics such as procedure type, emergency status, and surgical duration were documented. The Confusion Assessment Method (CAM) was used to diagnose POD, which was the primary focus of interest<sup>[20]</sup>. The assessment was conducted in patients with suspected POD and not routinely in all patients. Secondary objectives included hospital stay duration, discharge status, 30-day readmission, and 1-year mortality.

#### **Statistical Analysis:**

The study population was described using descriptive statistics. The chi-square test was used to compare categorical data, and the *t*-test or Mann-Whitney *U* test, if applicable, was used to examine continuous variables in order to find possible risk factors for POD. Independent predictors of POD were then identified using multivariable logistic regression; the findings were presented as 95% CI and odds ratios (OR). With the use of suitable statistical procedures, the effect of POD on secondary objectives was evaluated. *P*-values less than 0.05 were regarded as statistically significant. SPSS was used for all of the analyses.

#### **RESULTS**

#### **Incidence and Risk Factors of Postoperative Delirium:**

Sixty-five (12.8%) of the 511 patients who were part of the trial experienced POD during the postoperative period. Two days was the median time to onset of POD (IQR 1-4 days).

The research population's clinical and demographic characteristics are compiled in Table (1), which is

categorized by the onset of POD. POD patients had more comorbidities (mean Charlson Comorbidity Index  $3.2\pm2.1$  vs.  $2.4\pm1.8$ , p<0.001), were older (mean age  $72.4\pm9.1$  vs.  $61.2\pm14.5$  years, p<0.001), and had a greater prevalence of cognitive impairment (21.6% vs. 7.5%, p<0.001).

**Table 1:** Baseline Characteristics of the Study Population:

| Characteristic                       | POD<br>(n= 65) | No POD<br>(n= 446) | <i>p</i> -value |
|--------------------------------------|----------------|--------------------|-----------------|
| Age, years (mean±SD)                 | 72.4±9.1       | 61.2±14.5          | < 0.001         |
| Sex, <i>n</i> (%)                    |                |                    | 0.163           |
| - Male                               | 33(50.2%)      | 233(52.3%)         |                 |
| - Female                             | 32(49.8%)      | 213(47.7%)         |                 |
| Cognitive impairment, $n(\%)$        | 14(21.6%)      | 33(7.5%)           | < 0.001         |
| Charlson Comorbidity Index (mean±SD) | 3.2±2.1        | 2.4±1.8            | < 0.001         |
| Type of surgery, $n(\%)$             |                |                    | < 0.001         |
| - Elective                           | 44(67.0%)      | 372(83.5%)         |                 |
| - Emergency                          | 21(33.0%)      | 74(16.5%)          |                 |
| Operative time, minutes (mean±SD)    | 192.4±93.8     | 158.7±82.1         | < 0.001         |

Table (2) displays the findings of the multivariable logistic regression analysis. Higher comorbidity burden (1.21, 95% CI 1.08-1.35 per unit increase in Charlson Comorbidity Index), emergency surgery (1.92, 95% CI 1.33-2.77), cognitive impairment (2.87, 95% CI 2.01-4.09), advanced age (1.05, 95% CI 1.03-1.07 per year), and prolonged operative time (1.01, 95% CI 1.00-1.02 per minute) were independent risk factors for POD.

**Table 2:** Risk Factors for Postoperative Delirium:

| Risk Factor                           | Risk Factor Odds Ratio (95% CI) |         |
|---------------------------------------|---------------------------------|---------|
| Age (per year)                        | 1.05(1.03-1.07)                 | < 0.001 |
| Cognitive impairment                  | 2.87(2.01-4.09)                 | < 0.001 |
| Charlson Comorbidity Index (per unit) | 1.21(1.08-1.35)                 | 0.001   |
| Emergency surgery                     | 1.92(1.33-2.77)                 | < 0.001 |
| Operative time (per minute)           | 1.01(1.00-1.02)                 | 0.002   |

# Objectives Associated with Postoperative Delirium:

Compared to patients without POD, those who acquired POD experienced noticeably worse results (Table 3). The POD group saw an almost twofold increase in the median length of hospital stay (14.2 vs. 8.5 days, p<0.001). POD patients had greater 1-year death rates (7.7% vs. 1.5%, p<0.001) and 30-day readmission rates (22.7% vs. 11.5%, p<0.001).

**Table 3:** Objectives Associated with Postoperative Delirium:

| Objective                          | POD (n= 65)    | No POD<br>(n= 446) | <i>p</i> -value |
|------------------------------------|----------------|--------------------|-----------------|
| Length of stay, days (median, IQR) | 14.2(9.0-21.0) | 8.5(6.0-13.0)      | < 0.001         |
| 30-day readmission, $n(\%)$        | 14(22.7%)      | 51(11.5%)          | < 0.001         |
| 1-year mortality, n(%)             | 5(7.7%)        | 7(1.5%)            | < 0.001         |

#### **DISCUSSION**

The incidence, risk factors, and consequences of postoperative delirium (POD) in patients after general surgery are all clarified by this retrospective research. With an incidence rate of 12.8% in our sample of 511 patients, it draws attention to the significant burden of POD and associates it with adverse clinical outcomes, including longer hospital stays, lower odds of being sent home, higher readmission rates, and higher death rates.

The study's identified risk factors align with existing literature, emphasizing the complex, multifactorial nature of POD<sup>[26-28]</sup>. Key predictors include advancing age, cognitive impairments, increased comorbidity burdens, emergency surgeries, and longer operative times. These factors contribute to POD through mechanisms like inflammation, metabolic imbalances, and interference with normal brain function.

The negative impact of POD on patient outcomes is well-documented<sup>[29,30]</sup>. In our study, patients experiencing POD (n= 65) had significantly longer hospital stays, increased rates of 30-day readmission, and higher 1-year mortality compared to those without POD (n= 446). These findings highlight the need for effective prevention and management of POD to enhance postoperative recovery and long-term outcomes. The unequal sample sizes of the POD and non-POD groups reflect POD's natural frequency in this real-world sample. Though this imbalance might reduce statistical power, we addressed it with solid statistical tools (t-tests and U-tests) and included effect sizes with 95% confidence intervals, guaranteeing trustworthy comparisons.

The large, real-world sample size, thorough evaluation of risk variables, and analysis of several clinically significant outcomes are the study's main advantages. However, the single-center emphasis and retrospective approach restrict the findings' generalizability and call for careful interpretation. Additionally, the study did not assess how certain management and preventative techniques affected POD and its related consequences.

In summary, postoperative delirium (POD) continues to be a prevalent and severe complication in general surgery, significantly affecting patient recovery and long-term outcomes. Recognizing individuals at high risk and employing comprehensive prevention strategies—such as enhancing perioperative care, addressing underlying risk

factors, and ensuring early recognition and treatment of delirium—can help reduce the impact of POD and enhance the quality of perioperative care. Additional research is necessary to assess how effective targeted interventions are in decreasing the occurrence and negative effects of POD.

#### **CONCLUSION**

This retrospective study sheds light on the considerable burden of postoperative delirium (POD) among general surgery patients. The findings emphasize the significant incidence and detrimental effects of this acute neuropsychiatric complication.

The observed 12.8% incidence of POD in this large cohort aligns with the broad range (10-50%) reported in other studies, underscoring the persistent challenges of managing POD in the perioperative context. Identified independent risk factors such as advanced age, cognitive impairment, a higher comorbidity burden, emergency surgeries, and extended operative durations reflect the multifactorial nature of POD. These patient and surgical factors likely contribute to its development through complex processes involving inflammation, metabolic imbalances, and disruptions in normal brain function.

Our study clearly demonstrates the negative impact of POD on patient objectives. Patients with POD faced notably worse objectives, including nearly doubled hospital stays, reduced chances of being discharged home, increased 30-day readmission rates, and significantly higher 1-year mortality rates. These results highlight the significant and extensive consequences of POD for both patients and the healthcare system at large.

Given these insights, it's evident that focused efforts are necessary to lessen the impact of POD and enhance objectives for general surgery patients. Identifying high-risk individuals and adopting targeted, comprehensive prevention strategies—such as optimizing perioperative care, addressing predisposing factors, and ensuring early recognition and treatment of delirium—are crucial steps. Further research, particularly prospective, multicenter studies, and evaluations of specific interventions, are essential to advance the understanding and management of POD.

#### **CONFLICT OF INTERESTS**

There is no conflict of interests.

## REFERENCES

 Liu, Xuling, Yang Yu, and Shengmei Zhu. "Inflammatory markers in postoperative delirium (POD) and cognitive dysfunction (POCD): a meta-analysis of observational studies." PloS one 13.4 (2018): e0195659. DOI: 10.1371/ journal.pone.0195659.

- 2. Fournier, Anna, *et al.* "Biomarkers of postoperative delirium and cognitive dysfunction." Frontiers in aging neuroscience 7 (2015): 112. DOI: 10.3389/fnagi.2015.00112.
- 3. Paunikar, Sharayu, and Vivek Chakole. "Postoperative Delirium and Neurocognitive Disorders: A Comprehensive Review of Pathophysiology, Risk Factors, and Management Strategies." Cureus 16.9 (2024). DOI: 10.7759/cureus.66923.
- 4. Kitsis, Petros, *et al.* "Postoperative delirium and postoperative cognitive dysfunction in patients with elective hip or knee arthroplasty: a narrative review of the literature." Life 12.2 (2022): 314. DOI: 10.3390/life12020314.
- 5. Barbosa, Catarina Mendes. "Relationship between postoperative delirium, postoperative neurocognitive disorders, and dementia in older surgical patients." (2023).
- Xiao, M. Z., et al. "Postoperative delirium, neuroinflammation, and influencing factors of postoperative delirium: a review." Medicine 102.8 (2023): e32991. DOI: 10.1097/MD.0000000000032991.
- 7. Berikashvili, Levan B., *et al.* "Postoperative neurocognitive disorders: the legacy of almost 400 years of history." Obs. Reanimatol 19 (2023): 29-42.
- 8. Othman, Saleh Mohammed Alhaj, *et al.* "Systematic literature review on early detection of postoperative delirium in adult patients after cardiac surgery." Journal of Cardiothoracic Surgery 19.1 (2024): 678. DOI: 10.1186/s13019-024-02456-2.
- 9. Fricchione, Gregory L., *et al.* "Postoperative delirium." American Journal of Psychiatry 165.7 (2008): 803-812. DOI: 10.1176/appi.ajp.2008.08020181.
- Trabold, Benedikt, and Thomas Metterlein. "Postoperative delirium: risk factors, prevention, and treatment." Journal of cardiothoracic and vascular anesthesia 28.5 (2014): 1352-1360. DOI: 10.1053/j.jvca.2014.03.017.
- 11. Rizk, Paul, *et al.* "Review of postoperative delirium in geriatric patients undergoing hip surgery." Geriatric orthopaedic surgery & rehabilitation 7.2 (2016): 100-105. DOI: 10.1177/2151458516641162.
- 12. Crocker, Elise, *et al.* "Long-term effects of postoperative delirium in patients undergoing cardiac operation: a systematic review." The Annals of thoracic surgery 102.4 (2016): 1391-1399. DOI: 10.1016/j.athoracsur.2016.04.062.
- 13. Huang, Huawei, *et al.* "Association of postoperative delirium with cognitive outcomes: a meta-analysis." Journal of Clinical Anesthesia 75 (2021): 110496. DOI: 10.1016/j. jclinane.2021.110496.

- 14. Edwards, Delyth A., *et al.* "Postoperative delirium is associated with prolonged head and neck resection and reconstruction surgery: an institutional study." Journal of Oral and Maxillofacial Surgery 79.1 (2021): 249-258. DOI: 10.1016/j.joms.2020.07.218.
- Reddy, Siddareddygari Velayudha, Jawaharlal Narayanasa Irkal, and Ananthapuram Srinivasamurthy. "Postoperative delirium in elderly citizens and current practice." Journal of Anaesthesiology Clinical Pharmacology 33.3 (2017): 291-299. DOI: 10.4103/joacp.JOACP 163 16.
- Stachon, Peter, et al. "Risk factors and outcome of postoperative delirium after transcatheter aortic valve replacement." Clinical Research in Cardiology 107 (2018): 756-762. DOI: 10.1007/s00392-018-1239-6.
- 17. Noimark, Dean. "Predicting the onset of delirium in the post-operative patient." Age and ageing 38.4 (2009): 368-373. DOI: 10.1093/ageing/afp024.
- 18. Cunningham, Jessica, and Luke Dogyun Kim. "Post-operative delirium: a review of diagnosis and treatment strategies." Journal of Xiangya Medicine 3.2 (2018). DOI: 10.21037/jxym.2018.01.02.
- Paunikar, Sharayu, and Vivek Chakole. "Postoperative Delirium and Neurocognitive Disorders: A Comprehensive Review of Pathophysiology, Risk Factors, and Management Strategies." Cureus 16.9 (2024). DOI: 10.7759/cureus.66923.
- Thakur, Tanya. "Postoperative Delirium and its Potential Predisposition to Chronic Dementia: A Review." Res. J. Med. Sci 18 (2024): 274-278.
- Fleischmann, Robert, and Sophie Leroy. "Perioperative Management and Its Impact on Neurocognitive Disorders in the Postoperative Scenario." Handbook of the Biology and Pathology of Mental Disorders. Cham: Springer International Publishing, 2024. 1-28. DOI: 10.1007/978-3-030-88183-2 62-1.
- 22. Siby, Staniya Maniyankerikalam. Postoperative Delirium After Cardiac Surgery. MS thesis. Lithuanian University of Health Sciences (Lithuania), 2019.
- 23. Ramos, Mary Dioise, *et al.* "Risk for post-operative delirium related to comorbidities in older adult cardiac patients: An integrative review." Journal of Clinical Nursing 32.9-10 (2023): 2128-2139. DOI: 10.1111/jocn.16395.
- 24. Babu, Saumya, and Bilja Kurian Sajith. "Managing Postoperative Delirium in Patients Receiving Head and Neck Surgery: An Educational Overview." Clinical Journal of Oncology Nursing 28.4 (2024): E1-E8. DOI: 10.1188/24. CJON.E1-E8.

- 25. Liu, Jing, *et al.* "Associated factors for postoperative delirium following major abdominal surgery: A systematic review and meta-analysis." International Journal of Geriatric Psychiatry 38.6 (2023): e5942. DOI: 10.1002/gps.5942.
- Beyer, L. P., et al. "Disorientation as a delirium feature in non-intubated patients: development and evaluation of diagnostic accuracy of the 'Confusion Assessment Method for Intermediate Care Unit'(CAM-IMC)-a prospective cohort study." BMC anesthesiology 24.1 (2024): 1-10. DOI: 10.1186/s12871-024-02770-8.
- 27. Malta, Stephanie Marie. Assessing risk factors for postoperative delirium in elderly patients following elective procedures. Diss. 2023.

- 28. Almashari, Yasser, *et al.* "Incidence and Risk Factors of Developing Post-operative Delirium Among Elderly Patients in a Tertiary Care Hospital: A Retrospective Chart Review." Cureus 16.7 (2024). DOI: 10.7759/cureus.64140.
- 29. Umholtz, Matthew, and Nader D. Nader. "Postoperative delirium and postoperative cognitive dysfunction." General Anesthesia Research (2020): 239-253. DOI: 10.1007/978-1-4939-9891-3 13.
- 30. Wagner, Doreen, *et al.* "The relationship of postoperative delirium and unplanned perioperative hypothermia in surgical patients." Journal of Perianesthesia Nursing 36.1 (2021): 41-46. DOI: 10.1016/j.jopan.2020.06.015.